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ABSTRACT. In this paper, we prove quadruple coincidence point theorems for
mixed g-monotone mappings satisfying the compatibility property in partially
ordered metric space.

1. Introduction

The fixed point theorems in metric spaces are playing a major role to con-
struct methods in mathematics and to solve problems in applied mathematics and
sciences. The existence of a fixed point in partially ordered metric and G-metric
spaces has been considered in ([1]-[4]) and ([5]-[10]). The notion of coupled fixed
points have been introduced by Guo and Laksmikantham [3] in connection with
monotone operators, which is further generalized by Choudhury [1], Bessem Samet
[2] and many more. Berinde and Borcut [7] introduced the concept of triple fixed
point and proved some related theorems. The concept of quadruple fixed point
is considered by Erdal Karapinar [4], Mustafa [10]. Here, our aim is to prove a
unique quadruple coincidence point theorem for g-monotone mappings satisfying
the compatibility property in partially ordered metric space.

2. Preliminaries

DEFINITION 2.1. [10] Let (X, <) be partially ordered set and F : X* — X.
We say that F' has the mixed g-monotone property, if for any z,y, z,w € X,

T1,T2 € Xagml < gra = F(xlvyvz,w) < F(Ig,y,z,’UJ),

y1,92 € X, gy1 < gy2 = F (2,92, 2,w) < F (2,91, 2,w),

21,220 € X, 921 € g22 = F (x,y,21,w) < F (2,y, 22,w),
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w1, Wz € Xagwl < quwz = F(.’L',y,Z,U}Q) < F(x?y7zaw1)'

DEFINITION 2.2. [10] An element (x,y,z,w) € X? is called a quadruple co-
incidence point of F : X* — X and g : X — X, if the following conditions are
F(w,z,y,2) = g(w).

DEFINITION 2.3. [5] Let (X, d) be a metric space and {z,} C X. The mappings
f,9: X — X are said to be compatible if,

lim d(fgzn,gfx,) =0
n—oo
whenever {z,} is a sequence in X such that for some = € X, such that

lim fz, = lim gz, =z.
n—oo n—oo

Now, we define a mapping d : X* x X4 — X on (X, d) by:
d((x,y,z,w), (u,v,h,1) =d(x,u)+d(y,v) +d(zh)+dw,l),
which will be denoted for convenience by d. Also, let ¢ denotes all functions
¢ :[0,00) — [0,00), which satisfy:
(1) ¢ is non-decreasing,

(2) ¢(t) <tforallt>0,
(3) lim,_+ & (r) <t forall t > 0.

3. Main Result

THEOREM 3.1. Let (X, <) be a partially ordered set and (X,d) be a complete
metric space. Let F : X* — X be a mapping having the mized g-monotone property
on X, such that there exist four elements xq,yo, 20, wo € X, with

gzo < F'(z0,Y0, 20, wo) , 9Y0 = F (Yo, 20, o, o) ,
920 < F (20, w0, x0,y0) and gwy = F (wo, o, Yo, 20) -
Suppose there exist ¢ € ¥, M = 0 such that
(3.2) d(F (z,y,z,w), F (u,v,h,1))

<o (d (g7, gu) + d (gy, gv) Z d(gz,gh) +d (gw7gl))

Va,y,z,u,v,h,l € X with gr > gu,9y < gv,9z = gh and gw < gl. Also, let
F (X4) C g(X) and F, g being continuous, monotone increasing and compatible
mappings. Then F and g have quadruple coincidence point in X.

(3.1)

PROOF. Suppose g, Yo, 20, wo € X be given by (3.1) As F' (X4) C g (X), there-
fore we can choose x1,y1,21, w1 € X such that gz; = F (x0,y0,20,w0), gy1 =
F (yo, 20, wo, 20) ,

921 = F (20, w0, %0,Y0), gwi = F (wo,Zo,Yo0,20).- Then we have,

gxro < gx1, gyo = 9y1, 920 < gz1 and gwy = gw;. In the same way, we have
gre = F(x1,y1,21,w1), gy2 = F (y1,21,w1,21),

gz2 = F (z1,w1,21,31), gws = F (w1,21,91,21).



