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ISOLATE DOMINATION NUMBER

AND MAXIMUM DEGREE

I.Sahul Hamid and S.Balamurugan

Abstract. A subset D of the vertex set V (G) of a graph G is called a dom-

inating set of G if every vertex in V − D is adjacent to a vertex in D. The
minimum cardinality of a dominating set is called the domination number and
is denoted by γ(G). A dominating set D such that δ(< D >) = 0 is called

an isolate dominating set. The minimum cardinality of an isolate dominating
set is called the isolate domination number and is denoted by γ0(G). In this
paper we investigate the properties of the graphs for which γ0 = n−∆

1. Introduction

By a graph G = (V,E), we mean a finite, undirected graph with neither loops
nor multiple edges. For graph theoretic terminology we refer to the book by Char-
trand and Lesniak [1]. All graphs in this paper are assumed to be non-trivial. The
open neighbourhood of a vertex v ∈ V is N(v) = {x ∈ V : vx ∈ E}, that is the set
of all vertices adjacent to v. The closed neighbourhood of v is N [v] = N(v)∪{v}. If
S ⊆ V and v ∈ S, then a vertex u in V is said to be a private neighbour of v with
respect to S if N(u) ∩ S = {v}. The subgraph induced by a set S ⊆ V is denoted
by < S >. A wounded spider is a tree obtained from a star K1,t where t > 1, by
subdividing at most t− 1 edges of the star.

One of the fastest growing areas within graph theory is the study of domination.
A dominating set in a graphG is a set S of vertices ofG such that any vertex in V−S
is adjacent to a vertex in S and the minimum cardinality of a dominating set in G
is called the domination number which is denoted by γ(G). In fact, there are scores
of graph theoretic concepts involving domination, covering and independence. The
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bibliography in domination maintained by Haynes et. al. [3] currently has over
1200 entries in which one can find an appendix listing some 75 different types of
domination and domination related parameters which have been studied in the
literature. Hedetniemi and Laskar [4] edited an issue of Discrete Mathematics
devoted entirely to domination, and a survey of advanced topics in domination is
given in the book by Haynes et.al. [2].

Neverthless, despite the many variations possible, we can so far identify only
a limited number of basic domination parameters; ‘basic’ in the sense that they
are defined for every non-trivial connected graph. For instance independent dom-
ination, connected domination, total domination, global domination and acyclic
domination are some basic domination parameters. In this sequence, the notion
of isolate domination was introduced in [5] as a new such basic domination pa-
rameter. An isolate dominating set of a graph G is a dominating set S of G such
that δ(< S >) = 0 and the isolate domination number, denoted by γ0(G), is the
minimum cardinality of an isolate dominating set of G. In this paper, we extend
the study of this new variation of parameter by establishing a relation between the
isolate domination number and the maximum degree of a graph G.

2. Graphs which satisfy γ0(G) + ∆(G) = |V (G)|

It is obvious that for any vertex v in a graph G, the set V −N(v) is always an
isolate dominating set of G which inturn implies that γ0(G) 6 n −∆(G). In this
section, we investigate the properties of graphs for which the equality holds and
also characterize the family of triangle-free graphs attaining the bound. For this
purpose, we introduce the following notations.

For a vertex v in a graph G, we define Nv to be the set of all vertices in G
which are not adjacent to v, that is Nv = V −N [v]. A vertex x in N(v) is said to
be a major vertex if x is adjacent to all the vertices of Nv. A vertex of N(v) which
is not a major vertex is called a non-major vertex. We also define the following.

(i) M(v) is the set of all major vertices of G with respect to v.
(ii) M ′(v) is the set of all non-major vertices of G with respect to v.
(iii) For a vertex y ∈ Nv, Mv(y) = N(y)

∩
M(v) and M ′

v(y) = N(y)
∩
M ′(v).

(iv) m(v) = |M(v)| and mv(y) = |Mv(y)|.
(v) m′(v) = |M ′(v)| and m′

v(y) = |M ′
v(y)|.

Further, for a vertex v in G, we define the properties C1, C2, C3 and C4 as follows:

C1: Nv is independent.
C2: A vertex of N(v) having more than one neighbour in Nv belongs to M(v).
C3: If N(v) contains at least one pendant vertex of G, then no subset of Nv

with fewer than |Nv| − l vertices dominates M ′(v), where l denotes the
number of pendant vertices of G in N(v).

C4: Suppose N(v) contains no pendant vertices of G. Then for each y ∈ Nv,
(i) m′

v(y) ̸= 1.



