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A NOTE ON CORADICAL OF CONSISTENT SUBSET

OF σ-REFLEXIVE SEMIGROUPS WITH APARTNESS

Milovan Vinčić and Daniel A. Romano

Abstract. The concept of σ-reflexive semigroups is due to Chacron and
Thierrin in 1972. In the present paper we discuss σ-reflexive semigroups with
apartness. We prove some fundamental properties of these semigroups.

1. Introduction and Preliminaries

This investigation is in Semigroup Theory within Constructive Algebra, in sense
of the book [1], [3], [4] and [13] and papers [8]- [11]. Constructive Mathematics
is developed on Constructive Logic (or Intuitionists Logic ( [13])) - logic without
the Law of Excluded Middle: P ∨ ¬P . We have to note that ’the crazy axiom’
¬P =⇒ (P =⇒ Q) is included in the Constructive Logic. Precisely, in Constructive
Logic the ’Double Negation Law’ P ⇐⇒ ¬¬P does not hold, but the following
implication P =⇒ ¬¬P holds even in the Minimal Logic. In Constructive Logic
’Weak Law of Excluded Middle’ ¬P ∨ ¬¬P does not hold. It is interesting that
in Constructive Logic the following deduction principle A ∨ B,¬A ⊢ B holds, but
this is impossible to prove without ’the crazy axiom’. An advantage of working in
this manner is that proofs and results have more interpretations. On one hand,
Bishop’s Constructive Mathematics is consistent with the traditional mathematics.
On the other hand, the results can be interpreted recursively or intuitively. If we
are working constructively, the first problem is to obtain appropriate substitutes of
the classical definitions.

Throughout this paper, S = (S,=, ̸=, ·) always denotes a semigroup with apart-
ness in the sense of the books [7], [13] and papers [8]- [11]. The apartness ” ̸= ” on
S is a binary relation with the following properties: For every elements x, y and z
in S, it holds:
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¬(x ̸= x), x ̸= y =⇒ y ̸= x, x ̸= y ∧ y = z =⇒ x ̸= z,
x ̸= z =⇒ (∀t ∈ S)(x ̸= t ∨ t ̸= z).

It takes that the semigroup operation is strongly extensional, in the following sense

(∀a, b, x, y ∈ S)((ay ̸= by =⇒ a ̸= b) ∧ (xa ̸= xb =⇒ a ̸= b)).

Let T be a subset of S. We say that it is:
– strongly extensional subset (see, for example [1], [3]) iff (∀x, y ∈ S)(x ∈ T =⇒
x ̸= y ∨ y ∈ T );
– consistent subset (see [2]) iff (∀x, y ∈ S)(xy ∈ T =⇒ x ∈ T ∧ y ∈ T );
– completely prime (see [2]) subset of S if for any x, y ∈ S holds

xy ∈ T =⇒ (x ∈ T ∨ y ∈ T );

– subsemigroup of S iff (∀x, y ∈ S)(x ∈ T ∧ y ∈ T =⇒ xy ∈ T );
– filter of S if T is a consistent subsemigroup of S.

It is easy to show that if T is a consistent subset of semigroup S, then TC is
an ideal of S. (See, for example Remark 1.1. in paper [11]) Let us note that the
opposite assertion ”If J is an ideal of semigroup S then JC is a consistent subset
if S.” is not valid in general case.

If T is a subset of S, we define coradical of T by

cr(T ) = {x ∈ T : (∀n ∈ N)(xn ∈ T )}.
It is easy to show that cr(T ) ⊆ T and cr(T ) = T if T is a filter of S. For a

consistent subset T we say that it is primary if the implication

x ∈ T ∧ y ∈ cr(T ) =⇒ xy ∈ T

holds.
For undefined notions and notations in the Semigroup theory we refer to books

[2] and [6] and in the Constructive mathematics we refer to books [1]- [4] and [7].
A semigroup S is called σ-reflexive if for any subsemigroupH of S ab ∈ H(a, b ∈

S) implies ba ∈ H. Clearly, a commutative semigroup is a σ-reflexive semigroup.
σ-reflexive semigroup are investigated by the following authors [5] and [12], for
example. σ-reflexive semigroup has some special properties. In this paper we
research these semigroups in case when they supplied with the apartness relation.
In this case, coradical of a consistent subset is a consistent subset again and so-
called primary consistent subset of a σ-reflexive semigroup is a filter of S.

