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Weakly Ig-closed sets

O. Ravi, R. Senthil Kumar and A. Hamari Choudhi

Abstract. In this paper, the notion of weakly Ig-closed sets in ideal topolog-
ical spaces is studied. The relationships of weakly Ig-closed sets and various

properties of weakly Ig-closed sets are investigated.

1. Introduction

The first step of generalizing closed sets was done by Levine in 1970 [7]. He
defined a subset A of a topological space (X, τ) to be g-closed if its closure belongs
to every open superset of A. As the weak form of g-closed sets, the notion of
weakly g-closed sets was introduced and studied by Sundaram and Nagaveni [11].
Sundaram and Pushpalatha [12] introduced and studied the notion of strongly g-
closed sets, which is implied by that of closed sets and implies that of g-closed
sets. Park and Park [9] introduced and studied mildly g-closed sets, which is
properly placed between the classes of strongly g-closed and weakly g-closed sets.
Moreover, the relations with other notions directly or indirectly connected with
g-closed were investigated by them. In 1999, Dontchev et al. studied the notion
of generalized closed sets in ideal topological spaces called Ig-closed sets [2]. In
2008, Navaneethakrishnan and Paulraj Joseph have studied some characterizations
of normal spaces via Ig-open sets [8]. In 2013, Ekici and Ozen [4] introduced a
generalized class of τ*. Ravi et. al [10] introduced another generalized class of τ*
called weakly Ig-closed sets.

The main aim of this paper is to study the notion of weakly Ig-closed sets
in ideal topological spaces. The relationships of weakly Ig-closed sets and various
properties of weakly Ig-closed sets are discussed.
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2. Preliminaries

In this paper, (X, τ) represents topological space on which no separation axioms
are assumed unless explicitly stated. The closure and the interior of a subset G of
a space X will be denoted by cl(G) and int(G), respectively.

Definition 2.1. A subset G of a topological space (X, τ) is said to be

(1) g-closed [7] if cl(G) ⊆ H whenever G ⊆ H and H is open in X;
(2) g-open [7] if X\G is g-closed.

An ideal I on a topological space (X, τ) is a nonempty collection of subsets of
X which satisfies

(1) A ∈ I and B ⊆ A imply B ∈ I and
(2) A ∈ I and B ∈ I imply A∪B ∈ I [6].

Given a topological space (X, τ) with an ideal I on X if P(X) is the set of all
subsets of X, a set operator (•)⋆ : P(X) → P(X), called a local function [6] of A
with respect to τ and I is defined as follows: for A ⊆ X, A⋆(I, τ) = {x ∈ X | U ∩
A /∈ I for every U ∈ τ(x)} where τ(x) = {U ∈ τ | x ∈ U}. A Kuratowski closure
operator cl⋆(•) for a topology τ⋆(I, τ), called the ⋆-topology and finer than τ , is
defined by cl⋆(A) = A ∪ A⋆(I, τ) [13]. We will simply write A⋆ for A⋆(I, τ) and
τ⋆ for τ⋆(I, τ). If I is an ideal on X, then (X, τ , I) is called an ideal topological
space. On the other hand, (A, τA, IA) where τA is the relative topology on A and
IA = {A ∩ J : J ∈ I} is an ideal topological space for an ideal topological space
(X, τ , I) and A ⊆ X [5]. For a subset A ⊆ X, cl*(A) and int*(A) will, respectively,
denote the closure and the interior of A in (X, τ*).

Definition 2.2. A subset G of an ideal topological space (X, τ , I) is said to
be

(1) Ig-closed [2] if G* ⊆ H whenever G ⊆ H and H is open in (X, τ , I).
(2) pre∗I-open [3] if G ⊆ int*(cl(G)).
(3) pre∗I-closed [3] if X\G is pre∗I-open.
(4) I-R closed [1] if G = cl*(int(G)).
(5) ∗-closed [5] if G = cl*(G) or G* ⊆ G.

Remark 2.1. [4] In any ideal topological spaces, every I-R closed set is ∗-closed
but not conversely.

Definition 2.3. [4] Let (X, τ , I) be an ideal topological space. A subset G
of X is said to be a weakly Irg-closed set if (int(G))* ⊆ H whenever G ⊆ H and H
is a regular open set in X.

Definition 2.4. [4] Let (X, τ , I) be an ideal topological space. A subset G
of X is said to be a weakly Irg-open set if X\G is a weakly Irg-closed set.

