BULLETIN OF THE INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE ISSN (p) 2303-4874, ISSN (o) 2303-4955 www.imvibl.org /JOURNALS / BULLETIN Vol. 4(2014), 1-9

Former BULLETIN OF THE SOCIETY OF MATHEMATICIANS BANJA LUKA ISSN (p) 0354-5792, ISSN (o) 1986-521X

Weakly \mathcal{I}_q -closed sets

O. Ravi, R. Senthil Kumar and A. Hamari Choudhi

ABSTRACT. In this paper, the notion of weakly \mathcal{I}_g -closed sets in ideal topological spaces is studied. The relationships of weakly \mathcal{I}_g -closed sets and various properties of weakly \mathcal{I}_g -closed sets are investigated.

1. Introduction

The first step of generalizing closed sets was done by Levine in 1970 [7]. He defined a subset A of a topological space (X, τ) to be g-closed if its closure belongs to every open superset of A. As the weak form of g-closed sets, the notion of weakly g-closed sets was introduced and studied by Sundaram and Nagaveni [11]. Sundaram and Pushpalatha [12] introduced and studied the notion of strongly g-closed sets, which is implied by that of closed sets and implies that of g-closed sets. Park and Park [9] introduced and studied mildly g-closed sets, which is properly placed between the classes of strongly g-closed and weakly g-closed sets. Moreover, the relations with other notions directly or indirectly connected with g-closed were investigated by them. In 1999, Dontchev et al. studied the notion of generalized closed sets in ideal topological spaces called \mathcal{I}_g -closed sets [2]. In 2008, Navaneethakrishnan and Paulraj Joseph have studied some characterizations of normal spaces via \mathcal{I}_g -open sets [8]. In 2013, Ekici and Ozen [4] introduced a generalized class of τ^* . Ravi et. al [10] introduced another generalized class of τ^* called weakly \mathcal{I}_q -closed sets.

The main aim of this paper is to study the notion of weakly \mathcal{I}_g -closed sets in ideal topological spaces. The relationships of weakly \mathcal{I}_g -closed sets and various properties of weakly \mathcal{I}_g -closed sets are discussed.

1

²⁰¹⁰ Mathematics Subject Classification. 54A05, 54A10.

Key words and phrases. τ^* , generalized class, weakly \mathcal{I}_g -closed set, ideal topological space, generalized closed set, \mathcal{I}_g -closed set, $\operatorname{pre}_{\mathcal{T}}^*$ -closed set, $\operatorname{pre}_{\mathcal{T}}^*$ -open set.

2. Preliminaries

In this paper, (X, τ) represents topological space on which no separation axioms are assumed unless explicitly stated. The closure and the interior of a subset G of a space X will be denoted by cl(G) and int(G), respectively.

DEFINITION 2.1. A subset G of a topological space (X, τ) is said to be

(1) g-closed [7] if $cl(G) \subseteq H$ whenever $G \subseteq H$ and H is open in X;

(2) g-open [7] if $X \setminus G$ is g-closed.

An ideal ${\mathcal I}$ on a topological space $(X,\,\tau)$ is a nonempty collection of subsets of X which satisfies

- (1) $A \in \mathcal{I}$ and $B \subseteq A$ imply $B \in \mathcal{I}$ and
- (2) $A \in \mathcal{I}$ and $B \in \mathcal{I}$ imply $A \cup B \in \mathcal{I}$ [6].

Given a topological space (X, τ) with an ideal \mathcal{I} on X if $\mathcal{P}(X)$ is the set of all subsets of X, a set operator $(\bullet)^* : \mathcal{P}(X) \to \mathcal{P}(X)$, called a local function [6] of A with respect to τ and \mathcal{I} is defined as follows: for $A \subseteq X$, $A^*(\mathcal{I}, \tau) = \{x \in X \mid U \cap$ $A \notin \mathcal{I}$ for every $U \in \tau(x)\}$ where $\tau(x) = \{U \in \tau \mid x \in U\}$. A Kuratowski closure operator $cl^*(\bullet)$ for a topology $\tau^*(\mathcal{I}, \tau)$, called the *-topology and finer than τ , is defined by $cl^*(A) = A \cup A^*(\mathcal{I}, \tau)$ [13]. We will simply write A^* for $A^*(\mathcal{I}, \tau)$ and τ^* for $\tau^*(\mathcal{I}, \tau)$. If \mathcal{I} is an ideal on X, then (X, τ, \mathcal{I}) is called an ideal topological space. On the other hand, $(A, \tau_A, \mathcal{I}_A)$ where τ_A is the relative topology on A and $\mathcal{I}_A = \{A \cap J : J \in \mathcal{I}\}$ is an ideal topological space for an ideal topological space (X, τ, \mathcal{I}) and $A \subseteq X$ [5]. For a subset $A \subseteq X$, $cl^*(A)$ and $int^*(A)$ will, respectively, denote the closure and the interior of A in (X, τ^*) .

