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Even Number of Symmetric Positive Solutions for
Sturm-Liouville Two-Point Boundary Value Problems on

Time Scales

K. R. Prasad1 and N. Sreedhar2

Abstract. In this paper, we are concerned with the existence of at least two
symmetric positive solutions for the even order boundary value problems on
time scales satisfying Sturm-Liouville two-point boundary conditions by using

Avery–Henderson fixed point theorem. We also establish the existence of at
least 2m symmetric positive solutions to the boundary value problem for an
arbitrary positive integer m.

1. Introduction

This paper establishes the existence of even number of symmetric positive so-
lutions for the even order boundary value problems on a time scales,

(1.1) (−1)ny(∆∇)n(t) = f(t, y(t), y∆∇(t), · · ·, y(∆∇)(n−1)

(t)), t ∈ [a, b]T,
satisfying Sturm-Liouville type two-point boundary conditions,

(1.2)

{
αy(∆∇)i(a)− βy(∆∇)i∆(a) = 0,

αy(∆∇)i(b) + βy(∆∇)i∆(b) = 0,

for 0 6 i 6 n − 1, where n > 1, f : [a, b]T × R+n

→ R+
is continuous with

a ∈ Tkn , b ∈ Tkn

for a time scale T, α > 0, β > 0 and σn(a) < ρn(b).
In recent years, there is an increasing interest in obtaining positive solutions for

boundary value problems on time scales. The theory of time scales was introduced
by Hilger [18] to unify not only continuous and discrete theory, but also provide an
accurate information of phenomena that manifest themselves partly in continuous
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time and partly in discrete time. The time scale calculus would allow to explore
a variety of situations in economic, biological, heat transfer, stock markets and
epidemic models. Recent results indicate that considerable achievement has been
made in the existence of positive solutions of the boundary value problems on time
scales. However they did not further provide characteristics of positive solutions
such as symmetry. Symmetry has been widely used in science, engineering. The
reason is that the symmetry has not only its theoretical value in studying the
metric manifolds and symmetric graph and so forth, but also its practical value, for
example, we can apply this characteristic to study graph structures and chemistry
structures.

The primary purpose of this investigation is to study the symmetry properties
of the solutions of even order boundary value problem on time scales. For recent
discussions on symmetry properties of solutions of boundary value problems as-
sociated to differential equations or finite difference equations or time scales, to
mention a few papers along these lines are Davis and Henderson [10], Avery, Davis
and Henderson [4], Davis, Henderson and Wong [11], Henderson [14], Henderson
and Thompson [16], Henderson and Wong [17], Wong [21], Eloe, Henderson and
Sheng [12] and Avery and Henderson [6, 7]. Recently, Henderson, Murali and
Prasad [15] studied the multiple symmetric positive solutions for two-point even
order boundary value problems on time scales,

(−1)ny(∆∇)n(t) = f(y(t), y∆∇(t), · · ·, y(∆∇)(n−1)

(t)), t ∈ [a, b],

satisfying the boundary conditions,

y(∆∇)i(a) = 0 = y(∆∇)i(b), 0 6 i 6 n− 1,

by using Avery generalization of the Leggett–Williams fixed point theorem.
Motivated by the papers mentioned above, in this paper, we establish the ex-

istence of even number of symmetric positive solutions for the BVP (1.1)-(1.2), by
using Avery–Henderson fixed point theorem. To establish the symmetric positive
solutions for the boundary value problem on time scales, we are dealing with sym-
metric time scales. By an interval time scale, we mean the intersection of a real
interval with a given time scale, that is, [a, b]T = [a, b] ∩T. An interval time scale

T = [a, b] is said to be a symmetric time scale, if

t ∈ T ⇔ b+ a− t ∈ T.
By a symmetric solution y(t) of the BVP (1.1)-(1.2), we mean y(t) is a solution of
the BVP (1.1)-(1.2) and satisfies

y(t) = y(b+ a− t), for t ∈ [a, b]T.
The rest of the paper is organized as follows. In Section 2, we briefly describe

some salient features of time scales. In Section 3, we construct the Green’s function
for the homogeneous problem corresponding to (1.1)-(1.2) and estimate bounds for
the Green’s function. In Section 4, we establish criteria for the existence of at
least two symmetric positive solutions of the BVP (1.1)-(1.2) by using the Avery–
Henderson fixed point theorem. We also establish the existence of at least 2m
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symmetric positive solutions to the BVP (1.1)-(1.2) for an arbitrary positive integer
m. Finally as an application, we give an example to demonstrate our result.