QUADRUPLE COINCIDENCE POINT... 47

Since F' has mixed g-monotone property, therefore we have

gro < gr1 < gT2, gY2 < gY1 < gYo, 920 < gz1 < gzz and gwy < gwi < gwo.
Continuing this process, we can construct four sequences {gx,},{gyn},{gzn} and
{gwy,} such that

gTn = F (xnflvynflaznfla wnfl) < 9Tn+1 = F (xn7yna Znawn) 5

9Yn+1 = F (Yn» 20, Wns Tn) < gYn = F (Yn—1, Zn—1, Wn—1,Tn—1) ,

gzn = F (Zn—lvwn—laxn—ly yn—l) < gzpp1 =F (vawn7xna yn) ,

gWni1 = F (Wn, Ty Yny 2n) < gW0n = F (Wn—1, Tn—1,Yn—1, Zn-1) -

Now, for any n € N, we have

d(ganrlvgxn) = d(F (xnvynvzn7wn)aF(mnflvynflaznflvwnfl))

(33) < ¢ d(gxnagxn—l) +d(gynagyn—1) Zd(gznagzn—l) +d(gwn7gwn—l)
d(gynagynJrl) = d(F (ynflaznflawnflaxnfl)»F(ynaznvwnaxn))

(34) < ¢ _d(gyn—lagyn) + d(gzn—lagzn) +4d (gwn—l,gwn) + d (gxn—lagmn)_ ,
d(gzn+1agzn) = d(F (Zn7wnaxn7yn);F(anlvwnflaxnflaynfl))

(35) < ¢ _d(gznagznfl)+d(gwnagwnfl)Id(gxnagxnfl) +d(gynagyn71)_ ,
d(gwnvgwnJrl) = d(F (wnflvxnflaynflaznfl)7F(wn7xnayn72n))

(36) < ¢ |:d (gwnfl»gwn) + d (gxnfla gxn)4+ d (gynfl»gyn) + d (gznfla gzn):| )

Due to equations (3.3)-(3.6), we obtain
d (gxn-‘rla gxn) +d (gyna gyn-i—l) +d (gzn+17gzn) +d (gwna gwn-‘rl)

37 _ 46 [d (9%n, 9Zns1) + d(9Yn, gyn—1) + d(92n, g2n—1) + d (gwn, gwn—l)}
N 4 .
Let d, = d (92n, 9Zn+1) + A (9Yn, 9Yn+1) + d (920, 92ny1) + d (gWn, gWn41)

Then equation (3.7) implies d,, < 46 (“7) = dy < dy 1.

Thus (d,,) is decreasing sequence. Therefore there is some d > 0, such that
(3.8) nh_{rgo d,=d
Now, we claim that d = 0. If not, then taking n — oo of both sides of equation
(3.6), we get
d < limy, 00 40 (%) < d,
which is a contradiction. Hence d = 0, that is,
(3.9)
lim [d (92, 9%n+1) + d (9Yn, 9Yn+1) + d (920, 92n+41) + d (gWn, gWn41)] = 0.

n—roo

Now, we will prove that {gx,},{9yn},{92:,} and {gw,} are Cauchy sequences.
Suppose to contrary that at least one of these sequences is not a Cauchy sequence.
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Then there exist an € > 0 for which we can find subsequences of integers (my) and
(nk) ,with n (k) > m (k) > k such that

[d (9Zn k), 9Tmr)) + A (9Yn(k)s WYmr)) +

(3.10)

d (92n(k): 92m(w) + d (9Wn(k) gwmm) )] = €

Further corresponding to m (k), we can choose n (k) in such a way, that it is the
smallest integer with n (k) > m (k) and satisfying equation (3.10), then

(3.11) [d (9% (k)—15 9Tm@)) + A (GYn(k)—1> 9Ymr)) +

d (92n(k)=1592m@)) + A (9Wn(k)—1, JWm (k)| < €.