DEFINITION 2.2. A subset G of an ideal topological space (X, τ , \mathcal{I}) is said to be

- (1) \mathcal{I}_g -closed [2] if $G^* \subseteq H$ whenever $G \subseteq H$ and H is open in (X, τ, \mathcal{I}) .
- (2) $\operatorname{pre}_{\mathcal{I}}^*$ -open [3] if $G \subseteq \operatorname{int}^*(\operatorname{cl}(G))$.
- (3) $\operatorname{pre}_{\mathcal{I}}^*$ -closed [3] if X\G is $\operatorname{pre}_{\mathcal{I}}^*$ -open.
- (4) \mathcal{I} -R closed [1] if $G = cl^*(int(G))$.
- (5) *-closed [5] if $G = cl^*(G)$ or $G^* \subseteq G$.

REMARK 2.1. [4] In any ideal topological spaces, every \mathcal{I} -R closed set is *-closed but not conversely.

DEFINITION 2.3. [4] Let (X, τ, \mathcal{I}) be an ideal topological space. A subset G of X is said to be a weakly \mathcal{I}_{rg} -closed set if $(int(G))^* \subseteq H$ whenever $G \subseteq H$ and H is a regular open set in X.

DEFINITION 2.4. [4] Let (X, τ, \mathcal{I}) be an ideal topological space. A subset G of X is said to be a weakly \mathcal{I}_{rq} -open set if X\G is a weakly \mathcal{I}_{rq} -closed set.

REMARK 2.2. [4] Let (X, τ, \mathcal{I}) be an ideal topological space. The following diagram holds for a subset $G \subseteq X$:

$$\begin{array}{cccc} \mathcal{I}_{g}\text{-closed} & \longrightarrow & \mathcal{I}_{rg}\text{-closed} & \longrightarrow & \text{weakly} \ \mathcal{I}_{rg}\text{-closed} & & \uparrow \\ & & \uparrow \\ & & & \uparrow \\ & & & \uparrow \\ \mathcal{I}\text{-R-closed} & & & & \\ \end{array}$$

These implications are not reversible as shown in [4].

DEFINITION 2.5. [10] Let (X, τ, I) be an ideal topological space. A subset G of X is said to be

- (1) a mildly \mathcal{I}_g -closed set if $(int(G))^* \subseteq H$ whenever $G \subseteq H$ and H is a g-open set in X;
- (2) a weakly \mathcal{I}_g -closed set if $(int(G))^* \subseteq H$ whenever $G \subseteq H$ and H is an open set in X;
- (3) a strongly \mathcal{I}_g -closed set if $G^* \subseteq H$ whenever $G \subseteq H$ and H is a g-open set in X.

REMARK 2.3. [10] Let (X, τ, \mathcal{I}) be an ideal topological space. The following diagram holds for a subset $G \subseteq X$:

$$\begin{array}{cccc} \text{strongly} \ \mathcal{I}_g\text{-closed set} & \longrightarrow & \mathcal{I}_g\text{-closed set} \\ & \downarrow & & \downarrow \\ \text{mildly} \ \mathcal{I}_g\text{-closed set} & \longrightarrow & \text{weakly} \ \mathcal{I}_g\text{-closed set} \end{array}$$

These implications are not reversible.

3. Properties of weakly \mathcal{I}_g -closed sets

THEOREM 3.1. Let (X, τ, \mathcal{I}) be an ideal topological space and $G \subseteq X$. The following properties are equivalent:

(1) G is a weakly \mathcal{I}_{g} -closed set,

(2) $cl^*(int(G)) \subseteq H$ whenever $G \subseteq H$ and H is an open set in X.