2. Preliminaries about Time Scales

A time scale T is a nonempty closed subset of R. For an excellent introduction
to the overall area of dynamic equations on time scales, we refer the recent text
books by Bohner and Peterson [8, 9], from which we cull the following definitions.
The functions σ, ρ : T → T are jump operators given by

σ(t) = inf{s ∈ T : s > t} and ρ(t) = sup{s ∈ T : s < t}

(supplemented by inf ∅ = supT and sup ∅ = inf T). The point t ∈ T is left-dense,
left-scattered, right-dense, right-scattered if ρ(t) = t, ρ(t) < t, σ(t) = t, σ(t) > t,
respectively. If T has a right- scattered minimum m, define Tκ = T − {m};
otherwise, set Tκ = T. If T has a left-scattered maximum M , define Tκ

=
T− {M}; otherwise, set Tκ

= T.
For f : T → R and t ∈ Tκ

, the delta derivative of f at t, denoted f∆(t), is
the number (provided it exists) with the property that given any ϵ > 0, there is a
neighborhood U of t such that

| f(σ(t))− f(s)− f∆(t)[σ(t)− s] |6 ϵ | σ(t)− s |,

for all s ∈ U .
For f : T → R and t ∈ Tκ, the nabla derivative of f at t, denoted f∇(t), is

the number (provided it exists) with the property that given any ϵ > 0, there is a
neighborhood U of t such that

| f(ρ(t))− f(s)− f∇(t)[ρ(t)− s] |6 ϵ | ρ(t)− s |,

for all s ∈ U . Define f∆∇(t) to be the nabla derivative of f∆(t), i.e., f∆∇(t) =
(f∆(t))∇.

A function f : T → R is left-dense continuous or ld-continuous, provided it is
continuous at left-dense points in T and its right-sided limits exist (finite) at right-
dense points in T. It is known that if f is ld-continuous, then there is a function
F (t) such that F∇(t) = f(t). In this case, we define∫ b

a

f(t)∇t = F (b)− F (a).

3. Green’s Function and Bounds

In this section, we construct the Green’s function for the homogeneous BVP
corresponding to (1.1)-(1.2) and we estimate bounds for the Green’s function. We
prove certain lemmas which are needed to establish our main result.

Let G1(t, s) be the Green’s function for the homogeneous BVP,

−y∆∇(t) = 0, t ∈ [a, b]T,

αy(a)− βy∆(a) = 0, αy(b) + βy∆(b) = 0,



88 K. R. PRASAD AND N. SREEDHAR

and is given by

G1(t, s) =

{
1
d{α(t− a) + β}{α(b− s) + β}, t 6 s,
1
d{α(s− a) + β}{α(b− t) + β}, s 6 t,

where d = 2αβ + α2(b− a) > 0.

The Green’s function G1(t, s) is positive and satisfies the following inequality,

G1(t, s) 6 G1(s, s), for all t, s ∈ [a, b]T.
Let I =

[
3a+b
4 , a+3b

4

]
T. Then

G1(t, s) > kG1(s, s), for all (t, s) ∈ I × [a, b]T,
where

(3.1) k =
α(b− a) + 4β

4[α(b− a) + β]
< 1.

For 2 6 j 6 n, we can recursively define

(3.2) Gj(t, s) =

∫ b

a

Gj−1(t, r)G1(r, s)∇r, for all t, s ∈ [a, b]T.

Then Gn(t, s) is the Green’s function for the homogeneous BVP corresponding to
(1.1)-(1.2). It is clear that Gn(t, s) > 0, for all t, s ∈ [a, b]T.

