BULLETIN OF THE INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE ISSN (p) 2303-4874, ISSN (o) 2303-4955 www.imvibl.org/BULLETIN Vol. 3(2013), 155-160

Former BULLETIN OF THE SOCIETY OF MATHEMATICIANS BANJA LUKA ISSN 0354-5792 (p), ISSN 1986-521X (o)

THE AVERAGE LOWER DOMINATION NUMBER OF GRAPHS

Ersin Aslan and Alpay Kirlangic

ABSTRACT. The average lower domination number $\gamma_{av}(G)$ is defined as

 $\frac{1}{|V(G)|} \Sigma_{v \in V(G)} \gamma_v(G)$

where $\gamma_v(G)$ is the minimum cardinality of a maximal dominating set that contains v. In this paper, the average lower domination number of complete k-ary tree and B_n tree are calculated. Moreover we obtain the $\gamma_{av}(G^*)$ for thorn graph G^* . Finally we compute the $\gamma_{av}(G_1 + G_2)$ of G_1 and G_2 .

1. Introduction

A network is modelled with graphs in a situation which the centers are equal to the vertex of graphs and connection lines are equal to the edges of a graph. A graph G is denoted by G = (V(G), E(G)), where V(G) and E(G) are vertex and edge sets of G, respectively. Let v be a vertex in V(G).

In a graph G = (V(G), E(G)), a subset $S \subseteq V(G)$ of vertices is a dominating set if every vertex in V(G) - S is adjacent to at least one vertex of S. The domination number of $\gamma(G)$ is the minimum cardinality of a dominating set. A dominating set of cardinality $\gamma(G)$ is called a $\gamma(G)$ -set.

Henning [12] introduced the concept of average domination. The lower domination number, denoted by $\gamma_v(G)$ is the minimum cardinality of a dominating set of (G) that contains v.

The average lower domination number $\gamma_{av}(G)$ is defined as

$$\frac{1}{|V(G)|} \sum_{v \in V(G)} \gamma_v(G)$$

where $\gamma_v(G)$ is the minimum cardinality of a maximal dominating set that contains v.

²⁰¹⁰ Mathematics Subject Classification. 05C35, 05C40, 05C69, 68M10, 68R10.

 $Key\ words\ and\ phrases.$ Connectivity, Network Design and Communication, Vulnerability, Average Lower Domination Number.

Clearly for a vertex v in a graph G, $\gamma(G) \leq \gamma_{av}(G)$ with equality if and only if v belongs to a $\gamma(G)$ -set. Consequently, $\gamma_{av}(K_n) = 1$, while for a cycle C_n on $n \geq 3$ vertices, $\gamma_{av}(C_n) = \gamma(C_n) = \lceil \frac{n}{3} \rceil$.

PROPOSITION 1.1 ([12]). For any graph G of order n with domination number γ , $\gamma_{av}(G) \leq \gamma + 1 - \frac{\gamma}{n}$, with equality if and only if G has a unique $\gamma(G)$ -set.

THEOREM 1.1 ([12]). If T is a tree of order $n \ge 4$ then $\gamma_{av}(T) \le \frac{n}{2}$ with equality if and only if T is the corona of a tree.

In this paper, the average lower domination number of complete k-ary tree and B_n tree are calculated. Moreover we obtain the $\gamma_{av}(G^*)$ for thorn graph G^* . Finally we compute the $\gamma_{av}(G_1 + G_2)$ of G_1 and G_2 .

2. Average Lower Domination Number Of Some Graphs

Firstly we give the definition of a complete k-ary tree with depth n. The average lower domination number of complete k-ary tree are calculated. Moreover we obtain $\gamma_{av}(B_n)$ for binomial tree and $\gamma_{av}(G^*)$ for thorn graph G^* .

DEFINITION 2.1. ([3]) A complete k-ary tree with depth n is all leaves have the same depth and all internal vertices have degree k. A complete k-ary tree has $\frac{k^{n+1}-1}{k-1}$ vertices and $\frac{k^{n+1}-1}{k-1} - 1$ edges.