PROOF. It is similar to that of Theorem 3.5 of [4].

THEOREM 3.2. Let (X, τ, \mathcal{I}) be an ideal topological space and $G \subseteq X$. If G is open and weakly \mathcal{I}_{q} -closed, then G is *-closed.

PROOF. Let G be an open and weakly \mathcal{I}_g -closed set in (X, τ, \mathcal{I}) . Since G is open and weakly \mathcal{I}_g -closed, $cl^*(G) = cl^*(int(G)) \subseteq G$. Thus, G is a *-closed set in (X, τ, \mathcal{I}) .

THEOREM 3.3. Let (X, τ, \mathcal{I}) be an ideal topological space and $G \subseteq X$. If G is a weakly \mathcal{I}_q -closed set, then $(int(G))^* \setminus G$ contains no any nonempty closed set.

PROOF. Let G be a weakly \mathcal{I}_g -closed set in (X, τ, \mathcal{I}) . Suppose that H is a closed set such that $H \subseteq (int(G))^* \backslash G$. Since G is a weakly \mathcal{I}_g -closed set, X \H is open and $G \subseteq X \backslash H$, then $(int(G))^* \subseteq X \backslash H$. We have $H \subseteq X \backslash (int(G))^*$. Hence, H

 \subseteq (Int(G))* \cap (X\(int(G))*) = \emptyset . Thus, (int(G))*\G contains no any nonempty closed set.

THEOREM 3.4. Let (X, τ, \mathcal{I}) be an ideal topological space and $G \subseteq X$. If G is a weakly \mathcal{I}_q -closed set, then $cl^*(int(G)) \setminus G$ contains no any nonempty closed set.

PROOF. Suppose that H is a closed set such that $H \subseteq cl^*(int(G))\backslash G$. By Theorem 3.3, it follows from the fact that $cl^*(int(G))\backslash G = ((int(G))^* \cup int(G))\backslash G$.

THEOREM 3.5. Let (X, τ, \mathcal{I}) be an ideal topological space. The following properties are equivalent:

(1) G is $pre_{\mathcal{I}}^*$ -closed for each weakly \mathcal{I}_q -closed set G in (X, τ, \mathcal{I}) ,

(2) Each singleton $\{x\}$ of X is a closed set or $\{x\}$ is $pre_{\mathcal{I}}^*$ -open.

PROOF. $(1) \Rightarrow (2)$: It follows from Theorem 3.11 of [4]. (2) $\Rightarrow (1)$: It is similar to that of Theorem 3.11 of [4].

THEOREM 3.6. Let (X, τ, \mathcal{I}) be an ideal topological space and $G \subseteq X$. If $cl^*(int(G)) \setminus G$ contains no any nonempty *-closed set, then G is a weakly \mathcal{I}_g -closed set.

PROOF. Suppose that $cl^*(int(G))\backslash G$ contains no any nonempty *-closed set in (X, τ, \mathcal{I}) . Let $G \subseteq H$ and H be an open set. Assume that $cl^*(int(G))$ is not contained in H. It follows that $cl^*(int(G))\cap(X\backslash H)$ is a nonempty *-closed subset of $cl^*(int(G))\backslash G$. This is a contradiction. Hence G is a weakly \mathcal{I}_q -closed set.

THEOREM 3.7. Let (X, τ, \mathcal{I}) be an ideal topological space and $G \subseteq X$. If G is a weakly \mathcal{I}_g -closed set, then $int(G) = H \setminus K$ where H is \mathcal{I} -R closed and K contains no any nonempty closed set.

PROOF. Let G be a weakly \mathcal{I}_g -closed set in (X, τ, \mathcal{I}) . Take $K = (int(G))^* \backslash G$. Then, by Theorem 3.3, K contains no any nonempty closed set.