Remark 2.2. [4] Let (X, τ , I) be an ideal topological space. The following
diagram holds for a subset G ⊆ X:
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Ig-closed −→ Irg-closed −→ weakly Irg-closed
↑ ↑

∗-closed pre∗I-closed
↑

I-R-closed

These implications are not reversible as shown in [4].

Definition 2.5. [10] Let (X, τ , I) be an ideal topological space. A subset G
of X is said to be

(1) a mildly Ig-closed set if (int(G))* ⊆ H whenever G ⊆ H and H is a g-open
set in X;

(2) a weakly Ig-closed set if (int(G))* ⊆ H whenever G ⊆ H and H is an open
set in X;

(3) a strongly Ig-closed set if G* ⊆ H whenever G ⊆ H and H is a g-open set
in X.

Remark 2.3. [10] Let (X, τ , I) be an ideal topological space. The following
diagram holds for a subset G ⊆ X:

strongly Ig-closed set −→ Ig-closed set
↓ ↓

mildly Ig-closed set −→ weakly Ig-closed set

These implications are not reversible.

3. Properties of weakly Ig-closed sets

Theorem 3.1. Let (X, τ , I) be an ideal topological space and G ⊆ X. The
following properties are equivalent:

(1) G is a weakly Ig-closed set,
(2) cl*(int(G)) ⊆ H whenever G ⊆ H and H is an open set in X.

Proof. It is similar to that of Theorem 3.5 of [4].

Theorem 3.2. Let (X, τ , I) be an ideal topological space and G ⊆ X. If G is
open and weakly Ig-closed, then G is ∗-closed.

Proof. Let G be an open and weakly Ig-closed set in (X, τ , I). Since G is
open and weakly Ig-closed, cl*(G) = cl*(int(G)) ⊆ G. Thus, G is a ∗-closed set in
(X, τ , I).

Theorem 3.3. Let (X, τ , I) be an ideal topological space and G ⊆ X. If G is
a weakly Ig-closed set, then (int(G))* \G contains no any nonempty closed set.

Proof. Let G be a weakly Ig-closed set in (X, τ , I). Suppose that H is a
closed set such that H ⊆ (int(G))*\G. Since G is a weakly Ig-closed set, X\H is
open and G ⊆ X\H, then (int(G))* ⊆ X\H. We have H ⊆ X\(int(G))*. Hence, H
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⊆ (Int(G))* ∩ (X\(int(G))*) = ∅. Thus, (int(G))*\G contains no any nonempty
closed set.

Theorem 3.4. Let (X, τ , I) be an ideal topological space and G ⊆ X. If G is
a weakly Ig-closed set, then cl*(int(G))\G contains no any nonempty closed set.

Proof. Suppose that H is a closed set such that H ⊆ cl*(int(G))\G. By The-
orem 3.3, it follows from the fact that cl*(int(G))\G = ((int(G))* ∪ int(G))\G.

Theorem 3.5. Let (X, τ , I) be an ideal topological space. The following prop-
erties are equivalent:

(1) G is pre∗I-closed for each weakly Ig-closed set G in (X, τ , I),
(2) Each singleton {x} of X is a closed set or {x} is pre∗I-open.

Proof. (1) ⇒ (2) : It follows from Theorem 3.11 of [4].
(2) ⇒ (1) : It is similar to that of Theorem 3.11 of [4].

Theorem 3.6. Let (X, τ , I) be an ideal topological space and G ⊆ X. If
cl*(int(G))\G contains no any nonempty ∗-closed set, then G is a weakly Ig-closed
set.

Proof. Suppose that cl*(int(G))\G contains no any nonempty ∗-closed set
in (X, τ , I). Let G ⊆ H and H be an open set. Assume that cl*(int(G)) is not
contained in H. It follows that cl*(int(G))∩(X\H) is a nonempty ∗-closed subset of
cl*(int(G))\G. This is a contradiction. Hence G is a weakly Ig-closed set.

Theorem 3.7. Let (X, τ , I) be an ideal topological space and G ⊆ X. If G is
a weakly Ig-closed set, then int(G) = H\K where H is I-R closed and K contains
no any nonempty closed set.

Proof. Let G be a weakly Ig-closed set in (X, τ , I). Take K = (int(G))*\G.
Then, by Theorem 3.3, K contains no any nonempty closed set.

Take H = cl*(int(G)). Then H = cl*(int(H)). Moreover, we have H\K =
((int(G))* ∪ int(G))\((int(G))*\G) = ((int(G))* ∪ int(G)) ∩ (X\(int(G))* ∪ G)
= int(G).