Let D = {v|v : C[a, b]T → R+}. For each 1 6 j 6 n − 1, define the operator

Tj : D → D by

Tjv(t) =

∫ b

a

Gj(t, s)v(s)∇s, t ∈ [a, b]T,
and these integrals are converges. By the construction of Tj and the properties of
Gj(t, s), it is clear that

(−1)j(Tjv)
(∆∇)j (t) = v(t), t ∈ [a, b]T,

α(Tjv)
(∆∇)i(a)− β(Tjv)

(∆∇)i∆(a) = 0,

α(Tjv)
(∆∇)i(b) + β(Tjv)

(∆∇)i∆(b) = 0,

for 0 6 i 6 j− 1. Hence, we see that the BVP (1.1)-(1.2) has a solution if and only
if the following BVP has a solution,

(3.3) v∆∇(t) + f(t, Tn−1v(t), Tn−2v(t), · · ·, T1v(t), v(t)) = 0, t ∈ [a, b]T,

(3.4) αv(a)− βv∆(a) = 0, αv(b) + βv∆(b) = 0.

Indeed, if y is a solution of the BVP (1.1)-(1.2), then v(t) = y(∆∇)(n−1)

(t) is a
solution of the BVP (3.3)-(3.4). Conversely, if v is a solution of the BVP (3.3)-
(3.4), then y(t) = Tn−1v(t) is a solution of the BVP (1.1)-(1.2). In fact, we have
the representation,

y(t) =

∫ b

a

Gn−1(t, s)v(s)∇s,
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where

v(s) =

∫ b

a

G1(s, τ)f(τ, Tn−1v(τ), Tn−2v(τ), · · ·, T1v(τ), v(τ))∇τ.

The following lemmas are useful for establishing the main result.
Denote

ϕ =

∫ b

a

G1(s, s)∇s.

Lemma 3.1. For t, s ∈ [a, b]T, the Green’s function Gj(t, s) satisfies the fol-

lowing inequality,

(3.5) Gj(t, s) 6 ϕj−1G1(s, s), j = 1, 2, · · ·, n.

Proof. The proof is by induction. For j = 1, the inequality (3.5) is obvious.
Next, for fixed j, assume that the inequality (3.5) holds. Then from (3.2), we have

Gj+1(t, s) =

∫ b

a

Gj(t, r)G1(r, s)∇r

6
∫ b

a

ϕj−1G1(r, r)G1(s, s)∇r

= ϕjG1(s, s).

Hence, by induction the proof is completed. �

Lemma 3.2. For (t, s) ∈ I × [a, b]T, the Green’s function Gj(t, s) satisfies the

following inequality,

(3.6) Gj(t, s) > kjϕj−1G1(s, s), j = 1, 2, · · ·, n.

Proof. Again, the proof is by induction. First, for j = 1, the inequality (3.6)
is obvious. Next, for fixed j, assuming that the inequality (3.6) holds. Then from
(3.2), we have

Gj+1(t, s) =

∫ b

a

Gj(t, r)G1(r, s)∇r, for all t, s ∈ [a, b]T

>
∫ b

a

Gj(t, r)G1(r, s)∇r, for all (t, s) ∈ I × [a, b]T

>
∫ b

a

kjϕj−1G1(r, r)kG1(s, s)∇r

= kj+1ϕjG1(s, s).

Hence, by induction the proof is completed. �

Lemma 3.3. For t, s ∈ [a, b]T, the Green’s function Gj(t, s) satisfies the sym-
metric property,

(3.7) Gj(t, s) = Gj(b+ a− t, b+ a− s).
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Proof. By the definition of Gj(t, s)(2 6 j 6 n),

Gj(t, s) =

∫ b

a

Gj−1(t, r)G1(r, s)∇r, for all t, s ∈ [a, b]T.

Clearly, we can see that G1(t, s) = G1(b + a − t, b + a − s). Now, the proof is by
induction. Next, assume that (3.7) is true, for fixed j > 2. Then from (3.2) and
using the transformation r1 = b+ a− r, we have

Gj+1(t, s) =

∫ b

a

Gj(t, r)G1(r, s)∇r

=

∫ b

a

Gj(b+ a− t, b+ a− r)G1(b+ a− r, b+ a− s)∇r

=

∫ b

a

Gj(b+ a− t, r1)G1(r1, b+ a− s)∇r1

= Gj+1(b+ a− t, b+ a− s).