THEOREM 2.1. Let G be a complete k-ary tree with depth n. Then

$$\gamma_{av}(G) = \begin{cases} \gamma(G) + 1 - \frac{\gamma(G) + k}{|V(G)|} & , & n \equiv 0 \pmod{3} \\ \\ \gamma(G) + 1 - \frac{\gamma(G)}{|V(G)|} & , & otherwise \end{cases}$$

PROOF. If G is a k-ary tree with depth n then $|V(G)| = \frac{k^{n+1}-1}{k-1}$. We have two cases for n to find the average lower average number of G.

Case 1. If $n \equiv 1 \pmod{3}$ or $n \equiv 2 \pmod{3}$ then G has a unique $\gamma(G)$ -set. The minimal domination set of G contains the vertices on the levels (n - 1 - 3i) for $0 \leq i \leq \lfloor \frac{n}{3} \rfloor$. Let vertices set of G be $V(G) = V(G_1) \cup V(G_2)$ where,

 $V(G_1)$: The set contains the vertices on the levels (n-1-3i) for $0 \le i \le \lfloor \frac{n}{3} \rfloor$, $V(G_2)$: The set contains the vertices of $V(G) - V(G_1)$.

i) If $v \in V(G_1)$, then $\gamma_v(G) = \gamma(G)$ since the vertex v is in the dominating set. Since this equality is satisfied for every vertex of $V(G_1)$ we have

$$\Sigma_{v \in V(G_1)} \gamma_v(G) = \gamma(G) \cdot \gamma(G) \; .$$

ii) If $v \in v(G_2)$, then $\gamma_v(G) = \gamma(G) + 1$ since the vertex v is not in the dominating set. Since this equality is satisfied for every vertex in $V(G_2)$, we have

$$\Sigma_{v \in V(G_2)} \gamma_v(G) = (|V(G)| - \gamma(G))(\gamma(G) + 1).$$

Consequently,

$$\gamma_{av}(G) = \frac{1}{|V(G)|} \Sigma_{v \in V(G)} \gamma_v(G) = \frac{1}{|V(G)|} (\Sigma_{v \in V(G_1)} \gamma_v(G) + \Sigma_{v \in V(G_2)} \gamma_v(G))$$
$$= \frac{1}{|V(G)|} [(\gamma(G).\gamma(G)) + (|V(G)| - \gamma(G)).(\gamma(G) + 1)]$$

THE AVERAGE LOWER DOMINATION NUMBER OF GRAPHS

$$=\gamma(G)+1-\frac{\gamma(G)}{|V(G)|}.$$
(1)

Case 2. If G is a k-ary tree with depth n and $n \equiv 0 \pmod{3}$, then G has k + 1 domination sets which give the domination number of G. The minimal domination set of G contains the vertices on the levels (n - 1 - 3i) for $0 \leq i \leq \lfloor \frac{n}{3} \rfloor$. But in this case the vertex on the 0^{th} level cannot be reached. Therefore the vertex on the 0^{th} level or one of the vertices on the 1^{st} level should be taken to the dominating set. Hence there are k + 1 dominating sets according to the choice of vertices.

i) If $v \in \gamma(G)$ -set, then $\gamma_v(G) = \gamma(G)$ since the vertex v is in the dominating set. We have to repeat this process for $k + \gamma(G)$ vertices. Therefore

$$\Sigma_{v \in V(G)} \gamma_v(G) = (\gamma(G) + k) \cdot \gamma(G) .$$

ii) If $v \notin \gamma(G)$ -set, then $\gamma_v(G) = \gamma(G)$ since the vertex v is in the dominating set. We have to repeat this process for $|V(G)| - k - \gamma(G)$ vertices. Hence,

$$\Sigma_{v \in V(G)} \gamma_v(G) = (|V(G)| - (\gamma(G) + k)).(\gamma(G) + 1) .$$

As a result

$$\gamma_{av}(G) = \frac{1}{|V(G)|} [(\gamma(G) + k) \cdot \gamma(G) + (|V(G)| - (\gamma(G) + k)) \cdot (\gamma(G) + 1)]$$

= $\gamma(G) + 1 - \gamma(G) + k$

$$=\gamma(G) + 1 - \frac{\gamma(G)+k}{|V(G)|}$$
(2)

By (1) and (2) the proof is completed.