Theorem 3.8. Let (X, τ , I) be an ideal topological space and G ⊆ X. Assume
that G is a weakly Ig-closed set. The following properties are equivalent:

(1) G is pre∗I-closed,
(2) cl*(int(G))\G is a closed set,
(3) (int(G))* \G is a closed set.

Proof. (1) ⇒ (2) and (2) ⇒ (1) : It follows from Theorem 3.14 of [4].
(2) ⇔ (3) : It is similar to that of Theorem 3.14 of [4].

Theorem 3.9. Let (X, τ , I) be an ideal topological space and G ⊆ X be a
weakly Ig-closed set. Then G ∪ (X\(int(G))*) is a weakly Ig-closed set in (X, τ ,
I).

Proof. Let G be a weakly Ig-closed set in (X, τ , I). Suppose that H is an
open set such that G ∪ (X\(int(G))*) ⊆ H. We have X\H ⊆ X\(G ∪ (X\(int(G))*))
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= (X\G) ∩ (int(G))* = (int(G))*\G. Since X\H is a closed set and G is a weakly
Ig-closed set, it follows from Theorem 3.3 that X\H = ∅. Hence, X = H. Thus, X is
the only open set containing G ∪ (X\(int(G))*). Consequently, G ∪ (X\(int(G))*)
is a weakly Ig-closed set in (X, τ , I).

Corollary 3.1. Let (X, τ , I) be an ideal topological space and G ⊆ X be a
weakly Ig-closed set. Then (int(G))*\G is a weakly Ig-open set in (X, τ , I).

Proof. Since X\((int(G))*\G) = G ∪ (X\(int(G))*), it follows from Theorem
3.9 that (int(G))*\G is a weakly Ig-open set in (X, τ , I).

Theorem 3.10. Let (X, τ , I) be an ideal topological space and G ⊆ X. The
following properties are equivalent:

(1) G is a ∗-closed and open set,
(2) G is I-R closed and open set,
(3) G is a weakly Ig-closed and open set.

Proof. It is similar to that of Theorem 3.17 of [4].

Proposition 3.1. Every pre∗I-closed set is weakly Ig-closed but not conversely.

Proof. Let H ⊆ G and G an open set in X. Since H is pre∗I-closed, cl*(int(H))
⊆ H ⊆ G. Hence H is weakly Ig-closed set.

Example 3.1. Let (X, τ , I) be an ideal topological space such that X = {a, b,
c, d}, τ = {∅, {a}, {c}, {a, c}, {c, d}, {a, c, d}, {b, c, d}, X} and I = {∅}. Then
{b, c} is weakly Ig-closed set but not pre∗I-closed.

Remark 3.1. Let (X, τ , I) be an ideal topological space. The following dia-
gram holds for a subset G ⊆ X:

strongly Ig-closed set −→ Ig-closed set
↓ ↓

mildly Ig-closed set −→ weakly Ig-closed set −→ weakly Irg-closed set

The reverse implications in this diagram are true by Remark 2.8 and the following
Example.

Example 3.2. Let X = {a, b, c}, τ = {∅, {a}, {a, b}, {a, c}, X} and I = {∅,
{c}}. Then {a} is weakly Irg-closed set but not weakly Ig-closed.

4. Further properties

Theorem 4.1. Let (X, τ , I) be an ideal topological space. The following prop-
erties are equivalent:

(1) Each subset of (X, τ , I) is a weakly Ig-closed set,
(2) G is pre∗I-closed for each open set G in X.

Proof. (1) ⇒ (2) : It follows from Theorem 4.1 of [4].
(2) ⇒ (1) : It is similar to that of Theorem 4.1 of [4].
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Theorem 4.2. Let (X, τ , I) be an ideal topological space. If G is a weakly
Ig-closed set and G ⊆ H ⊆ cl*(int(G)), then H is a weakly Ig-closed set.

Proof. Let H ⊆ K and K be an open set in X. Since G ⊆ K and G is a
weakly Ig-closed set, then cl*(int(G)) ⊆ K. Since H ⊆ cl*(int(G)), then cl*(int(H))
⊆ cl*(int(G)) ⊆ K. Thus, cl*(int(H)) ⊆ K and hence, H is a weakly Ig-closed set.

Corollary 4.1. Let (X, τ , I) be an ideal topological space. If G is a weakly
Ig-closed and open set, then cl*(G) is a weakly Ig-closed set.

Proof. Let G be a weakly Ig-closed and open set in (X, τ , I). We have G ⊆
cl*(G) ⊆ cl*(G) = cl*(int(G)). Hence, by Theorem 4.2, cl*(G) is a weakly Ig-closed
set in (X, τ , I).