�

Lemma 3.4. For t, s ∈ [a, b]T, the operator Tj satisfies the symmetric property,

Tjv(t) = Tjv(b+ a− t).

Proof. By the definition of Tj and using the transformation s1 = b + a − s,
we have

Tjv(t) =

∫ b

a

Gj(t, s)v(s)∇s

=

∫ b

a

Gj(b+ a− t, b+ a− s)v(s)∇s

=

∫ b

a

Gj(b+ a− t, s1)v(s1)∇s1

= Tjv(b+ a− t).

�

4. Multiple Symmetric Positive Solutions

In this section, we establish the existence of at least two symmetric positive
solutions for the BVP (1.1)-(1.2), by using Avery–Henderson functional fixed point
theorem [5]. And then, we establish the existence of at least 2m symmetric positive
solutions for an arbitrary positive integer m.

Let B be a real Banach space. A nonempty closed convex set P ⊂ B is called
a cone, if it satisfies the following two conditions,

(i) y ∈ P, λ > 0 implies λy ∈ P ,
(ii) y ∈ P and −y ∈ P implies y = 0.
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Let ψ be a nonnegative continuous functional on a cone P of the real Banach
space B. Then for a positive real number c′, we define the sets

P (ψ, c′) = {y ∈ P : ψ(y) < c′}

and

Pa = {y ∈ P :∥ y ∥< a}.
In obtaining multiple symmetric positive solutions of the BVP (1.1)-(1.2), the

following Avery–Henderson functional fixed point theorem will be the fundamental
tool.

Theorem 4.1. [5] Let P be a cone in a real Banach space B. Suppose α and
γ are increasing, nonnegative continuous functionals on P and θ is nonnegative
continuous functional on P with θ(0) = 0 such that, for some positive numbers c′

and k, γ(y) 6 θ(y) 6 α(y) and ∥y∥ 6 kγ(y), for all y ∈ P (γ, c′). Suppose that
there exist positive numbers a′ and b′ with a′ < b′ < c′ such that θ(λy) 6 λθ(y),

for all 0 6 λ 6 1 and y ∈ ∂P (θ, b′). Further, let T : P (γ, c′) → P is completely
continuous operator such that
(B1) γ(Ty) > c′, for all y ∈ ∂P (γ, c′),
(B2) θ(Ty) < b′, for all y ∈ ∂P (θ, b′),
(B3) P (α, a′) ̸= ∅ and α(Ty) > a′, for all y ∈ ∂P (α, a′).

Then T has at least two fixed points y1, y2 ∈ P (γ, c′) such that
a′ < α(y1) with θ(y1) < b′ and b′ < θ(y2) with γ(y2) < c′.

Let B = {v|v ∈ C[a, b]T} be the Banach space equipped with the norm

∥v∥ = max
t∈[a,b]T

|v(t)|.

Define the cone P ⊂ B by

P =

{
v ∈ B : v(t) > 0, v(t) = v(b+ a− t), for t ∈ [a, b]T
and mint∈I v(t) > k∥v∥

}
,

where k is given as in (3.1). Define the nonnegative, increasing, continuous func-
tionals γ, θ and α on the cone P by

γ(v) = min
t∈I

v(t), θ(v) = max
t∈I

v(t) and α(v) = max
t∈[a,b]T

v(t).

We observe that for any v ∈ P ,

(4.1) γ(v) 6 θ(v) 6 α(v)

and

(4.2) ∥v∥ 6 1

k
min
t∈I

v(t) =
1

k
γ(v) 6 1

k
θ(v) 6 1

k
α(v).

We are now ready to present the main result of this section.

Theorem 4.2. Suppose there exist 0 < a′ < b′ < c′ such that f satisfies the
following conditions:
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(D1) f(t, un−1, un−2, · · ·, u1, u0) > c′

kϕ , for all (t, un−1, un−2, · · ·, u1, u0)
in I ×Π1

j=n−1[c
′kjϕj , c

′ϕj

k ]× [c′, c
′

k ],

(D2) f(t, un−1, un−2, · · ·, u1, u0) < b′

ϕ , for all (t, un−1, un−2, · · ·, u1, u0)
in [a, b]T ×Π1

j=n−1[b
′kjϕj , b

′ϕj

k ]× [b′, b
′

k ],

(D3) f(t, un−1, un−2, · · ·, u1, u0) > a′

kϕ , for all (t, un−1, un−2, · · ·, u1, u0)
in I ×Π1

j=n−1[a
′kjϕj , a

′ϕj

k ]× [a′, a
′

k ].