Take $H = cl^*(int(G))$. Then $H = cl^*(int(H))$. Moreover, we have $H \setminus K = ((int(G))^* \cup int(G)) \setminus ((int(G))^* \setminus G) = ((int(G))^* \cup int(G)) \cap (X \setminus (int(G))^* \cup G) = int(G).$

THEOREM 3.8. Let (X, τ, \mathcal{I}) be an ideal topological space and $G \subseteq X$. Assume that G is a weakly \mathcal{I}_q -closed set. The following properties are equivalent:

(1) G is $pre_{\mathcal{I}}^*$ -closed,

(2) $cl^*(int(G)) \setminus G$ is a closed set,

(3) $(int(G))^* \setminus G$ is a closed set.

PROOF. (1) \Rightarrow (2) and (2) \Rightarrow (1) : It follows from Theorem 3.14 of [4]. (2) \Leftrightarrow (3) : It is similar to that of Theorem 3.14 of [4].

THEOREM 3.9. Let (X, τ, \mathcal{I}) be an ideal topological space and $G \subseteq X$ be a weakly \mathcal{I}_g -closed set. Then $G \cup (X \setminus (int(G))^*)$ is a weakly \mathcal{I}_g -closed set in (X, τ, \mathcal{I}) .

PROOF. Let G be a weakly \mathcal{I}_g -closed set in (X, τ, \mathcal{I}) . Suppose that H is an open set such that $G \cup (X \setminus (int(G))^*) \subseteq H$. We have $X \setminus H \subseteq X \setminus (G \cup (X \setminus (int(G))^*))$

4

 $= (X \setminus G) \cap (int(G))^* = (int(G))^* \setminus G$. Since $X \setminus H$ is a closed set and G is a weakly \mathcal{I}_g -closed set, it follows from Theorem 3.3 that $X \setminus H = \emptyset$. Hence, X = H. Thus, X is the only open set containing $G \cup (X \setminus (int(G))^*)$. Consequently, $G \cup (X \setminus (int(G))^*)$ is a weakly \mathcal{I}_g -closed set in (X, τ, \mathcal{I}) .

COROLLARY 3.1. Let (X, τ, \mathcal{I}) be an ideal topological space and $G \subseteq X$ be a weakly \mathcal{I}_g -closed set. Then $(int(G))^* \setminus G$ is a weakly \mathcal{I}_g -open set in (X, τ, \mathcal{I}) .

PROOF. Since $X \setminus ((int(G))^* \setminus G) = G \cup (X \setminus (int(G))^*)$, it follows from Theorem 3.9 that $(int(G))^* \setminus G$ is a weakly \mathcal{I}_q -open set in (X, τ, \mathcal{I}) .

THEOREM 3.10. Let (X, τ, \mathcal{I}) be an ideal topological space and $G \subseteq X$. The following properties are equivalent:

- (1) G is a *-closed and open set,
- (2) G is \mathcal{I} -R closed and open set,
- (3) G is a weakly \mathcal{I}_q -closed and open set.

PROOF. It is similar to that of Theorem 3.17 of [4].

PROPOSITION 3.1. Every $pre_{\mathcal{I}}^*$ -closed set is weakly \mathcal{I}_g -closed but not conversely.

PROOF. Let $H \subseteq G$ and G an open set in X. Since H is $\operatorname{pre}_{\mathcal{I}}^*$ -closed, $\operatorname{cl}^*(\operatorname{int}(H)) \subseteq H \subseteq G$. Hence H is weakly \mathcal{I}_q -closed set.

EXAMPLE 3.1. Let (X, τ, \mathcal{I}) be an ideal topological space such that $X = \{a, b, c, d\}, \tau = \{\emptyset, \{a\}, \{c\}, \{a, c\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}, X\}$ and $\mathcal{I} = \{\emptyset\}$. Then $\{b, c\}$ is weakly \mathcal{I}_g -closed set but not pre $_{\mathcal{I}}^*$ -closed.

REMARK 3.1. Let (X, τ, \mathcal{I}) be an ideal topological space. The following diagram holds for a subset $G \subseteq X$:

The reverse implications in this diagram are true by Remark 2.8 and the following Example.

EXAMPLE 3.2. Let X = {a, b, c}, $\tau = \{\emptyset, \{a\}, \{a, b\}, \{a, c\}, X\}$ and $\mathcal{I} = \{\emptyset, \{c\}\}$. Then {a} is weakly \mathcal{I}_{rg} -closed set but not weakly \mathcal{I}_{g} -closed.