ISOLATE DOMINATION NUMBER AND MAXIMUM DEGREE 129

(ii) When M(v) ̸= ϕ, if M ′(v) −M ′
v(y) ̸= ϕ then no subset of Nv with

fewer than |Nv| − m′
v(y) vertices dominate M ′(v) − M ′

v(y) and if
M ′(v)−M ′

v(y) = ϕ, then

m′
v(y) >

 n−∆− 1 ifm(v)=1

n−∆− 2 otherwise

Theorem 2.1. Let G be a graph on n vertices with γ0(G) = n − ∆. Then
∆ > n/2 and the conditions C1 to C3 hold for any vertex v of degree ∆.

Proof. If there exist two adjacent vertices x and y in Nv then (Nv−{x})∪{v}
will be an isolate dominating set of G with cardinality n − ∆ − 1, which is a
contradiction and thus proving C1.

We now proceed to prove that ∆ > n/2. Suppose ∆ < n/2. Let us first
claim that any vertex in N(v) has exactly one neighbour in Nv. Suppose there
exists a vertex u ∈ N(v) having at least two neighbours in Nv, say x and y. Since
∆ < n/2 it follows that |Nv| > ∆ so that there exists a vertex z in Nv which is not
adjacent to u. Hence the set D = (Nv − {x, y}) ∪ {u, v} is an isolate dominating
set of cardinality less than or equal to n − ∆ − 1, contradicting γ0(G) = n − ∆
and thus every vertex in N(v) has atmost one neighbour in Nv. Further, the set
Nv contains at least ∆ vertices as ∆ < n/2. In addition, we have also proved that
Nv is independent. These observations imply the required claim. Now, it follows
from the above claim together with the fact that Nv is independent that the sets
Nv and N(v) have equal number of vertices. Hence a vertex in N(v) together with
its non-neighbours in Nv form an isolate dominating set with cardinality n−∆−1,
this arrives at a contradiction. Hence ∆ > n/2.

We now prove C2. Suppose there exists a vertex x ∈ N(v) with more than
one neighbour in Nv and also having a non-neighbour z in Nv. Then the set
D = (Nv −N(x))∪ {x, v} is a dominating set in which z is an isolated vertex with
|D| = |Nv|−|Nv ∩N(x)|+2 < |Nv|−1+2 = |Nv|+1 = n−∆ . This contradiction
proves what we desired.

Let us now prove C3. Suppose there exists a subset D of Nv with cardinality
fewer than |Nv| − l dominating M ′(v). Then M(v) ̸= ϕ, otherwise < Nv − D >
would be totally disconnected and consequently G is disconnected. So, the set D
together with the l pendant vertices of G in N(v) and a vertex in M(v) form an
isolate dominating set of cardinality |D|+ l+1 < |Nv|− l+ l+1 = |Nv|+1 = n−∆,
which is a contradiction. This proves C3. �

Remark 2.1. The conditions stated in the above theorem are not sufficient for
a graph G to have n−∆ as its isolate domination number. For example, the graph
given in Figure 1 satisfies the conditions C1 to C3, however the value of γ0 fr the
graph is 4 < n−∆.
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Figure 1: A graph G with γ0(G) < n−∆ satisfying the conditions C1 to C3

Even if necessary and sufficient condition for a graph G for which γ0(G) = n−∆
is not found, we could settle this for the family of triangle-free graphs which is of
course a large family of graphs.

Theorem 2.2. Let G be a triangle free graph on n vertices. Then γ0(G) = n−∆
if and only if ∆ > n/2 and the conditions C1 to C4 hold for any vertex v of degree ∆.

Proof. Suppose γ0(G) = n−∆. The conditions C1 to C3 have already been
proved in theorem 2.1 and therefore it is sufficient to prove the condition C4 alone.
First, let us prove C4(i). Suppose there is a vertex y in Nv such that m′

v(y) = 1.
Since G is triangle-free < N(v) > is independent. Also as N(v) contains no pen-
dant vertices of G, every vertex of N(v) must have a neighbour in Nv. Therefore
the set D = (Nv−{y})∪M ′

v(y) would be a dominating set of G in which the vertex
w of M ′

v(y) is an isolated vertex. Hence the set D is an isolate dominating set of
G of cardinality |Nv| < n−∆. This contradiction proves C4(i).