Theorem 4.3. Let (X, τ , I) be an ideal topological space and G ⊆ X. If G is
a nowhere dense set, then G is a weakly Ig-closed set.

Proof. It is similar to that of Theorem 4.4 of [4].

Remark 4.1. The reverse of Theorem 4.3 is not true in general as shown in
the following example.

Example 4.1. Let X, τ and I be as in Example 3.2. Then {a, b} is a weakly
Ig-closed set but not a nowhere dense set.

Remark 4.2. (1) The union of two weakly Ig-closed sets in an ideal topo-
logical space need not be a weakly Ig-closed set.

(2) The intersection of two weakly Ig-closed sets in an ideal topological space
need not be a weakly Ig-closed set.

Example 4.2. Let (X, τ , I) be an ideal topological space such that X = {a,
b, c, d}, τ = {∅, {a}, {b}, {a, b}, {a, c}, {a, b, c}, X} and I = {∅, {a}}. Then {a}
and {c} are weakly Ig-closed sets but their union {a, c} is not a weakly Ig-closed
set.

Example 4.3. Let (X, τ , I) be an ideal topological space such that X = {a,
b, c}, τ = {∅, {a}, X} and I = {∅}. Then {a, b} and {a, c} are weakly Ig-closed
sets but their intersection {a} is not a weakly Ig-closed set.

Theorem 4.4. Let (X, τ , I) be an ideal topological space and G ⊆ X. Then G
is a weakly Ig-open set if and only if H ⊆ int*(cl(G)) whenever H ⊆ G and H is a
closed set.

Proof. It is similar to that of Theorem 4.13 of [4].

Theorem 4.5. Let (X, τ , I) be an ideal topological space and G ⊆ X. If G is
a weakly Ig-closed set, then cl*(int(G))\G is a weakly Ig-open set in (X, τ , I).

Proof. Let G be a weakly Ig-closed set in (X, τ , I). Suppose that H is a
closed set such that H ⊆ cl*(int(G))\G. Since G is a weakly Ig-closed set, it follows
from Theorem 3.4 that H = ∅. Thus, we have H ⊆ int*(cl(cl*(int(G))\G)). It
follows from Theorem 4.4 that cl*(int(G))\G is a weakly Ig-open set in (X, τ , I).
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Theorem 4.6. Let (X, τ , I) be an ideal topological space and G ⊆ X. If G is
a weakly Ig-open set, then H = X whenever H is an open set and int*(cl(G)) ∪
(X\G) ⊆ H.

Proof. Let H be an open set in X and int*(cl(G)) ∪ (X\G) ⊆ H. We have
X\H ⊆ (X\int*(cl(G))) ∩ G = cl*(int(X\G))\(X\G). Since X\H is a closed set and
X\G is a weakly Ig-closed set, it follows from Theorem 3.4 that X\H = ∅. Thus,
we have H = X.

Theorem 4.7. Let (X, τ , I) be an ideal topological space. If G is a weakly
Ig-open set and int*(cl(G)) ⊆ H ⊆ G, then H is a weakly Ig-open set.

Proof. Let G be a weakly Ig-open set and int*(cl(G)) ⊆ H ⊆ G. Since
int*(cl(G)) ⊆ H ⊆ G, then int*(cl(G)) = int*(cl(H)). Let K be a closed set and K
⊆ H. We have K ⊆ G. Since G is a weakly Ig-open set, it follows from Theorem 4.4
that K ⊆ int*(cl(G)) = int*(cl(H)). Hence, by Theorem 4.4, H is a weakly Ig-open
set in (X, τ , I).

Corollary 4.2. Let (X, τ , I) be an ideal topological space and G ⊆ X. If G
is a weakly Ig-open and closed set, then int*(G) is a weakly Ig-open set.

Proof. Let G be a weakly Ig-open and closed set in (X, τ , I). Then int*(cl(G))
= int*(G) ⊆ int*(G) ⊆ G. Thus, by Theorem 4.7, int*(G) is a weakly Ig-open set
in (X, τ , I).

Definition 4.1. A subset A of an ideal topological space (X, τ , I) is called
P-set if A = M∪N where M is closed and N is pre∗I-open.

Remark 4.3. Every pre∗I-open (resp. closed) set is P-set but not conversely.

Example 4.4. Let X, τ and I be as in Example 3.2. Then {b} is a P-set but
not pre∗I-open. Also {c} is P-set but not closed.

Theorem 4.8. For a subset H of (X, τ , I), the following are equivalent.