4. Further properties

THEOREM 4.1. Let (X, τ, \mathcal{I}) be an ideal topological space. The following properties are equivalent:

(1) Each subset of (X, τ, \mathcal{I}) is a weakly \mathcal{I}_g -closed set,

(2) G is $pre_{\mathcal{I}}^*$ -closed for each open set G in X.

PROOF. (1) \Rightarrow (2) : It follows from Theorem 4.1 of [4]. (2) \Rightarrow (1) : It is similar to that of Theorem 4.1 of [4]. THEOREM 4.2. Let (X, τ, \mathcal{I}) be an ideal topological space. If G is a weakly \mathcal{I}_g -closed set and $G \subseteq H \subseteq cl^*(int(G))$, then H is a weakly \mathcal{I}_g -closed set.

PROOF. Let $H \subseteq K$ and K be an open set in X. Since $G \subseteq K$ and G is a weakly \mathcal{I}_g -closed set, then $cl^*(int(G)) \subseteq K$. Since $H \subseteq cl^*(int(G))$, then $cl^*(int(H)) \subseteq cl^*(int(G)) \subseteq K$. Thus, $cl^*(int(H)) \subseteq K$ and hence, H is a weakly \mathcal{I}_g -closed set.

COROLLARY 4.1. Let (X, τ, \mathcal{I}) be an ideal topological space. If G is a weakly \mathcal{I}_q -closed and open set, then $cl^*(G)$ is a weakly \mathcal{I}_q -closed set.

PROOF. Let G be a weakly \mathcal{I}_g -closed and open set in (X, τ, \mathcal{I}) . We have $G \subseteq cl^*(G) \subseteq cl^*(G) = cl^*(int(G))$. Hence, by Theorem 4.2, $cl^*(G)$ is a weakly \mathcal{I}_g -closed set in (X, τ, \mathcal{I}) .

THEOREM 4.3. Let (X, τ, \mathcal{I}) be an ideal topological space and $G \subseteq X$. If G is a nowhere dense set, then G is a weakly \mathcal{I}_q -closed set.

PROOF. It is similar to that of Theorem 4.4 of [4].

REMARK 4.1. The reverse of Theorem 4.3 is not true in general as shown in the following example.

EXAMPLE 4.1. Let X, τ and \mathcal{I} be as in Example 3.2. Then $\{a, b\}$ is a weakly \mathcal{I}_q -closed set but not a nowhere dense set.

REMARK 4.2. (1) The union of two weakly \mathcal{I}_g -closed sets in an ideal topological space need not be a weakly \mathcal{I}_g -closed set.

(2) The intersection of two weakly \mathcal{I}_g -closed sets in an ideal topological space need not be a weakly \mathcal{I}_g -closed set.

EXAMPLE 4.2. Let (X, τ, \mathcal{I}) be an ideal topological space such that $X = \{a, b, c, d\}, \tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{a, b, c\}, X\}$ and $\mathcal{I} = \{\emptyset, \{a\}\}$. Then $\{a\}$ and $\{c\}$ are weakly \mathcal{I}_g -closed sets but their union $\{a, c\}$ is not a weakly \mathcal{I}_g -closed set.

EXAMPLE 4.3. Let (X, τ, \mathcal{I}) be an ideal topological space such that $X = \{a, b, c\}, \tau = \{\emptyset, \{a\}, X\}$ and $\mathcal{I} = \{\emptyset\}$. Then $\{a, b\}$ and $\{a, c\}$ are weakly \mathcal{I}_g -closed sets but their intersection $\{a\}$ is not a weakly \mathcal{I}_g -closed set.

THEOREM 4.4. Let (X, τ, \mathcal{I}) be an ideal topological space and $G \subseteq X$. Then G is a weakly \mathcal{I}_g -open set if and only if $H \subseteq int^*(cl(G))$ whenever $H \subseteq G$ and H is a closed set.

PROOF. It is similar to that of Theorem 4.13 of [4].

THEOREM 4.5. Let (X, τ, \mathcal{I}) be an ideal topological space and $G \subseteq X$. If G is a weakly \mathcal{I}_q -closed set, then $cl^*(int(G)) \setminus G$ is a weakly \mathcal{I}_q -open set in (X, τ, \mathcal{I}) .

