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TREES WITH FIXED NUMBER OF PENDENT
VERTICES WITH MINIMAL FIRST ZAGREB INDEX

Ivan Gutman and Mikhail Goubko

Abstract. The first Zagreb index M1 of a graph G is equal to the sum of

squares of the vertex degrees of G. In a recent work [Goubko, MATCH Com-
mun. Math. Comput. Chem. 71 (2014), 33–46], it was shown that for a tree
with n1 pendent vertices, the inequality M1 > 9n1−16 holds. We now provide
an alternative proof of this relation, and characterize the trees for which the

equality holds.

1. Introduction

Throughout this paper we are concerned with simple graphs, that is graphs
without multiple or directed edges, and without self-loops. Let G be such a graph,
with vertex set V (G). The degree deg(v) of a vertex v ∈ V (G) is the number of
vertices of G adjacent to v. The graph invariant M1

M1 = M1(G) =
∑

v∈V (G)

deg(v)2

has been previously much studied in the mathematical literature [1–4, 6, 12, 14,
15]. Its applications in chemistry are long known [10,11] and are nowadays well
documented [8,9,13]. M1 is nowadays referred to as the first Zagreb index of the
graph G. A large number of results on M1 has been obtained so far, most of which
being inequalities (see [5,15–18] and the references cited therein).

One of the present authors [7] has recently established a remarkable inequality
for the first Zagreb index of trees, relating M1 with the number of pendent vertices,
and only with this structural parameter.
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We now offer a different (simpler) proof of this result, which enables us to
characterize the equality case. In particular, we now prove:

Theorem 1.1. Let T be a tree with n1 pendent vertices and first Zagreb index
M1(T ) . (a) If n1 is even, then M1(T ) > 9n1 − 16 with equality if and only if all
non-pendent vertices of T are of degree 4. (b) If n1 is odd, then M1(T ) > 9n1 − 15
with equality if and only if all non-pendent vertices of T , except one, are of degree
4, and a single vertex of T is of degree 3 or 5.

2. Proof of Theorem 1.1

Denote by nk the number of vertices of degree k. Then, for a tree T with n
vertices (and thus with n− 1 edges),∑

k>1

nk = n(2.1)

∑
k>1

k nk = 2(n− 1)(2.2)

∑
k>1

k2 nk = M1(T ) .

Combining (2.1) and (2.2), we get

(2.3)
∑
k>1

(k − 2)nk = −2 .

Let g be a positive integer, different from 2. Then (2.3) can be rewritten as

(g − 2)ng +
∑
k ̸=g

(k − 2)nk = −2

i.e.,

(2.4) ng =
1

g − 2

−2−
∑
k ̸=g

(k − 2)nk

 .

Since

M1(T ) = g2 ng +
∑
k ̸=g

k2 nk

by using (2.4), we get

M1(T ) = − 2 g2

g − 2
+

∑
k ̸=g

[
k2 − (k − 2)g2

g − 2

]
nk

and further

(2.5) M1(T ) =

(
1 +

g2

g − 2

)
n1 −

2 g2

g − 2
+

∑
k ̸=1,g

[
k2 − (k − 2)g2

g − 2

]
nk .
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The special case of formula (2.5), for g = 4 reads:

(2.6) M1(T ) = 9n1 − 16 +
∑
k ̸=1,4

(k − 4)2 nk .

We shall return to Eq. (2.6) in a while.
Consider first Eq. (2.5) and the multipliers k2−(k−2)g2/(g−2) in it. By direct

calculation, we find that the equation k2 − (k− 2)g2/(g− 2) = 0 has two solutions:
2g/(g − 2) and g. For k lying between these two values, k2 − (k − 2)g2/(g − 2)
is negative–valued. By direct checking, we see that for all g > 3, except for g =
4, there exist some integer values of k for which k2 − (k − 2)g2/(g − 2) < 0.
Consequently, if g ̸= 4, Eq. (2.5) is useless as far as the quest for trees with
minimal M1-value is concerned.

Eq. (2.6) has the advantage that in it all multipliers (k − 4)2 are positive–
valued. Consequently, for a fixed n1, its right–hand side will be minimal if nk = 0
holds for all k ̸= 1, 4. In other words, this must be trees with all non-pendent
vertices of degree 4, provided such trees do exist.

A tree with all non-pendent vertices of degree 4 has n1 = 2(n4 + 1) pendent
vertices. Thus, if n1 is even, part (a) of Theorem 1 follows.

A tree with odd n1 must possess a non-pendent vertex of odd degree. From
Eq. (2.6) we see that in order that the right–hand side of (2.6) be minimal, this
must be either a single vertex of degree 3 or a single vertex of degree 5. Namely,
only in these two cases will the term

∑
k ̸=1,4

(k − 4)2 nk assume its smallest non-zero

value, equal to unity. This implies part (b) of Theorem 1.
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