Then the BVP (1.1)-(1.2) has at least two symmetric positive solutions.

Proof. Define the operator T : P → B by

(4.3) Tv(t) =

∫ b

a

G1(t, s)f(s, Tn−1v(s), Tn−2v(s), · · ·, T1v(s), v(s))∇s.

It is obvious that a fixed point of T is the solution of the BVP (3.3)-(3.4). We
seek two fixed points v1, v2 ∈ P of T . First, we show that T : P → P . Let v ∈ P .
Clearly, Tv(t) > 0 on [a, b]T. Further, since Gj(t, s) = Gj(b+ a− t, b+ a− s), we

see that Tjv(t) = Tjv(b+a− t), 1 6 j 6 n−1, for t ∈ [a, b]T. Hence, it follows that

Tv(t) = Tv(b + a − t), for t ∈ [a, b]T. Also noting that α(Tv)(a) − β(Tv)∆(a) =

0 = α(Tv)(b) + β(Tv)∆(b). Then, we have

min
t∈I

Tv(t) =min
t∈I

∫ b

a

G1(t, s)f(s, Tn−1v(s), Tn−2v(s), · · ·, T1v(s), v(s))∇s

>k
∫ b

a

G1(s, s)f(s, Tn−1v(s), Tn−2v(s), · · ·, T1v(s), v(s))∇s

>k
∫ b

a

G1(t, s)f(s, Tn−1v(s), Tn−2v(s), · · ·, T1v(s), v(s))∇s

>k∥Tv∥.

Hence Tv ∈ P and so T : P → P . Moreover, T is completely continuous. From (4.1)
and (4.2), for each v ∈ P , we have γ(v) 6 θ(v) 6 α(v) and ∥v∥ 6 1

kγ(v). Also, for
any 0 6 λ 6 1 and v ∈ P , we have θ(λv) = maxt∈I(λv)(t) = λmaxt∈I v(t) = λθ(v).
It is clear that θ(0) = 0. We now show that the remaining conditions of Theorem
4.1 are satisfied.

Firstly, we shall verify the condition (B1) of Theorem 4.1 is satisfied. Since

v ∈ ∂P (γ, c′), from (4.2), we have that c′ = mint∈I v(t) 6 ∥v∥ 6 c′

k . Using Lemma
3.1, for 1 6 j 6 n− 1 and t ∈ [a, b]T, we have

Tjv(t) =

∫ b

a

Gj(t, s)v(s)∇s

6c
′

k

∫ b

a

Gj(t, s)∇s

6c
′

k
ϕj−1

∫ b

a

G1(s, s)∇s =
c′ϕj

k
.
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Using Lemma 3.2, for 1 6 j 6 n− 1 and t ∈ I, we have

Tjv(t) =

∫ b

a

Gj(t, s)v(s)∇s

>c′
∫ b

a

Gj(t, s)∇s

>c′kjϕj−1

∫ b

a

G1(s, s)∇s = c′kjϕj .

We may now use condition (D1) to obtain,

γ(Tv) =min
t∈I

∫ b

a

G1(t, s)f(s, Tn−1v(s), Tn−2v(s), · · ·, T1v(s), v(s))∇s

>
c′

ϕ

∫ b

a

G1(s, s)∇s = c′.

Therefore, we have shown that γ(Tv) > c′, for all v ∈ ∂P (γ, c′).
Now, we shall show that condition (B2) of Theorem 4.1 is satisfied. Since

v ∈ ∂P (θ, b′), from (4.2) that b′ = maxt∈I v(t) 6 ∥v∥ 6 b′

k , for t ∈ [a, b]T. Using

Lemma 3.1, for 1 6 j 6 n− 1 and t ∈ [a, b]T, we have

Tjv(t) =

∫ b

a

Gj(t, s)v(s)∇s

6b
′

k

∫ b

a

Gj(t, s)∇s

6b
′

k
ϕj−1

∫ b

a

G1(s, s)∇s =
b′ϕj

k
.

