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FOKKER-PLANCK EQUATION AS A RESULT OF
CONNECTIONS MAXWELL FIELD EQUATIONS
WITHSOME STATIONARY PROCESSES

Fatih Destovi¢, Ramiz Vugdalié¢, and Ismet Kalco

ABSTRACT. The paper presents a vector Markov process, P(z,t), which form
the components of the vector y. The Markov process satisfies the (n + 1)- di-
mensional Fokker-Planck equation partial whose solution under certain initial
and boundary conditions of this presentation and the domain of the nonlinear
analysis. Specifically we examine the initial and boundary conditions for the
aforementioned equation, whose form
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and E(-|y) is the mathematical expectation of the final variable for a given y.

1. Introducion

Let us now consider a stationary system, where the coefficients K (y,t) and
Kk (y,t) does not depend explicitly of ¢. Then the probability density
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Can be used to calculate the mean number of phase jumps in unit time. Accord-
ingly, the Fokker-Planck equation can be rewritten in the form of the equation of
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continuity

. OP(y;t)
(1.2) V-j(y,t)—l—T—O

where the vector (y,t) = [jo(y,t),...,in(y,t)] can be interpreted as a probability
vector of the current density, and V is the operator of differentiation of a given
space.

We will give a geometric interpretation of the Fokker-Planck equation that will
be useful and somewhat illustrative example of the application of the Markov pro-
cess. Specifically, for each given function vector Markov processes, vector trajectory
y(t) can be thought of as a movement starting point y(¢o) in the (N+1)-dimensional
part space y = (¢, y1,. .., yn) . Locant this point at some time ¢, is [yo (¢) , . .., yn (t)]
can be identified with Braun movement of particles under the influence of diffusion
processes in the (N + 1)- domenzionom space over time.

Because of the random (Brownian) thermal motion of electrons in the ma-
terial (conductive middle) electronic components generate random signal, which
represents the thermal noise. It appears related to electrical resistance and exists
independently of the external electric field, and the source of guidance charge carrier
movement. In this case, the power spectral density of thermal noise is independent
of frequency.

A set of arbitrary functions of the process y(t) is a group of random trajectories.
It is shown that the time that particles spend in any part of the space of probability
R’ is proportional to total probability in that area. The coefficients of (1) can
be directly obtained by applying the relation (2). Differential equations whose
solution describes the probability density P(xy;t) is obtained by simply replacing
the coefficients Ky A K in (1).

2. The initial and boundary conditions

In order to get a solution Foker-Planck equation will assume the intial and
boundary conditions. In our case the initial value of the probability density function
P(z,t) at time ¢t = tg be

N
(2.1) Jim P (y;t) = [T 6 e — i (to)]
k=0
The boundary conditions are determined from the physical interpretation of the
trouble is the probability density function P[¢, y;t], since K (y,t) A K (y,t) the

periodic and by [periodic by (¢)], we have
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in steady state P[¢,y);t] has unlimited variance. This condition can be directly
attributed to the phenomenon of skipping cycle (phase jumps) in the generalized
system of monitoring,because they require additional considerations in order to
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obtain the probability density function with finite variance in the steadey state.
For the purpose shall prove the following theorem

THEOREM 2.1. Let’s

(o]
Pl yoit)2 D Plo+2nm yhit], VO
n=—oo
for every () .
Note that the function D is a periodic solution to the FP equation, by 0, and
that as such it is not, because the probability density function can be represented by
an infinite sum of density function on the unit sphere.

PROOF. To obtain a solution that has the characteristics of density functions,
will define the function

/o [B(0.yh:t) 7a bilo koje ¢, ¢ € [(2n —1) 7, (2n+ 1) 7]
(23) p ((bv Yo3 t) - { 0 0 for other ¢

Where p (y;t) £p (y; t |yo, to)-

To justify to validity p(¢,y(;t) of such solutions, we note that P(y;t) is the
solution of equations R’ areas where y; = 00, j =0,..., N. The function p (y;t) is
defined in the field of R whom formed with two hypersurface a distance 27 radians.

Therefore, since every member p(¢, y);t) of the solution in the field of R’ the
sum is also a solution in R. Presenting using cylindrical coordinates, R hypercilidr
we thought. Also we assume that the conous and differentiable function and is
defines areas nationwide the situation R. Since p(y;t) the transition probability
density function defined by (3), the condition of normalization, which is an expres-
sion of conservation of probability

(2.4) P(dyoit) 2 Y Plo+2nm,ypit], Vi

n=-—oo

valid for every t,

From this it follows p (y;t) that there must be zero faster than y,;(lﬁ) e >0,
when y; — oo. Now the partial differential equation of second order parabolic type,
and its solution is determined with 2N + 2 independet boundary conditions. From
all this we have the following boundary conditions:

Along each edge of the surface I' hyperplate R, edging yi, = doco for every
k=1,2,...,N, we have N boundary conditions

(2.5) uep(d,90; )], oo =0 k=1,2,...N.
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Since p(y;t) tends to zero faster than y,;(HE), € > 0. As a consequence of (8) and
also have to be p (¢, y}; t) |yk:ioo = 0; for every k = 1,2, ..., N. Since (8) holds for

every t we have N other independent boundary conditions,

0

Now is p(¢, y{); t) a periodic function from ¢ which is obtained as the sum of periodic
functions. Therefore. the

(2.7) p(=m,y0:t) = p (7, yos t)
From (11) it follows that

Op (—m,yp;t)  Op(m,yp;t
(2.8) pmyoit) _ O (muoit) oy
Yk Y
What is not independent of conditions (11).
Finally, it the flow of probability must be maintained in all directions of coor-

dinate axes p(¢, y(; t) and having a periodic function, we have

90 Op (9 yoit),  _ Op(¢y0it)

(2.9) T’¢:W_T|¢=—ﬂ'

Equations (9), (10), (11) and (13) define 2N 4 2 independent boundary conditions.
q.e.d. U

REMARK 2.1. The relations (12) and (13) can be written in vector notation
Vo (yit) |, = Vo (yit) |,

Symmetry suggests that the p (y;t) = p (—y;t)

3. Consequences

It is interesting to note that the Fokker-Planck equation connects the Maxwell
field equations with the teory of Markov processes. If we apply Gaussian theorem
we can write

?fv.de:j{n.jdrzg—a p(y;t)dy =0
R r t Jr

Where n is the unit vector normal to the surface I and positvely directed outwards.
From the Maxwell field equations we know that the divergence of the current density
J onliy speed changes the amount of charge density p. Also, the fact that the
divergence of the flux densities D is equal to p. Therefore, if p is conidered as
translitional probability densuty function p (z,t) and D as the flux density of
probability we can write VD = p(y;t),, ie, the flux desity of probability that
highlights thr volume dR at time t is equal to the probability of being in that
volume at the moment ¢.
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If we inegrate both sides of equation (12) with respect: y; and y; (o) to the for
each j # k # 0 and we use the boundary conditions (17),(18) and (13), we arrive
at the interesting results

op 0 0
1 — + —1J t —17 t)].
Where is p = p(¢, yi, t) and
N
Ky (d)v ykat) = Q0 + Z E(yj7t|¢7yk) + Y — AKFOQ(¢)
kA0
The current probability
—1
Ky (6,yk,t) = o lyr + (1 — Fi) AKg(9)]
NoK?F? 1 — F,)FyNoK?
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The current probability

Jo (¢, Yk, t) = { {Ko (Dyrt) = —— 57—~ 5~ } p}
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