BULLETIN OF THE INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE ISSN (p) 2303-4874, ISSN (o) 2303-4955 www.imvibl.org / BULLETIN OF IMVI Vol. 3(2013), 161-164

Former BULLETIN OF THE SOCIETY OF MATHEMATICIANS BANJA LUKA ISSN 0354-5792 (o), ISSN 1986-521X (p)

TREES WITH FIXED NUMBER OF PENDENT VERTICES WITH MINIMAL FIRST ZAGREB INDEX

Ivan Gutman and Mikhail Goubko

ABSTRACT. The first Zagreb index M_1 of a graph G is equal to the sum of squares of the vertex degrees of G. In a recent work [Goubko, MATCH Commun. Math. Comput. Chem. **71** (2014), 33–46], it was shown that for a tree with n_1 pendent vertices, the inequality $M_1 \ge 9 n_1 - 16$ holds. We now provide an alternative proof of this relation, and characterize the trees for which the equality holds.

1. Introduction

Throughout this paper we are concerned with simple graphs, that is graphs without multiple or directed edges, and without self-loops. Let G be such a graph, with vertex set V(G). The degree deg(v) of a vertex $v \in V(G)$ is the number of vertices of G adjacent to v. The graph invariant M_1

$$M_1 = M_1(G) = \sum_{v \in V(G)} \deg(v)^2$$

has been previously much studied in the mathematical literature [1-4, 6, 12, 14, 15]. Its applications in chemistry are long known [10, 11] and are nowadays well documented [8, 9, 13]. M_1 is nowadays referred to as the *first Zagreb index* of the graph G. A large number of results on M_1 has been obtained so far, most of which being inequalities (see [5, 15-18] and the references cited therein).

One of the present authors [7] has recently established a remarkable inequality for the first Zagreb index of trees, relating M_1 with the number of pendent vertices, and only with this structural parameter.

161

²⁰¹⁰ Mathematics Subject Classification. 05C07; 05C05; 05C35.

Key words and phrases. degree (of vertex); Zagreb index; first Zagreb index; tree.

Partially supported by the grant of Russian Foundation for Basic Research, project No 13-07-00389.

GUTMAN AND GOUBKO

We now offer a different (simpler) proof of this result, which enables us to characterize the equality case. In particular, we now prove:

THEOREM 1.1. Let T be a tree with n_1 pendent vertices and first Zagreb index $M_1(T)$. (a) If n_1 is even, then $M_1(T) \ge 9n_1 - 16$ with equality if and only if all non-pendent vertices of T are of degree 4. (b) If n_1 is odd, then $M_1(T) \ge 9n_1 - 15$ with equality if and only if all non-pendent vertices of T, except one, are of degree 4, and a single vertex of T is of degree 3 or 5.

2. Proof of Theorem 1.1

Denote by n_k the number of vertices of degree k. Then, for a tree T with n vertices (and thus with n-1 edges),

(2.1)
$$\sum_{k \ge 1} n_k = n$$

(2.2)
$$\sum_{k \ge 1} k \, n_k = 2(n-1)$$

$$\sum_{k \ge 1} k^2 n_k = M_1(T)$$

Combining (2.1) and (2.2), we get

(2.3)
$$\sum_{k \ge 1} (k-2)n_k = -2 \; .$$

Let g be a positive integer, different from 2. Then (2.3) can be rewritten as

$$(g-2)n_g + \sum_{k \neq g} (k-2)n_k = -2$$

_

i.e.,

(2.4)
$$n_g = \frac{1}{g-2} \left[-2 - \sum_{k \neq g} (k-2)n_k \right].$$

Since

$$M_1(T) = g^2 n_g + \sum_{k \neq g} k^2 n_k$$

by using (2.4), we get

$$M_1(T) = -\frac{2g^2}{g-2} + \sum_{k \neq g} \left[k^2 - \frac{(k-2)g^2}{g-2} \right] n_k$$

and further

(2.5)
$$M_1(T) = \left(1 + \frac{g^2}{g-2}\right)n_1 - \frac{2g^2}{g-2} + \sum_{k \neq 1,g} \left[k^2 - \frac{(k-2)g^2}{g-2}\right]n_k .$$

162

The special case of formula (2.5), for q = 4 reads:

(2.6)
$$M_1(T) = 9 n_1 - 16 + \sum_{k \neq 1,4} (k-4)^2 n_k .$$

We shall return to Eq. (2.6) in a while.