From equation (3.10), (3.11) and applying triangle inequality, we have

e<re = d(9Tnm)> 9Tmm)) + 4 (9Yn)s 9Ym)) + A (9Zn k), 92m))
d (gwn(k)> Wim(k))
d (9%n (k) 9Tnk)—1) + A (GYn(k)s GYn(r)—1)

+  d(92nk), 9Znk)—1) + A (GWn(k) s GWn(k)—1) -

N+

Letting k — oo in above inequality with keeping in mind equation (3.8), we conclude
that

(3.12) lim rp =¢

k—o0

Again employing triangle inequality, we obtain

(3:13yk = d(9Zn(r), 9Tmw)) + A (9Yn(k) 9Ym()) + d (92n(k)> 9Zm(r) )
+ d(gwa), 9Wmk))

(3.14) < du) + dnr) T 4 (9Tn0) 1, 9Tm)+1) + 4 (9Yn(k)+15 9Ym(k)+1)
+  d(92n(k)+1: 9Zm)+1) T 4 (9Wn)£1> JWim(r)+1) -

As n (k) > m (k), we have

9Tn(k) Z 9Tm(k)s 9Yn(k) S 9Ym(k)s 9Zn(k) Z 92m(k) and gWp (k) < JWn(k)-
Using equation (3.2), we obtain

Similarly,
(3.16) A (GYmk)+15 WYn(ky+1) = @ (%) ;
(3.17) d (9Zn(k)y+15 92Zm(k)+1) = @ (%) ;

(3.18) d (9Wn(k)+1: GWn(ky41) = & (

I

).
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Due to equation (3.14)-(3.17) and keeping in view the property of function ¢, we
get

d (9Zn(k)+15 9Tm)+1) + A (9Ym)+1> GYn(i)+1) +

(3.19)
d (gzn(k)+lagzm(k)+l) +d (gwm(k)+17 gwn(k)+1) < Tk

Hence, from equation (3.14) and (3.18), we get 7, < dp(x) + dim (k) + k-

Taking k — oo and using equation (3.9), we conclude r, < 7. It is a contra-
diction.

Thus {gzn},{9yn},{92n} and {gw,} are Cauchy sequences in X and since X
is a complete metric space, therefore there exist z,y, z,w € X such that

(3.20) lim F(Zn,Yn, 2n, wp) = lim gz, = x,
n—oo n—oo

(3.21) Um F (yn, 2n, W, n) = lim gy, = v,
n—r oo n—oo

(3.22) lim F (zn, Wn, Tn,yn) = lim gz, = z,
n— oo n—oo

(3.23) lim F (wy,Tn,Yn, 2n) = lim gw, = w.
n—oo n—oo

Now, as F and g are compatible mappings, we have

(3.24) Jim d (g (F (20, Yns 20, wn)) s F (920, 9Yn,s 92, gwn)) = 0,
(3.25) Jdim d (g (F (yns 2ns Wy @) s F (9Yns 92ns gwn; g2n)) = 0,
(3.26) Tim d (g (F (20, wns Zny Yn)) s F (920, 90ns 9T, 9yn)) = 0,
(3.27) lim_d (g (F (wn, Zn,Yn, 2n)) , F (9Wn, 92n, 9Yn, 92n)) = 0.

Since F is continuous for all n > 0, we get

d (92, F (92n, 9Yn: 92n, gwn)) <

d(gz,9 (F (&0, Yn, 2n, wn))) + d (g (F (Zn, Yn, 2n, wn)) , F (9T, GYn, 92, gwn)) -
On applying n — co and combining equation (3.18) and (3.22), we obtain
F(z,y,z,w) =gz, F(y,z,w,x) =gy, F(z,w,z,y) =gz and F(w,z,y,2) = gw.

Hence we conclude that F and g have a quadruple coincidence point in X. O

THEOREM 3.2. In addition to the hypothesis of Theorem 3.1, suppose that for
every (z,y, z,w) , (r1,y1, 21, w1) in X*, there exists (u,v, h,l) that is comparable to
(z,y,z,w) and (x1,y1,21,w1), then F and g have a unique quadruple coincidence
point.
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PROOF. From Theorem 3.1, the set of quadruple fixed points of F and g is non-
empty. Suppose (z,y, z,w) and (x1,y1, 21, w1) are quadruple coincidence points of
F and g, that is

gz =F (z,y,2,w),9y = F (y,z,w,2),
gz = F(Z7w7z7y) ’gw = F(w7z7y7z) a’nd
And
gr1 = F (’Ilayhzlvwl) y9Y1 = F (yla 21, Wy, zl) )
gz1 = F (21, w1,21,y1),, gw1 = F (w1, 71,91, 21) -
We shall show that
gr = gT1,9Yy = gy1,9% = gz1 and gw = gw;.