PROOF. Let G be a weakly \mathcal{I}_{g} -closed set in (X, τ, \mathcal{I}) . Suppose that H is a closed set such that $H \subseteq cl^*(int(G)) \setminus G$. Since G is a weakly \mathcal{I}_{g} -closed set, it follows from Theorem 3.4 that $H = \emptyset$. Thus, we have $H \subseteq int^*(cl(cl^*(int(G)) \setminus G))$. It follows from Theorem 4.4 that $cl^*(int(G)) \setminus G$ is a weakly \mathcal{I}_{g} -open set in (X, τ, \mathcal{I}) .

THEOREM 4.6. Let (X, τ, \mathcal{I}) be an ideal topological space and $G \subseteq X$. If G is a weakly \mathcal{I}_g -open set, then H = X whenever H is an open set and $int^*(cl(G)) \cup (X \setminus G) \subseteq H$.

PROOF. Let H be an open set in X and $int^*(cl(G)) \cup (X\backslash G) \subseteq H$. We have $X\backslash H \subseteq (X\backslash int^*(cl(G))) \cap G = cl^*(int(X\backslash G))\backslash (X\backslash G)$. Since $X\backslash H$ is a closed set and $X\backslash G$ is a weakly \mathcal{I}_g -closed set, it follows from Theorem 3.4 that $X\backslash H = \emptyset$. Thus, we have H = X.

THEOREM 4.7. Let (X, τ, \mathcal{I}) be an ideal topological space. If G is a weakly \mathcal{I}_g -open set and $int^*(cl(G)) \subseteq H \subseteq G$, then H is a weakly \mathcal{I}_g -open set.

PROOF. Let G be a weakly \mathcal{I}_g -open set and $\operatorname{int}^*(\operatorname{cl}(G)) \subseteq H \subseteq G$. Since $\operatorname{int}^*(\operatorname{cl}(G)) \subseteq H \subseteq G$, then $\operatorname{int}^*(\operatorname{cl}(G)) = \operatorname{int}^*(\operatorname{cl}(H))$. Let K be a closed set and K \subseteq H. We have $K \subseteq G$. Since G is a weakly \mathcal{I}_g -open set, it follows from Theorem 4.4 that $K \subseteq \operatorname{int}^*(\operatorname{cl}(G)) = \operatorname{int}^*(\operatorname{cl}(H))$. Hence, by Theorem 4.4, H is a weakly \mathcal{I}_g -open set in (X, τ, \mathcal{I}) .

COROLLARY 4.2. Let (X, τ, \mathcal{I}) be an ideal topological space and $G \subseteq X$. If G is a weakly \mathcal{I}_q -open and closed set, then $int^*(G)$ is a weakly \mathcal{I}_q -open set.

PROOF. Let G be a weakly \mathcal{I}_g -open and closed set in (X, τ, \mathcal{I}) . Then int*(cl(G)) = int*(G) \subseteq int*(G) \subseteq G. Thus, by Theorem 4.7, int*(G) is a weakly \mathcal{I}_g -open set in (X, τ, \mathcal{I}) .

DEFINITION 4.1. A subset A of an ideal topological space (X, τ, \mathcal{I}) is called P-set if $A = M \cup N$ where M is closed and N is $\operatorname{pre}_{\mathcal{I}}^*$ -open.

REMARK 4.3. Every $\operatorname{pre}_{\tau}^*$ -open (resp. closed) set is P-set but not conversely.

EXAMPLE 4.4. Let X, τ and \mathcal{I} be as in Example 3.2. Then {b} is a P-set but not pre^{*}_{τ}-open. Also {c} is P-set but not closed.

THEOREM 4.8. For a subset H of (X, τ, \mathcal{I}) , the following are equivalent.

(1) H is $pre^*_{\mathcal{T}}$ -open.

(2) *H* is a *P*-set and weakly \mathcal{I}_q -open.

PROOF. (1) \Rightarrow (2): By Remark 4.3, H is a P-set. By Proposition 3.1, H is weakly \mathcal{I}_q -open.