(1) H is pre∗I-open.
(2) H is a P-set and weakly Ig-open.

Proof. (1) ⇒ (2): By Remark 4.3, H is a P-set. By Proposition 3.1, H is
weakly Ig-open.

(2) ⇒ (1): Let H be a P-set and weakly Ig-open. Then there exist a closed set
M and a pre∗I-open set N such that H =M∪N. Since M ⊆ H and H is weakly Ig-
open, by Theorem 4.4, M ⊆ int*(cl(H)). Also, we have N ⊆ int*(cl(N)). Since N ⊆
H, N ⊆ int*(cl(N)) ⊆ int*(cl(H)). Then H = M∪N ⊆ int*(cl(H)). So H is pre∗I-open.

The following Example shows that the concepts of weakly Ig-open set and P-set
are independent.

Example 4.5. Let X, τ and I be as in Example 3.2. Then {d} is weakly
Ig-open set but not P-set. Also {b} is P-set but not weakly Ig-open set.



8 O. RAVI, R. SENTHIL KUMAR AND A. HAMARI CHOUDHI

5. Pre∗I-normal spaces

Definition 5.1. An ideal topological space (X, τ , I) is said to be pre∗I-normal
if for every pair of disjoint closed subsets A, B of X, there exist disjoint pre∗I-open
sets U, V of X such that A ⊆ U and B ⊆ V.

Theorem 5.1. The following properties are equivalent for a space (X, τ , I).
(1) X is pre∗I-normal;
(2) for any disjoint closed sets A and B, there exist disjoint weakly Ig-open

sets U, V of X such that A ⊆ U and B ⊆ V;
(3) for any closed set A and any open set B containing A, there exists a weakly

Ig-open set U such that A ⊆ U ⊆ cl*(int(U)) ⊆ B.

Proof. (1) ⇒ (2): The proof is obvious.
(2) ⇒ (3): Let A be any closed set of X and B any open set of X such that

A ⊆ B. Then A and X\B are disjoint closed sets of X. By (2), there exist disjoint
weakly Ig-open sets U, V of X such that A ⊆ U and X\B ⊆ V. Since V is weakly
Ig-open set, by Theorem 4.4, X\B ⊆ int*(cl(V)) and U∩int*(cl(V)) = ∅. Therefore
we obtain cl*(int(U)) ⊆ cl*(int(X\V)) and hence A ⊆ U ⊆ cl*(int(U)) ⊆ B.

(3) ⇒ (1): Let A and B be any disjoint closed sets of X. Then A ⊆ X\B and
X\B is open and hence there exists a weakly Ig-open set G of X such that A ⊆ G
⊆ cl*(int(G)) ⊆ X\B. Put U = int*(cl(G)) and V = X\cl*(int(G)). Then U and
V are disjoint pre∗I-open sets of X such that A ⊆ U and B ⊆ V. Therefore X is
pre∗I-normal.

Definition 5.2. A function f : (X, τ , I) → (Y, σ) is said to be weakly Ig-
continuous if f−1(V) is weakly Ig-closed in X for every closed set V of Y.

Definition 5.3. A function f : (X, τ , I) → (Y, σ, J ) is called weakly Ig-
irresolute if f−1(V) is weakly Ig-closed in X for every weakly Jg-closed of Y.

Theorem 5.2. Let f : X → Y be a weakly Ig-continuous closed injection. If Y
is normal, then X is pre∗I-normal.

Proof. Let A and B be disjoint closed sets of X. Since f is closed injection,
f(A) and f(B) are disjoint closed sets of Y. By the normality of Y, there exist
disjoint open sets U and V such that f(A) ⊆ U and f(B) ⊆ V. Since f is weakly Ig-
continuous, then f−1(U) and f−1(V) are weakly Ig-open sets such that A ⊆ f−1(U)
and B ⊆ f−1(V). Therefore X is pre∗I-normal by Theorem 5.1.

Theorem 5.3. Let f : X → Y be a weakly Ig-irresolute closed injection. If Y
is pre∗I-normal, then X is pre∗I-normal.

Proof. Let A and B be disjoint closed sets of X. Since f is closed injection,
f(A) and f(B) are disjoint closed sets of Y. Since Y is pre∗I-normal, by Theorem
5.1, there exist disjoint weakly Jg-open sets U and V such that f(A) ⊆ U and f(B)
⊆ V. Since f is weakly Ig-irresolute, then f−1(U) and f−1(V) are disjoint weakly
Ig-open sets of X such that A⊆ f−1(U) and B⊆ f−1(V). Therefore X is pre∗I-normal.
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