DEFINITION 2.2. ([3]) The binomial tree of order $n \ge 0$ with root R is the tree B_n defined as follows.

1) If n = 0, $B_n = B_0 = R$, i.e., the binomial tree of order zero consists of a single node R.

2) If n > 0, $B_n = R, B_0, B_1, \ldots, B_{n-1}$, i.e., the binomial tree of order n > 0 comprises the root R, and n binomial subtrees, B_0, B_1, B_{n-1} .

THEOREM 2.2. Let B_n be a binomial tree. Then $\gamma_{av}(B_n) = 2^{n-1}$.

PROOF. Any binomial tree B_n consists of 2^n vertices; 2^{n-1} vertices with degree 1. While the domination set is found, all of the vertices with degree 1 or the vertices adjacent to these vertices should be taken into the set. Therefore the domination number of B_n is $\gamma(B_n) = 2^{n-1}$. Obviously the domination set satisfying the domination number can be obtained for every element of B_n . Since $\gamma_v(B_n) = 2^{n-1}$ for every element v of B_n . Hence

$$\Sigma_{v \in V(B_n)} \gamma_v(B_n) = 2^{n-1} \cdot 2^n$$

From the definition of average lower domination number we have

$$\gamma_{av}(B_n) = \frac{1}{2^n} 2^{n-1} \cdot 2^n = 2^{n-1}$$

DEFINITION 2.3. ([13]) Let p_1, p_2, \ldots, p_n be non-negative integers and G be such a graph, V(G) = n. The thorn graph of the graph, with parameters p_1, p_2, \ldots, p_n , is obtained by attaching p_i new vertices of degree 1 to the vertex u_i of the graph G, $i = 1, 2, \ldots, n$. The thorn graph of the graph G will be denoted by G^* or by $G^*(p_1, p_2, \ldots, p_n)$, if the respective parameters need to be specified.

THEOREM 2.3. Let G be a non complete connected graph with order n and G^* be a thorn graph of G with every $p_i = 1$. Then

$$\gamma_{av}(G^*) = n$$

PROOF. The number of vertices of G^* is 2n. While the domination set is found every vertex of degree 1 or the vertex adjacent to it must be taken into the dominating set. Therefore the domination number of G^* is $\gamma(G^*) = n$. Thus the domination set satisfying the domination number can be obtained for every element of G^* . Since $\gamma_v(G^*) = n$ for every element v of G^* , therefore

$$\Sigma_{v \in G^*} \gamma_v(G^*) = 2n.n.$$

From the definition of average lower domination number we have

$$\gamma_{av}(G^*) = \frac{1}{2n} \cdot 2n \cdot n = n.$$

THEOREM 2.4. Let G^* be a thorn graph of G with every $p_i > 1$. Then $\gamma_{av}(G^*) = |V(G)| + 1 - \frac{|V(G)|}{|V(G^*)|}$

PROOF. Let G^* be a thorn graph of G with every $p_i > 1$. Obviously $\gamma(G^*) = |V(G)|$, hence all of the vertices of G should be taken into the dominating set. Let vertices set of G^* be $V(G^*) = V(G_1) \cup V(G_2)$ where, $V(G_1)$: The set contains the vertices of graph G. $V(G_2)$: The set contains the vertices of $V(G) - V(G_1)$