2. Main Results

The following two results on σ-reflexive semigroups are due to Chacron and
Thierrin (1972):

Proposition 2.1 ( [5], Proposition 1). Any semigroup S is σ-reflexive if ti
satisfies the condition:

(∀a, b ∈ S)(∃m > 1)(ab = (ba)m).

Proposition 2.2 ( [5], Proposition 2). Let a, b be any two noncommutative
elements of a σ-reflexive semigroup S. Then, for some m > 1, ab = (ab)m.
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Generally speaking the coradical of a consistent subset of a semigroup need
not to be a consistent subset also. In the first theorem we prove that the coradical
of a consistent subset of a σ-reflexive semigroup is also a consistent subset of that
semigroup:

Theorem 2.1. Coradical of a consistent subset A of a σ-reflexive semigroup S
is a consistent subset of S again.

Proof. Let a, b be arbitrary elements of semigroup S such that ab ∈ cr(A).
Then for any natural n holds (ab)n ∈ A. For n = 1 we have a ∈ A and b ∈ A.
Suppose that the implication ab ∈ c(A) =⇒ an ∈ A ∧ bn ∈ A is true. Since

(ab)n+2 = a(ba)n+1b = a((ab)m)n+1b = a(ab)m(n+1)b = a2(ba)m(n+1)−1b2

and after repeating this procedure we have ak(ab)sbk = (ab)n+2 ∈ A for k > 1 and
some natural s. From this, by consistency of A, follows

(∀k 6 n+ 1)(ak ∈ A ∧ bk ∈ A).

So, by induction, we have a ∈ cr(A) and b ∈ cr(A). Therefore, the set cr(A) is a
consistent subset of semigroup S. �

The σ-reflexivity of S is an essential condition in theorem above. In the fol-
lowing example we show that.

Example 2.1. Let us consider set S = {0, a, b, c, d} where the multiplication
is given by

· 0 a b c d
0 0 0 0 0 0
a 0 a 0 c 0
b 0 0 b 0 d
c 0 0 c 0 c
d 0 d 0 b 0

This semigroup is not σ-reflexive, as H = {b} is a subsemigroup of S containing
product dc, but not cd. Now taking A = {a, b, c, d}, we have cr(A) = {a, b} but
this is not a consistent subset of S because, for example, dc = b ∈ cr(A) and
¬(c ∈ cr(A)) and ¬(d ∈ cr(A)).

The following theorem is the main result of this short note.

Theorem 2.2. Let S be a reflexive semigroup and let Q be a primary consistent
subset of S. Then cr(Q) is a filter of S.

Proof. (i) For a ∈ cr(Q) = cr(cr(Q)) and b ∈ cr(Q) ⊆ Q we have (∀i)(ai ∈
cr(Q)) and thus ab ∈ cr(Q)Q ⊆ Q.

(ii) For a ∈ cr(Q) = cr(cr(Q) and b ∈ cr(Q) we have (∀k)(ak ∈ cr(Q)) and
b2 ∈ Q. Thus, we have Q ∋ akb2 = ak−1 · (a · b) · b = ak−1 · (ba)m · b = ak−2(ab)m+1.
So, by consistency of Q, we have to have ak−2 ∈ Q and (ab)m+1 ∈ Q. Therefore,
we have (∀j 6 m+ 1)((ab)j ∈ Q).
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(iii) Suppose that (∀k 6 n)((ab)k ∈ Q) is true. Then, from (∀k)(ak ∈ cr(Q))
and (∀t)(bt ∈ Q) we have

Q ∋ akbt = ak−1(ab)bt−1 = ak−1(ba)mbt−1 = ak−2(ab)m+1bt−2

= ak−2((ba)s)m+1bt−2 = ak−2(ba)s(m+1)bt−2 = ak−3(ab)s(m+1)+1bt−3.

After enough number of repetitions we can get s(m + 1) + 1 > n + 1. Thus, by
consistency of Q we have (ab)n+1 ∈ Q.

(iv) Finally, by induction we have ab ∈ cr(Q). Therefore, the subset cr(Q) is a
filter of S. �
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