 $(2) \Rightarrow (1)$: Let H be a P-set and weakly \mathcal{I}_g -open. Then there exist a closed set M and a pre^{*}_{\mathcal{I}}-open set N such that H =M \cup N. Since M \subseteq H and H is weakly \mathcal{I}_g -open, by Theorem 4.4, M \subseteq int*(cl(H)). Also, we have N \subseteq int*(cl(N)). Since N \subseteq H, N \subseteq int*(cl(N)) \subseteq int*(cl(H)). Then H = M \cup N \subseteq int*(cl(H)). So H is pre^{*}_{\mathcal{I}}-open.

The following Example shows that the concepts of weakly \mathcal{I}_g -open set and P-set are independent.

EXAMPLE 4.5. Let X, τ and \mathcal{I} be as in Example 3.2. Then {d} is weakly \mathcal{I}_g -open set but not P-set. Also {b} is P-set but not weakly \mathcal{I}_g -open set.

5. $\operatorname{Pre}_{\mathcal{T}}^*$ -normal spaces

DEFINITION 5.1. An ideal topological space (X, τ, \mathcal{I}) is said to be $\operatorname{pre}_{\mathcal{I}}^*$ -normal if for every pair of disjoint closed subsets A, B of X, there exist disjoint $\operatorname{pre}_{\mathcal{I}}^*$ -open sets U, V of X such that $A \subseteq U$ and $B \subseteq V$.

THEOREM 5.1. The following properties are equivalent for a space (X, τ, \mathcal{I}) .

- (1) X is pre_T^* -normal;
- (2) for any disjoint closed sets A and B, there exist disjoint weakly \mathcal{I}_g -open sets U, V of X such that $A \subseteq U$ and $B \subseteq V$;
- (3) for any closed set A and any open set B containing A, there exists a weakly \mathcal{I}_g -open set U such that $A \subseteq U \subseteq cl^*(int(U)) \subseteq B$.

PROOF. (1) \Rightarrow (2): The proof is obvious.

 $(2) \Rightarrow (3)$: Let A be any closed set of X and B any open set of X such that $A \subseteq B$. Then A and X\B are disjoint closed sets of X. By (2), there exist disjoint weakly \mathcal{I}_g -open sets U, V of X such that $A \subseteq U$ and X\B \subseteq V. Since V is weakly \mathcal{I}_g -open set, by Theorem 4.4, X\B \subseteq int*(cl(V)) and U \cap int*(cl(V)) = \emptyset . Therefore we obtain cl*(int(U)) \subseteq cl*(int(X\V)) and hence $A \subseteq U \subseteq$ cl*(int(U)) \subseteq B.

 $(3) \Rightarrow (1)$: Let A and B be any disjoint closed sets of X. Then $A \subseteq X \setminus B$ and X \B is open and hence there exists a weakly \mathcal{I}_g -open set G of X such that $A \subseteq G \subseteq \operatorname{cl}^*(\operatorname{int}(G)) \subseteq X \setminus B$. Put $U = \operatorname{int}^*(\operatorname{cl}(G))$ and $V = X \setminus \operatorname{cl}^*(\operatorname{int}(G))$. Then U and V are disjoint $\operatorname{pre}_{\mathcal{I}}^*$ -open sets of X such that $A \subseteq U$ and $B \subseteq V$. Therefore X is $\operatorname{pre}_{\mathcal{I}}^*$ -normal.

DEFINITION 5.2. A function $f: (X, \tau, \mathcal{I}) \to (Y, \sigma)$ is said to be weakly \mathcal{I}_{g} continuous if $f^{-1}(V)$ is weakly \mathcal{I}_{g} -closed in X for every closed set V of Y.

DEFINITION 5.3. A function $f: (X, \tau, \mathcal{I}) \to (Y, \sigma, \mathcal{J})$ is called weakly \mathcal{I}_{g} irresolute if $f^{-1}(V)$ is weakly \mathcal{I}_{g} -closed in X for every weakly \mathcal{J}_{g} -closed of Y.

THEOREM 5.2. Let $f: X \to Y$ be a weakly \mathcal{I}_g -continuous closed injection. If Y is normal, then X is $pre^*_{\mathcal{I}}$ -normal.

