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ABSTRACT: The effects of quadratic drag and vertical throughflow on the onset of double 
diffusive convection in a non-Newtonian fluid saturated horizontal porous layer are 
investigated. A modified Forchheimer-extended Darcy model which takes inertia into 
account and viscoelastic effects is employed to describe the flow in a porous medium. The 
boundaries are considered to be impermeable but perfect conductors of heat and solute 
concentration. Conditions for the occurrence of stationary and oscillatory convection are 
obtained analytically using the Galerkin technique. In contrast to the single component 
system, it is found that a small amount of throughflow in either of its direction destabilizes 
the system. 
 
 
 
 

1. INTRODUCTION 
 
 

     Double diffusive convection in porous media has generated considerable interest 
in recent years because of its importance in many engineering applications such as 
biomechanical and chemical engineering, geothermal systems, enhanced recovery of 
petroleum reservoirs, underground spreading of chemical waste among others [1]. 
The major available literature on these are mainly concerned with heat and mass 
transfer and flow of Newtonian fluids in porous media. However, many practical 
problems cited above involve non-Newtonian fluids saturating a porous media.  For 
example, the performance of an oil reservoir depends, to a large extent, upon the 
physical nature of crude oil present in the reservoir. The light crude is essentially 
Newtonian while the heavy crude is non-Newtonian. The study of a heavy crude oil 
is based on a generalized Darcy equation, which takes into account of non-
Newtonian effects as well as nonlinear nature of Darcy- Forchheimer Oldroyd-B 
fluid. Such an equation is useful in the study of mobility control in oil displacement 
mechanism, which improves the efficiency of oil recovery. There exist many 
different types of non-Newtonian fluids. However, some oil sand contains waxy 
crude oil  at shallow depths of the reservoirs which are considered to be viscoelastic 
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fluids. In such situations, a viscoelastic model of a fluid will be more realistic than 
inelastic non- Newtonian fluids. Also, many geophysical and technological 
applications involve non-isothermal flow of fluids through porous media, called 
throughflow.  
     Copious literature is available on the thermal instability of a viscoelastic fluid 
saturated porous layer with and without throughflow effects [3, 4]. However, the 
importance of double diffusive convection in a viscoelastic fluid saturated porous 
layer with throughflow becomes significant when precise processing is required. To 
date, flow within the porous layer is invariably modeled using a Newtonian-fluid 
approximation despite viscoelastic properties with combined thermal and solute 
concentration gradients which are crucial in a variety of laboratory and geophysical 
situations. The difficulty in dealing with such instability problems is that one has to 
solve the time dependent equations with variable coefficients. Such a phenomenon, 
to our knowledge has not been given cognizance and the study of it is the main 
objective of this paper.  

 
 

2.  FORMULATION OF THE PROBLEM 
 
 
      We consider an incompressible binary viscoelastic fluid saturated horizontal 
porous layer of thickness d with constant vertical throughflow of magnitude 0w  
which is either gravity aligned or otherwise in its direction. A Cartesian co-ordinate 
system (x, y, z) is chosen such that the origin is at the bottom of the layer and z-axis 
is vertically upward. The boundaries of the porous layer are kept at constant but 
different temperatures and solute concentrations. That is, T0  and  S0 at the lower 
boundary z = 0, while T1 ( T0 ) and S1 ( S0 ) at the upper boundary z = d. The 
viscoelastic fluid is approximated by the Oldroyd-B constitutive model. The 
governing equations, following [1, 2], are :  
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where q  is the velocity vector, T the temperature, S the solute concentration, p the 
hydrostatic pressure, μ the viscosity of the fluid, 1λ  and 

2λ are constant relaxation 
and retardation times ,t  the effective thermal diffusivity, s  is the solute analog of 

t , ε  the porosity of the porous medium, k  the permeability of the porous medium, 



39 
 

t  is the volumetric thermal expansion coefficient,  s  is the solute analog of t , 
  the fluid density, 

0  is the reference density,  dC  the dimensionless  Forchheimer 
coefficient, g

  the acceleration due to gravity A  0 0( ) /( )m p fc c  = 

0 0 0[(1 )( ) ( ) ] /( )s p f p fc c c      the ratio of  heat capacities of the fluid saturated 

porous medium to that of the fluid, and pc is the specific heat. The subscripts m , s 
and f refer respectively to the porous medium, solid and fluid.  

       The basic state is not quiescent ( i.e., ˆ
b 0q =w k ) and as a result the basic 

temperature and solute concentration distributions vary from linear to nonlinear with 
porous layer height z . Following the standard linear stability analysis procedure as 
outlined in [4], the governing stability equations in dimensionless form can then be 
written as  

                           1 2 2 2 2σ (1 ΓΛσ)G Q Da (D ) θ C
Pr (1 Γσ) t sa W=-R a R a 

     
    (6)                                                         

                                          2D Mσ QD Θ2a f (z)W                                (7) 

                                          2τ(D ) σ QD C g2a (z)W                                (8)                                                  

 where, W,   and C  are respectively the perturbed amplitudes of z-component of 
velocity, temperature and solute concentration, /D d dz  and a is the horizontal 
wavenumber. Here   3 /t t tR g T d      is the thermal Rayleigh number, 

3 /s s tR g S d     is the solute Rayleigh number, 0 / tQ w d   is the Peclet 
number,  2rP / t    is the modified Prandtl number, 2/aD k d  is the Darcy 
number, /s t   is the ratio of diffusivities, ( ) /( 1)QQ zf z Q e e   and 

( ) /( 1)Q z Qg z Q e e 
   are the dimensionless steady state non-linear basic temperature 

and solute concentration gradients respectively, /Q Q    and    is the growth rate 
which is complex in general. 
 