Then we have

$$\Sigma_{v \in V(G^*)} \gamma(G^*) = \Sigma_{v \in V(G_1)} \gamma_v(G^*) + \Sigma_{v \in V(G_2)} \gamma_v(G^*)$$

i) If $v \in V(G_1)$, then $\gamma_v(G^*) = |V(G)|$. We have to repeat this process for every vertices of $V(G_1)$. Hence

$$\Sigma_{v \in V(G_1)} \gamma_v(G^*) = |V(G)| |V(G)|.$$

(ii) If $v \in V(G_2)$, then $\gamma_v(G^*) = |V(G)| + 1$. We have to repeat this process for every vertices of $V(G_2)$. So,

$$\Sigma_{v \in V(G_2)} \gamma_v(G^*) = (|V(G^*)| - |V(G)|)(|V(G)| + 1).$$

From the definition of average lower domination number we have

 γ_{ai}

$$\begin{aligned} \langle G^* \rangle &= \frac{1}{|V(G^*)|} (|V(G)| |V(G)| + (|V(G^*)| - |V(G)|) (|V(G)| + 1)) \\ &= |V(G)| + 1 - \frac{|V(G)|}{|V(G^*)|}. \end{aligned}$$

3. Join Operation

We give some result of average lower domination number of $G_1 + G_2$.

THEOREM 3.1. If G_1 and G_2 are two graphs with domination numbers different from 1, then $\gamma_{av}(G_1 + G_2) = 2$.

PROOF. The domination set of $G_1 + G_2$ is formed by the pairs of (x, y) such that x is any vertex of the graph G_1 and y is any vertex of G_2 . Since a domination set can be formed by every element v in $G_1 + G_2$, we have $\gamma_v(G_1 + G_2) = 2$. Then by the definition

$$\gamma_{av}(G_1 + G_2) = \frac{1}{|V(G_1 + G_2)|} \cdot 2|V(G_1 + G_2)| = 2.$$

THEOREM 3.2. Let G_1 and G_2 be two graphs with orders m and n, respectively, and let $\gamma(G_1) = 1$ or $\gamma(G_2) = 1$. Let a be the number of the domination sets satisfying $\gamma(G_1) = 1$ and b be the number of the domination sets satisfying $\gamma(G_2) =$ 1, then

$$\gamma_{av}(G_1 + G_2) = \begin{cases} 2 - \frac{a}{m+n} & , & \gamma(G_1) = 1 \text{ and } \gamma(G_2) \neq 1 \\ 2 - \frac{b}{m+n} & , & \gamma(G_1) \neq 1 \text{ and } \gamma(G_2) = 1 \\ 2 - \frac{a+b}{m+n} & , & \gamma(G_1) = 1 \text{ and } \gamma(G_2) = 1 \end{cases}$$

PROOF. The proof is done in three cases according to the domination number of the graphs G_1 and G_2 .

Case 1: Let $\gamma(G_1) = 1$ and $\gamma(G_2) \neq 1$. In this case,

(i) If $v \in V(G_1)$ and an element of one of the *a* sets satisfying $\gamma(G_1) = 1$ then $\gamma_v(G_1 + G_2) = 1$ and this equality is satisfied for *a* vertices.

(ii) If $v \in V(G_1 + G_2)$ which doesn't satisfy $\gamma(G_1) = 1$, then $\gamma_v(G_1 + G_2) = 2$, and this equality is satisfied for m + n - a vertices. Therefore,

$$\gamma_{av}(G_1 + G_2) = \frac{1}{m+n} \cdot (a + (m+n-a) \cdot 2) = 2 - \frac{a}{m+n}$$
(3)

Case 2: Let $\gamma(G_1) \neq 1$ and $\gamma(G_2) = 1$.

(i) If $v \in V(G_2)$ and an element of one of the *b* sets satisfying $\gamma(G_2) = 1$ then $\gamma_v(G_1 + G_2) = 1$ and this equality is satisfied for *b* vertices.

(ii) If $v \in V(G_1 + G_2)$ which doesn't satisfy $\gamma(G_2) = 1$, then $\gamma_v(G_1 + G_2) = 2$, and this equality is satisfied for m + n - b vertices. Hence we have,

$$\gamma_{av}(G_1 + G_2) = \frac{1}{m+n} \cdot (b + (m+n-b) \cdot 2) = 2 - \frac{b}{m+n}$$
(4)

159

Case 3: Let $\gamma(G_1) = 1$ and $\gamma(G_2) = 1$. Then

(i) If $v \in V(G_1)$ and an element of one of the *a* sets satisfying $\gamma(G_1) = 1$ then $\gamma_v(G_1+G_2)=1$ and this equality is satisfied for a vertices.