Using Lemma 3.2, for 1 6 j 6 n− 1 and t ∈ I, we have

Tjv(t) =

∫ b

a

Gj(t, s)v(s)∇s

>b′
∫ b

a

Gj(t, s)∇s

>b′kjϕj−1

∫ b

a

G1(s, s)∇s = b′kjϕj .

We may now use condition (D2) to obtain,

θ(Tv) =max
t∈I

∫ b

a

G1(t, s)f(s, Tn−1v(s), Tn−2v(s), · · ·, T1v(s), v(s))∇s

<
b′

ϕ

∫ b

a

G1(s, s)∇s = b′.

Therefore, we have shown that θ(Tv) < b′, for all v ∈ ∂P (θ, b′).
Finally, we shall show that (B3) of Theorem 4.1 is satisfied. Since a′ > 0

and a′

2 ∈ P (α, a′), P (α, a′) ̸= ∅. Since v ∈ ∂P (α, a′), from (4.2) that a′ =
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maxt∈[a,b]T v(t) 6 ∥v∥ 6 a′

k , for t ∈ I. Using Lemma 3.1, for 1 6 j 6 n − 1

and t ∈ [a, b]T, we have

Tjv(t) =

∫ b

a

Gj(t, s)v(s)∇s

6a
′

k

∫ b

a

Gj(t, s)∇s

6a
′

k
ϕj−1

∫ b

a

G1(s, s)∇s =
a′ϕj

k
.

Using Lemma 3.2, for 1 6 j 6 n− 1 and t ∈ I, we have

Tjv(t) =

∫ b

a

Gj(t, s)v(s)∇s

>a′
∫ b

a

Gj(t, s)∇s

>a′kjϕj−1

∫ b

a

G1(s, s)∇s = a′kjϕj .

We may now use condition (D3) to obtain,

α(Tv) = max
t∈[a,b]T

∫ b

a

G1(t, s)f(s, Tn−1v(s), Tn−2v(s), · · ·, T1v(s), v(s))∇s

>
a′

ϕ

∫ b

a

G1(s, s)∇s = a′.

Therefore, we have shown that α(Tv) > a′, for all v ∈ ∂P (α, a′). We have proved
that all the conditions of Theorem 4.1 are satisfied and so there exist at least two
symmetric positive solutions v1, v2 ∈ P (γ, c′) for the BVP (3.3)-(3.4). Therefore,
the BVP (1.1)-(1.2) has at least two symmetric positive solutions y1, y2 of the form,

yi(t) = Tn−1vi(t) =

∫ b

a

Gn−1(t, s)vi(s)∇s, i = 1, 2.

This completes the proof of the theorem. �

Theorem 4.3. Let m be an arbitrary positive integer. Assume that there exist
numbers ar(r = 1, 2, · · ·,m + 1) and bs(s = 1, 2, · · ·,m) with 0 < a1 < b1 < a2 <
b2 < · · · < am < bm < am+1 such that

(4.4)


f(t, un−1, un−2, · · ·, u1, u0) >

ar
kϕ
, for all (t, un−1, un−2, · · ·, u1, u0)

in I ×Π1
j=n−1[ark

jϕj ,
arϕ

j

k
]× [ar,

ar
k
], r = 1, 2, · · ·,m+ 1,
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(4.5)


f(t, un−1, un−2, · · ·, u1, u0) <

bs
ϕ
, for all (t, un−1, un−2, · · ·, u1, u0)

in [a, b]T ×Π1
j=n−1[bsk

jϕj ,
bsϕ

j

k
]× [bs,

bs
k
], s = 1, 2, · · ·,m.

Then the BVP (1.1)-(1.2) has at least 2m symmetric positive solutions in P am+1 .