Now, let M(v) ̸= ϕ and y ∈ Nv. If M
′(v)−M ′

v(y) ̸= ϕ and there is a subset S
of Nv with fewer then |Nv|−m′

v(y) vertices dominating M ′(v)−M ′
v(y) then the set

S∪{x}∪M ′
v(y), for some x ∈ M(v) will form an isolate dominating set of cardinal-

ity |S|+1+m′
v(y) < |Nv|−m′

v(y)+1+m′
v(y) = |Nv|+1. This contradiction gives

the required result. Now suppose M ′(v) − M ′
v(y) = ϕ. If m(v) = 1, then the set

D = {x}∪M ′
v(y), where x ∈ M(v) will form an isolate dominating set of cardinality

|D| = 1+m′
v(y) > n−∆. That is m′

v(y) > n−∆− 1, when m(v) = 1. If m(v) > 1
then D must contain at least one more vertex in addition to the existing vertices, to
dominate the major vertices otherthan x. So that |D| = 2+m′

v(y) > n−∆. Hence it
follows that m′

v(y) > n−∆−2 when m(v) > 1. Thus the condition C4(ii) is proved.

Conversely, suppose ∆ > n/2 and the conditions C1 to C4 hold in G. Let D be
an isolate dominating set of G. We prove that D contains at least n −∆ vertices
by considering the following cases.
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Case 1. M ′(v) = ϕ

Suppose D ∩N(v) = ϕ then it follows from the condition C1 that Nv ⊆ D and
also v ∈ D so that D = {v}∪Nv. Suppose D∩N(v) ̸= ϕ. Then the vertex v cannot
be an isolate in D. Further, since the vertices of N(v) are major, it follows that
no vertex of Nv can be an isolate in D. So that the isolates in D must be in N(v).
Hence D contains neither v nor the vertices of Nv so that D = N(v). Therefore in
either case |D| > n−∆.

Case 2. M(v) ̸= ϕ and M ′(v) ̸= ϕ

Suppose v ∈ D. Then D ∩M(v) = ϕ, for otherwise no vertex of G can be an
isolate in D. Hence every vertex in D − {v} dominates at most one vertex of Nv

and so |D| > 1 + |Nv| = n − ∆. Assume v /∈ D. Le l be the number of pendant
vertices of G in N(v).

Subcase 2.1. l > 1

If D ∩ M(v) = ϕ then at least |Nv| vertices are required to dominate Nv.
Also, D must contain all the pendant vertices of G in N(v) as v /∈ D and so
|D| > l + |Nv| = l + n−∆− 1 > n−∆.

Now suppose D ∩M(v) ̸= ϕ. Let us now see the minimum number of vertices
required to dominate the non-major vertices (in N(v)) which are not pendants.
Even if we use only the vertices in Nv to dominate such non-major vertices, condi-
tion C3 says, at least |Nv| − l vertices are needed and obviously the other ways of
dominating those vertices require more than what we needed when only the vertices
in Nv are used. Also, D must contain all the pendant vertices. Thus D consists of
a major vertex together with the |Nv|− l vertices of Nv and all the pendant vertices
of G in N(v) so that |D| > 1 + |Nv| − l + l = n−∆.

Subcase 2.2. l = 0

Suppose D ∩M(v) = ϕ. Then as v /∈ D, at least one vertex of M ′(v), say x,
must be selected to dominate the vertex v. Let N(x)∩Nv = {y}. Then m′

y(v) > 1.
Further, by the condition C4(i), m

′
v(y) ̸= 1 and hence it follows that m′

v(y) > 2.
Also, since D∩M(v) = ϕ, at least |Nv|−1 vertices are needed to dominate Nv−{y}.
Until now, the set D contains the vertex x together with those |Nv| − 1 vertices
dominating Nv − {y}. If y ∈ D then we proved. If y /∈ D, then all the vertices of
m′

v(y) must be selected. Therefore, |D| > |Nv| − 1 +m′
v(y) > |Nv|+ 1 > n−∆.