PROOF. Let A and B be disjoint closed sets of X. Since f is closed injection, f(A) and f(B) are disjoint closed sets of Y. By the normality of Y, there exist disjoint open sets U and V such that $f(A) \subseteq U$ and $f(B) \subseteq V$. Since f is weakly \mathcal{I}_{g} -continuous, then $f^{-1}(U)$ and $f^{-1}(V)$ are weakly \mathcal{I}_{g} -open sets such that $A \subseteq f^{-1}(U)$ and $B \subseteq f^{-1}(V)$. Therefore X is pre^{*}_7-normal by Theorem 5.1.

THEOREM 5.3. Let $f: X \to Y$ be a weakly \mathcal{I}_g -irresolute closed injection. If Y is $pre_{\mathcal{I}}^*$ -normal, then X is $pre_{\mathcal{I}}^*$ -normal.

PROOF. Let A and B be disjoint closed sets of X. Since f is closed injection, f(A) and f(B) are disjoint closed sets of Y. Since Y is $\operatorname{pre}_{\mathcal{I}}^*$ -normal, by Theorem 5.1, there exist disjoint weakly \mathcal{J}_g -open sets U and V such that $f(A) \subseteq U$ and $f(B) \subseteq V$. Since f is weakly \mathcal{I}_g -irresolute, then $f^{-1}(U)$ and $f^{-1}(V)$ are disjoint weakly \mathcal{I}_g -open sets of X such that $A \subseteq f^{-1}(U)$ and $B \subseteq f^{-1}(V)$. Therefore X is $\operatorname{pre}_{\mathcal{I}}^*$ -normal.

Acknowledgement

The authors thank the referees for their valuable comments and suggestions for the improvement of this paper.

References

- A. Acikgoz and S. Yuksel, Some new sets and decompositions of A_{I-R}-continuity, α-Icontinuity, continuity via idealization, Acta Math. Hungar., 114(1-2)(2007), 79-89.
- J. Dontchev, M. Ganster and T. Noiri, Unified operation approach of generalized closed sets via topological ideals, Math. Japonica, 49(1999), 395-401.
- [3] E. Ekici, On AC_I-sets, BC_I-sets, β^{*}_L-open sets and decompositions of continuity in ideal topological spaces, Creat. Math. Inform, 20(1)(2011), 47-54.
- [4] E. Ekici and S. Ozen, A generalized class of τ^* in ideal spaces, Filomat, 27(4)(2013), 529-535.
- [5] D. Jankovic and T. R. Hamlett, New topologies from old via ideals, Amer. Math. Monthly, 97(4)(1990), 295-310.
- [6] K. Kuratowski, Topology, Vol. I, Academic Press, New York, 1966.
- [7] N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo, 19(2)(1970), 89-96.
- [8] M. Navaneethakrishnan and J. Paulraj Joseph, g-closed sets in ideal topological spaces, Acta Math. Hungar., 119(4)(2008), 365-371.
- [9] J. K. Park and J. H. Park, Mildly generalized closed sets, almost normal and mildly normal spaces, Chaos, Solitons and Fractals, 20(2004), 1103-1111.
- [10] O. Ravi, R. Senthil Kumar and K. Indirani, Mildly \mathcal{I}_g -closed sets, submitted.
- [11] P. Sundaram and N. Nagaveni, On weakly generalized continuous maps, weakly generalized closed maps and weakly generalized irresolute maps in topological spaces, Far East J. Math. Sci., 6(6)(1998), 903-1012.
- [12] P. Sundaram and A. Pushpalatha, Strongly generalized closed sets in topological spaces, Far East J. Math. Sci., 3(4)(2001), 563-575.
- [13] R. Vaidyanathaswamy, Set Topology, Chelsea Publishing Company, 1946.

Received by editor 27.11.2013; revised version 05.02.2014; available online 10.02.2014.

DEPARTMENT OF MATHEMATICS,, P. M. THEVAR COLLEGE, USILAMPATTI, MADURAI DISTRICT, TAMIL NADU, INDIA.

E-mail address: siingam@yahoo.com.

Department of Mathematics,, R. V. S College of Engineering and Technology, Dindugul, Tamil Nadu, India.

E-mail address: srisenthil2011@gmail.com.

DEPARTMENT OF MATHEMATICS,, M. T. N COLLEGE, MADURAI-4, TAMIL NADU, INDIA. *E-mail address:* hamarimtnc@gmail.com.