Proof. We use induction on m. For m = 1, we know that from (4.4) and (4.5)
that T : P a2 → Pa2 , then, it follows from Avery–Henderson fixed point theorem
that the BVP (1.1)-(1.2) has at least two symmetric positive solutions in P a2 . Next,
we assume that this conclusion holds for m = l. In order to prove this conclusion
holds for m = l + 1. We suppose that there exist numbers ar(r = 1, 2, · · ·, l + 2)
and bs(s = 1, 2, · · ·, l + 1) with 0 < a1 < b1 < a2 < b2 < · · · < al+1 < bl+1 < al+2

such that

(4.6)


f(t, un−1, un−2, · · ·, u1, u0) >

ar
kϕ
, for all (t, un−1, un−2, · · ·, u1, u0)

in I ×Π1
j=n−1[ark

jϕj ,
arϕ

j

k
]× [ar,

ar
k
], r = 1, 2, · · ·, l + 2,

(4.7)


f(t, un−1, un−2, · · ·, u1, u0) <

bs
ϕ
, for all (t, un−1, un−2, · · ·, u1, u0)

in [a, b]T ×Π1
j=n−1[bsk

jϕj ,
bsϕ

j

k
]× [bs,

bs
k
], s = 1, 2, · · ·, l + 1.

By assumption, the BVP (1.1)-(1.2) has at least 2l symmetric positive solutions
ui(i = 1, 2, · · ·, 2l) in P al+1

. At the same time, it follows from Theorem 4.2, (4.6)
and (4.7) that the BVP (1.1)-(1.2) has at least two symmetric positive solutions u, v
in P al+2

such that al+1 < α(u) with θ(u) < bl+1 and bl+1 < θ(v) with γ(v) < al+2.
Obviously u and v are different from ui(i = 1, 2, · · ·, 2l). Therefore, the BVP (1.1)-
(1.2) has at least 2l + 2 symmetric positive solutions in P al+2

, which shows that
this conclusion holds for m = l + 1. �

5. Example

Let us introduce an example to illustrate the usage of Theorem 4.2. Let T =
[0, 32 ] ∪ [2, 3], n = 2, a = 0, b = 3, α = 4

5 , β = 3
2 . Now, consider the BVP,

(5.1) y(∆∇)2(t) = f(t, y(t), y∆∇(t)), t ∈ [0, 3]T,
satisfying the boundary conditions,

(5.2)


4

5
y(0)− 3

2
y∆(0) = 0,

4

5
y(3) +

3

2
y∆(3) = 0,

4

5
y∆∇(0)− 3

2
y(∆∇)∆(0) = 0,

4

5
y∆∇(3) +

3

2
y(∆∇)∆(3) = 0,

and

f(t, y, y∆∇) =
250(y + 1)4

73(y2 + 999)
.
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Then the Green’s function G1(t, s) is

G1t, s) =

{
(8t+15)(39−8s)

432 , t 6 s,
(8s+15)(39−8t)

432 , s 6 t.

By direct calculations, we have k = 0.5384615385 and ϕ = 3.891589506. Clearly,
f is continuous and increasing on [0,∞). If we choose a′ = 0.001, b′ = 0.04 and
c′ = 20 then 0 < a′ < b′ < c′ and f satisfies

(i) f(t, y, y∆∇) > 9.544392358 = c′

kϕ , for (t, y, y
∆∇) ∈ [ 34 ,

9
4 ]T ×

[41.90942545, 144.5447531]× [20, 37.14285714],

(ii) f(t, y, y∆∇) < 0.01027857639 = b′

ϕ , for (t, y, y
∆∇) ∈ [0, 3]T ×

[0.0838188509, 0.2890895061]× [0.04, 0.07428571428],

(iii) f(t, y, y∆∇) > 0.0004772196179 = a′

kϕ , for (t, y, y
∆∇) ∈ [ 34 ,

9
4 ]T ×

[0.002095471273, 0.007227237653]× [0.001, 0.001857142857].

Then all the conditions of Theorem 4.2 are satisfied. Thus, by Theorem 4.2, the
BVP (5.1)-(5.2) has at least two symmetric positive solutions.

References

[1] R. P. Agarwal, D. O’Regan and P. J.Y. Wong, Positive Solutions of Differential, Difference
and Integral Equations, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1999.