(ii) If $v \in V(G_2)$ and an element of one of the b sets satisfying $\gamma(G_2) = 1$ then $\gamma_v(G_1+G_2)=1$ and this equality is satisfied for b vertices.

(iii) If $v \in V(G_1 + G_2)$ which doesn't satisfy $\gamma(G_1) = 1$ and $\gamma(G_2) = 1$, then $\gamma_{v}(G_{1}+G_{2})=2$, and this equality is satisfied for m+n-a-b vertices. Therefore,

$$\gamma_{av}(G_1 + G_2) = \frac{1}{m+n} \cdot (a+b+(m+n-a-b)\cdot 2) = 2 - \frac{a+b}{m+n} \quad (5)$$

By (3), (4) and (5) the proof is completed.

References

- [1] R.B. Allan and R.C. Laskar, On the domination and independent domination numbers of a garph. Discrete Math. 23(1978), 73-76
- [2]M. Bilidia, M. Chellali, F. Maffray, On average lower independence and domination numbers in graphs, Discrete Mathematics 295(13)(2005), 111
- [3] T. Cormen, C.E. Leiserson and R.L. Rivest, Introduction to algorithms, The MIT Press. (Fourth edition), 1990.
- [4] P. Dankelmann and O. R. Oellermann, Bounds on the average connectivity of a graph, Discrete Applied Mathematics, vol. 129(2-3)(2003), 305318
- D. Dogan, Average Lower Domination Number for Some Middle Graphs, International Jour-[5]nal of Mathematical Combinatorics, Vol.4, Devemner 2012, 58-63
- [6]O. Favaron. Stability, domination and irredundance in a graph. J. Graph Theory 10(4)(1986), 429 - 438
- J.F. Fink, M.S. Jacobson, L.F. Kinch, J. Roberts, On graphs having domination number half their order, Period. Math. Hungar. 16(4)(1985), 287-293
- [8] F. Harary and M. Livingston. Characterization of trees with equal domination and independent domination numbers. Congr. Numer. 55(1986), 121-150
- T. W. Haynes, S.T. Hedetniemi, and P.J. Slatter(eds), Domination in Graphs: Advanced [9] Topics, Marcel Dekker, New York, 1998.
- [10] T. W. Haynes, S.T. Hedetniemi, an P.J. Slatter, Fundamentals of Domination in Graphs, Taylor and Francis, New York, 1998.
- [11] M. A. Henning and O. R. Oellermann, The average connectivity of regular multipartite tournaments, The Australasian Journal of Combinatorics, vol. 23(2001), 101-113
- [12] M.A. Henning, Trees with equal average domination and independent domination numbers, Ars Combinatoria, 71(2004), 305-318
- [13] H.A. Jung, On a class of posets and corresponding graphs J. Combin. Theory Ser. B, 24 (1978), 125133
- [14] F. Li, X. Li, The neighbour-scattering number can be computed in polynomial time for interval graphs. Comput. Math. Appl. 54(5)(2007), 679-686
- [15] C. Payan, N.H. Xuong, Domination-balanced graphs, J. Graph Theory 6(1)(1982), 23-32

Received by editors 25.07.2013; Revised version 11.10.2013; Available online 11.11.2013.

TURGUTLU VOCATIONAL TRAINING SCHOOL, CELAL BAYAR UNIVERSITY, TURGUTLU-MANISA, TURKEY

E-mail address: ersin.aslan@cbu.edu.tr

DEPARTMENT OF MATHEMATICS, EGE UNIVERSITY, 35100 BORNOVA-IZMIR, TURKEY E-mail address: alpay.kirlangicc@ege.edu.tr