 The boundary conditions are  
 
                                            ΘW =  = C = 0  at  0,1z                                 (9)                                                                                                    
   

2. SOLUTION TO THE EIGENVALUE PROBLEM 
 

     Equations (6) – (8) together with the boundary conditions given by Eq.(9) 
constitute a double eigenvalue problem and a single term Galerkin expansion 
technique, which yields sufficiently accurate and useful results, is used to solve it. 
Accordingly, the variables in Eqs.(6) –(8) are written in terms of trial functions as 

1 1 2 1( ), ( )W A W z A z    and 
3 1 ( )C A C z , where 

1( ),W z 1( )z  and 
1( )C z  will be 

generally chosen in such a way that they satisfy the respective boundary conditions, 
and 1A  - 3A   are constants. Multiplying Eq.(6) by 1W , Eq. (7) by 1  and Eq.(8) by 1C ;  
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integrating  the equations with respect to z from 0 to 1, eliminating the constants 1A  - 

3A  from the resulting equations, taking σ iω  and clearing the complex quantities 
from the  denominator of the expression obtained for tR ,we get   
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Since tR  is a physical quantity, it must be real and it implies either  = 0 (stationary 
convection) or N = 0 (oscillatory convection) in Eq.(10). For oscillatory onset 0N    
( 0)   then Eq.(11) yields a dispersion relation of the form. 
                                                       2 2 2

1 2 3(ω ) (ω ) 0a a a                       (12) 
 where 1a , 2a  and 3a  are functions of  known parameters. 
 

4.  RESULTS AND DISCUSSION 

 
 It is observed that the steady case (ω 0) results correspond to those of 
Newtonian fluid.  This is because the basic state remains the same for both 
Newtonian and viscoelastic fluids saturated porous layer as it corresponds to pure 
conduction. The basic temperature and solute concentration distributions are 
obtained for representative values of Q  and τ , and are presented graphically in 
Fig.1, in order to understand their influence on the stability of the system. As can be 
seen from the figure, the basic state distributions are linear in the absence of 
throughflow ( Q  = 0). However, when throughflow exists, the distributions become 
nonlinear, and deviate from each other with an increase in Q . In fact, the 
nonlinearity in base-state solute concentration stratification (dotted lines) becomes 
more pronounced as compared to temperature stratification (solid lines) with 
decrease in τ . The change in base-state stratification between the solute 
concentration and temperature affect the stability of the system significantly. 
 
      The marginal stability curves for steady and oscillatory modes in the tR  - a 
plane are shown in Figs.2(a,b) for values of 0.1Q  , 510Da  , Γ =10, 1 0P r  , 
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45 10sR   , 0.5dC  , M=1.25 , 0.4ε  . Figure 2(a) shows the neutral curves for Λ= 
0.9 and 1.1 when τ =0.01, while Fig.2 (b) illustrates the neutral curves for two 
values of τ =0.01 and 1.2 when Λ =0.1. From these figures it is important to note 
that oscillatory convection is possible even if Λ>1 and 1M τ  ; a contrast result 
when compared to single component viscoelastic fluid saturated porous layer (i.e., 

sR =0) and double diffusive Newtonian fluid saturated porous layer (i.e., Γ 0  ) 
respectively.  Besides, there exist two different onset frequencies at the same wave 
number when Λ >1 and increase in Λ is to delay the onset of oscillatory convection 
(see Fig. 2a). Also, the critical wave number for the direct mode (i.e., Newtonian 
case) is found to be smaller than that of oscillatory mode. 
 
      The critical oscillatory Rayleigh number 0

tcR , is computed numerically and the 
results are shown in Figs 3-5 for  different values of sR  ( 0 , 315 10 , 45 10 ),Λ  
(=0.05,0.1) and Γ (=0.5,1.0) respectively,  as a function of Q with fixed value of 

510Da  , M=1.25, 10Pr  , 0.5dC   and 0.4ε  . From these figures, it is 
interesting to note that in the absence of an additional diffusing component (i.e., sR
=0) the effect of throughflow is always stabilizing by a degree which is independent 
of the flow direction. Nonetheless, when a viscoelastic fluid saturated porous 
medium is stratified with 35 10sR   and 45 10  (i.e., in the presence of an additional 
diffusing component) then the effect of throughflow is destabilizing up to a certain 
value of Q , and the destabilization manifests itself as a minimum in the 0

tcR - Q  
plot. The 
destabilization may be due to the distortion of steady state basic temperature and 
solute concentration distribution by the throughflow. Further, decrease in the value 
of   (see Fig.3) as well as Λ  (see Fig.4 a,b) and increase in the value of Γ  (see Fig. 
5 a,b) is to decrease the critical oscillatory Rayleigh number and hence their effect is 
to hasten the onset of convection up to a certain value of Q  and exceeding which 
the curves for different sR coalesce. Whereas, increase in sR  is to delay the onset of 
convection.  
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