[2] D.R. Anderson, Eigenvalue intervals for even order Sturm-Liouville dynamic equation,

Comm. Appl. Nonlinear Anal., 12 (2005), No. 4, 1-13.
[3] R. I. Avery, A generalization of the Leggett–Williams fixed point theorem, Math. Sci. Res.

Hot-Line, 3 (1999), No. 7, 9-14.
[4] R. I. Avery, J.M. Davis and J. Henderson, Three symmetric positive solutions for Lidstone

problems by a generalization of the Leggett- Williams theorem, Elec. J. Diff. Eqn., 2000
(2000), No. 40, 1-15.

[5] R. I. Avery and J. Henderson, Two positive fixed points of nonlinear operators on ordered
Banach spaces, Comm. Appl. Nonlinear Anal., 8 (2001), 27-36.

[6] R. I. Avery and J. Henderson, Three symmetric positive solutions for a second order bound-
ary vaue problem, Appl. Math. Letters, 13 (2003), 1-7.

[7] R. I. Avery and J. Henderson, Existence of three positive pseudo symmetric solutions for a
one dimensional p-Laplacian, J. Math. Anal. Appl., 10 (2004), No. 6, 529-539.

[8] M. Bohner and A.C. Peterson, Dynamic Equations on Time scales, An Introduction with
Applications, Birkhauser, Boston, MA, 2001.

[9] M. Bohner and A.C. Peterson, Advances in Dynamic Equations on Time scales, Birkhauser,

Boston, 2003.
[10] J.M. Davis and J. Henderson, Triple positive symmetric solutions for a Lidstone boundary

value problem, Diff. Eqn. Dyn. Sys., 7 (1999), 321-330.
[11] J.M. Davis, J. Henderson and P. J.Y. Wong, General Lidstone problem : multiplicity and

symmetric of solutions, J. Math. Anal. Appl., 251 (2000), No. 2, 527-548.
[12] P.W. Eloe, J. Henderson and Q. Sheng, Notes on Crossed symmetry solutions of the two-

point boundary value problems on time scales, J. Difference Eqn. Appl., 9 (2003), No. 1,
29-48.



EVEN NUMBER OF SYMMETRIC POSITIVE SOLUTIONS 97

[13] D. Guo and V. Lakshmikantam, Nonlinear problems in Abstract Cones, Academic press,
San Diego, 1988.

[14] J. Henderson, Multiple symmetric solution for discrete Lidstone boundary value problems,
Dyn. Contin. Discrete Impuls. Sys., 7 (2000), 577-585.

[15] J. Henderson, P. Murali and K.R. Prasad, Multiple symmetric positive solutions for two-
point even order boundary value problems on time scales, Mathematics in Engineering, Sci-
ence and Aerospace, 1 (2010), No. 1, 105-117.

[16] J. Henderson and H.B. Thompson, Multiple symmetric positive solutiions for a second order
boundary value problem, Proc. Amer. Math. Soc., 128 (2000), 2373-2379.

[17] J. Henderson and P. J.Y. Wong, Double symmetric solutions for discrete Lidstone boundary
value problems, J. Difference Eqn. Appl., 7 (2001), 811-828.

[18] S. Hilger, Analysis on measure chains – A unified approach to continuous and discrete
calculus, Results Math., 18 (1980), 18-56.

[19] R.W. Leggett and L.R. Williams, Multiple positive fixed points of nonlinear operations on
ordered Banach spaces, Indiana Univ. Math. J., 28 (1979), 673-688.

[20] K.R. Prasad and N. Sreedhar, Even number of positive solutions for 3nth order three-point
boundary value problems on time scales, Elec. J. Qual. Theor. Diff. Eqn., 2011 (2011), No.
98, 1-16.

[21] P. J.Y. Wong, Multiple symmetric solution for discrete Lidstone boundary value problems,

J. Difference Eqn. Appl., 8 (2002), No. 9, 765-797.

Received by editor 26.03.2013; available online 13.05.2013

1Department of Applied Mathematics, Andhra University, Visakhapatnam-530 003,
India

E-mail address: rajendra92@rediffmail.com

2Department of Mathematics, GITAM University, Visakhapatnam-530 045, India
E-mail address: sreedharnamburi@rediffmail.com