Consider first Eq. (2.5) and the multipliers $k^2 - (k-2)g^2/(g-2)$ in it. By direct calculation, we find that the equation $k^2 - (k-2)g^2/(g-2) = 0$ has two solutions: 2g/(g-2) and g. For k lying between these two values, $k^2 - (k-2)g^2/(g-2)$ is negative-valued. By direct checking, we see that for all $g \ge 3$, except for g = 4, there exist some integer values of k for which $k^2 - (k-2)g^2/(g-2) < 0$. Consequently, if $g \ne 4$, Eq. (2.5) is useless as far as the quest for trees with minimal M_1 -value is concerned.

Eq. (2.6) has the advantage that in it all multipliers $(k-4)^2$ are positivevalued. Consequently, for a fixed n_1 , its right-hand side will be minimal if $n_k = 0$ holds for all $k \neq 1, 4$. In other words, this must be trees with all non-pendent vertices of degree 4, provided such trees do exist.

A tree with all non-pendent vertices of degree 4 has $n_1 = 2(n_4 + 1)$ pendent vertices. Thus, if n_1 is even, part (a) of Theorem 1 follows.

A tree with odd n_1 must possess a non-pendent vertex of odd degree. From Eq. (2.6) we see that in order that the right-hand side of (2.6) be minimal, this must be either a single vertex of degree 3 or a single vertex of degree 5. Namely, only in these two cases will the term $\sum_{\substack{k \neq 1,4}} (k-4)^2 n_k$ assume its smallest non-zero

value, equal to unity. This implies part (b) of Theorem 1.

References

- [1] F. K. Bell, A note on the irregularity of graphs, Lin. Algebra Appl. 161 (1992), 45-54.
- [2] S. M. Cioabă, Sums of powers of the degrees of a graph, Discr. Math. **306** (2006), 1959–1964.
- K. C. Das, Sharp bounds for the sum of the squares of the degrees of a graph, Kragujevac J. Math. 25 (2003), 31–49.
- [4] K. C. Das, Maximizing the sum of the squares of the degrees of a graph, Discr. Math. 285 (2004), 57–66.
- [5] K. C. Das, I. Gutman, B. Zhou, New upper bounds on Zagreb indices, J. Math. Chem. 46 (2009), 514-521.
- [6] D. de Caen, An upper bound on the sum of squares of degrees in a graph, Discr. Math. 185 (1998), 245-248.
- [7] M. Goubko, Minimizing degree-based topological indices for trees with given number of pendent vertices, MATCH Commun. Math. Comput. Chem. 71 (2014), 33-46.
- [8] I. Gutman, Degree-based topological indices, Croat. Chem. Acta 86 2013, 000–000.
- [9] I. Gutman, K. C. Das, The first Zagreb index 30 years after, MATCH Commun. Math. Comput. Chem. 50 (2004), 83–92.
- [10] I. Gutman, B. Ruščić, N. Trinajstić, C. F. Wilcox, Graph theory and molecular orbitals. XII. Acyclic polyenes, J. Chem. Phys. 62 (1975), 3399–3405.
- [11] I. Gutman, N. Trinajstić, Graph theory and molecular orbitals. Total π-electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972), 535–538.
- [12] R. Kazemi, Probabilistic analysis of the first Zagreb index, Topics Comb. 2(2) (2013), 35-40.
- [13] S. Nikolić, G. Kovačević, A. Miličević, N. Trinajstić, The Zagreb indices 30 years after, Croat. Chem. Acta 76 (2003), 113–124.

GUTMAN AND GOUBKO

- [14] U. N. Peled, R. Petreschi, A. Sterbini, (n, e)-graphs with maximum sum of squares of degrees, J. Graph Theory **31** (1999), 283–295.
- [15] G. Su, L. Xiong, L. Xu, The Nordhaus-Gaddum-type inequalities for the Zagreb index and co-index of graphs, Appl. Math. Lett. 25 (2012), 1701–1707.
- [16] B. Zhou, Zagreb indices, MATCH Commun. Math. Comput. Chem. 52 (2004), 113–118.
- [17] B. Zhou, Remarks on Zagreb indices, MATCH Commun. Math. Comput. Chem. 57 (2007), 591–596.
- [18] B. Zhou, D. Stevanović, A note on Zagreb indices, MATCH Commun. Math. Comput. Chem. 56 (2006), 571–578.

Received 22.11.2013; available online 02.12.2013.

Faculty of Science, University of Kragujevac, Kragujevac, Serbia $E\text{-}mail\ address:\ \texttt{gutman@kg.ac.rs}$

Institute of Control Sciences, Russian Academy of Science, Moscow, Russia $E\text{-}mail\ address:\ \tt mgoubko@mail.ru$

164