Suppose u ∈ D ∩M(v). If one of the major vertices with respect to v in D is
an isolate in D then D = N(v), so that |D| = ∆ > n−∆ as ∆ > n/2. Now assume
that no vertex of M(v)∩D is an isolate in < D >. Let x be an isolate in D. Then
x ∈ M ′(v) and it has exactly one neighbour, say y, in Nv being l = 0. Obviously
y /∈ D. Therefore M ′

v(y) ⊆ D and hence |D| > 1+m′
v(y). If M

′(v)−M ′
v(y) ̸= ϕ, it

follows from the condition C4(ii) that at least |Nv| −m′
v(y) vertices are needed to
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dominate the vertices of M ′(v)−M ′
v(y). Thus, |D| > 1 +m′

v(y) + |Nv| −m′
v(y) =

1 + |Nv| > n −∆. Suppose M ′(v) −M ′
v(y) = ϕ. Now, if m(v) = 1, the condition

C4(ii) implies thatm′
v(y) > n−∆−1 so that |D| > 1+m′

v(y) > 1+n−∆−1 = n−∆.
If m(v) > 2, again by C4(ii) we have m

′
v(y) > n−∆−2. Also as m(v) > 2, we need

at least one more vertex to dominate the vertices ofM(v)−{u}, where u ∈ D∩M(v).
Hence |D| > 2 +m′

v(y) > n−∆.

Case 3. M(v) = ϕ

It follows from the condition C1 that Nv is independent. Moreover by the con-
dition C2 a vertex of N(v) can dominate atmost one vertex of Nv. There-
fore at least |Nv| vertices are necessary to dominate Nv. Hence if v ∈ D then
|D| > |Nv| + 1 = n − ∆. Suppose v /∈ D. If N(v) has a pendant vertex then D
must contain the pendant vertices of N(v) together with vertices dominating Nv.
Thus |D| > |Nv|+1 = n−∆. Suppose N(v) has no pendant vertices. As v /∈ D, D
must contain a vertex of N(v), say x, to dominate v. Let N(x)

∩
Nv = {y}. Since

M(v) = ϕ, it follows from the conditions C1 and C2 that at least |Nv|−1 vertices are
required to dominate Nv − {y}. Now D contains the vertex x together with those
|Nv|−1 vertices dominatingNv−{y}. If y ∈ D then |D| > |Nv|−1+2 = n−∆. Sup-
pose y /∈ D. Since G is triangle free andNv is independent, M ′

v(y) ⊆ D. Also by the
condition C4(i), m

′
v(y) ̸= 1 and therefore |D| > |Nv|−1+m′

v(y) > |Nv|+1 = n−∆.

Thus every isolate dominating set of G contains at least n−∆ vertices and so
γ0(G) > n−∆. �

Remark 2.2. The following points can easily be observed from the above the-
orem.

(i) As G is triangle-free, N(v) is independent, for any vertex v of degree ∆.
(ii) By Condition C1, Nv is independent.

Hence the set of graphs characterized in the above theorem are the subclass of
connected bipartite graphs.

Corollary 2.1. Let T be a tree on n vertices. Then γ0(T ) = n − ∆ if and
only if T is either a wounded spider or a double star whose supports are of degree
∆ and n−∆− 1 respectively.

Proof. Suppose T is a tree with γo(T ) = n−∆. Then for vertex v of degree
∆ in T , N(v) is independent. Also by the condition C1, Nv is independent. If
Nv = ϕ then T is a star which is obviously a wounded spider. Suppose Nv ̸= ϕ.
Then by the condition C1, every vertex of Nv has a neighbour in N(v). Since T
is acyclic, m(v) 6 1. If m(v) = 0, then T is a wounded spider, being ∆ > n

2 .
Further, if m(v) = 1, then all the non-major vertices with respect to v are pendant
vertice and hence T is a double star whose supports are of degree ∆ and n−∆− 1
respectively. The Converse is just a verification. �



ISOLATE DOMINATION NUMBER AND MAXIMUM DEGREE 133

References

[1] G. Chartrand and L.Lesniak, Graphs and Digraphs, Fourth edition, Chapman and Hall-CRC,
Boca Raton, 2005.

[2] T.W. Haynes, S.T. Hedetniemi, P.B.J. Slater, Domination in Graphs: Advanced Topics,

Marcel Dekker, New York 1998.
[3] T.W. Haynes, S.T. Hedetniemi, P.B.J. Slater, Fundamentals of Domination in Graphs, Mar-

cel Dekker, New York 1998.
[4] S.T. Hedetneimi and R.C.Laskar (Eds.), Topics in domination in graphs, Annals of Discrete

Mathematics, 86, Elsevier Science Publishers B.C., 1991.
[5] I. Sahul Hamid and S. Balamurugan, Isolate domination in graphs (Communicated).

Received by the editors April, 04, 2013; available online September 02, 2013

Department of Mathematics, The Madura College, Madurai-625 011, India

E-mail address: sahulmat@yahoo.co.in

Department of Mathematics, St. Xavier’s College, Palayamkottai - 627 002, India

E-mail address: balamaths@rocketmail.com