By assumption, there exist (u,v,h,l) € X, that is comparable to (z,y, z, w)
and (21,1, 21, w1).

Now, we define sequences {gu,},{gvn},{ghn} and {gl,}as follows:

Up = U,v9 =0, hO = h; lO - l;gun+1 =F (unavnv hru ln) y JUn41 = F ('Un; hn; lnaun)
ghn+1 =F (hrulnaunvvn) and gln+1 =F (Zn7unavn7 hn) for all n € N.
Since (u, v, h,l) being comparable with (z,y, z,w), we may assume that

(l‘, Y, =, ’LU) 2 (’U,, v, ha l) = (u07 Vo, h’Ov lo) .
Applying mathematical induction, it is easy to prove that
(x,y,z,w) = (Un,Vp, hn,l,) for alln € N.

Due to equation (3.2), we obtain

(328)d(gx,gun+1) = d(F (xvyvsz)7F(unavnahnaln))

< o d (g, gun) + d(gy, gvn) + d (92, ghn) + d (gw, gly,)

~ 4 bl
Analogously

[d (guy, +d (ghn,gz) +d(gl,, gw) + d (gun, gx) ]
(3-29)  d(gvnt1,9y) < ¢ (gon,9y) +d (g g>4 (gln, gw) + d (gun, 97) |

[d(gz,ghn) + d(gw, gln) + d (92, gun) + d (gy, gvn) |

[d(gw, gln) + d (g, gun) + d (gy, gvn) + d (g2, ghy) |
i .

On adding equation (3.27)-(3.30) and using the property of function ¢, we have

(3.31)  d(gw,glni1) < &

d (9, guny1) +d (9y, gony1) +d (92, ghny1) +d (gw, glpny1)

(3:32)  _ 46 d(gx, guni1) + d (gy, guns1) + d (92, ghnir) + d (gw, glnir)
S 1

or d(gxagun-i-l) + d(gyagvn-l-l) + d(gz,ghn+1) + d(nggln-i-l)

3.33
(3.33) < d (g, guni1) +d(9y, gvni1) +d (92, ghny1) + d (9w, gln11)
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Thus, the sequence {d (g, gu,) + d (gy, gv,) + d (g2, ghy) + d (gw, gl,)} is decreas-
ing, therefore there exist § > 0, such that

(3.34) m [d (g, gun) + d (gy, gvn) + d (92, ghn) + d (gw, gl,)] = 6

i
n—oo

Suppose that § > 0, taking limit as n — oo in equation (3.30), we have

(3.35) 5<4 (‘bf))

It is a contradiction. Hence § = 0, that is
Jim_[d (g2, gun) + d(g9y, gon) + d (92, ghn) + d (gw, gln)] = 0.
By this we obtain
(3.36)  lim d(gz,gun) = lim d(gy,gvn) = lim d(gz,ghy) = lim d(gw,gln).

In the same way, it is easy to show that

(3.37)
lim d(gz1, gu,) = lim d(gy1,gv,) = lim d(gz1,gh,) = lim d(gwi,gl,).
n—00 n—ro00 n—00 n—00

On account of equation (3.35) and (3.36), we have

9T = gx1,9y = gy1,9z = gz1 and gw = gw;
Hence the result. O

EXAMPLE 3.1. Let (R,d) be a complete metric space with the usual metric
defined on R.
Consider g : X — X and F : X* — X be defined as

7 _ _
g(x)=-x and F (z,y,z,w) = Toyte-w
9 8
Also suppose ¢ : [0, 00) — [0,00) be given by ¢ (t) = St.
Now for all x,y, z,u, v, h,l € X, satisfying gz < gu, gv < gy,9z < gh and gl <
gw, the L.H.S of the condition of equation (3.1) is

Cytz—w u—vth—l
A(F (eopz) Fluoh,d) = TEEE BRI

J;—y+z—w_u—v+h—l
8 8

Now, the R.H.S of equation (3.2) becomes
) (d(g:r’gu)+d(9y,gv)+d(gz7gh)+d(9w,gl)) — 67 (\w*u|+|y*v\+lth|+\wfl\>
1 779 1

we find that the hypothesis of equation (3.2) are satisfied.
Also, (0,0,0,0) is the unique quadruple fixed point of F and g.
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