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EXPLICIT VERSION OF WORLEY’S THEOREM IN
DIOPHANTINE APPROXIMATIONS

Bernadin Ibrahimpašić

Abstract. In this paper we give several explicit results on rational approxi-
mations of the form |α− a/b| < k/b2, in terms of continued fractions.

1. Introduction

There are a number of results on approximations of a real number α by a
rational number a/b. We mention two classical results (see [9]). One is the classical
Legendre’s theorem in Diophantine approximations, which states that if a real
number α and a rational number a

b (we will always assume that b > 1), satisfy the
inequality

(1.1)
∣∣∣α− a

b

∣∣∣ < 1

2b2
,

then a
b is a convergent of the continued fraction expansion of α = [a0; a1, . . .]. The

second result is from Fatou [5], who showed that if

|α− a

b
| < 1

b2
,

then a
b = pm

qm
or pm+1±pm

qm+1±qm
, where pm

qm
denotes the m-th convergent of α.

Worley [14] generalized these results to the inequality
∣∣α− a

b

∣∣ < k
b2 , where k

is an arbitrary positive real number. The results of Worley was slightly improved
in [1].

Theorem 1.1 (Worley [14], Dujella [1]). Let α be a real number and let a and
b be coprime nonzero integers, satisfying the inequality

(1.2)
∣∣∣α− a

b

∣∣∣ < k

b2
,

2010 Mathematics Subject Classification. 11K60, 11A55.
Key words and phrases. Diophantine approximations, Continued fractions.

59



60 IBRAHIMPAŠIĆ

where k is a positive real number. Then (a, b) = (rpm+1 ± spm, rqm+1 ± sqm), for
some m > −1 and nonnegative integers r and s such that rs < 2k.

Theorem 1.2 (Worley [14]). If α is an irrational number, k > 1
2 and a

b is a
rational approximation to α (in reduced form) for which the inequality (1.2) holds,
then either a

b is a convergent pm

qm
to α or a

b has one of the following forms:

(i) a
b = rpm+1+spm

rqm+1+sqm

r > s and rs < 2k, or

r 6 s and rs < k + r2

am+2
,

(ii) a
b = spm+1−tpm

sqm+1−tqm

s < t and st < 2k, or
s > t and st

(
1− t

2s

)
< k,

where r, s and t are positive integers.

Since the fraction a/b is in reduced form, it is clear that in the statements of
Theorems 1.1 and 1.2 we may assume that gcd(r, s) = 1 and gcd(s, t) = 1.

Worley [14] gave the explicit version of his result for k = 2. He showed, if a
real number α and a rational number a

b satisfy the inequality
∣∣α− a

b

∣∣ < 2
b2 , then

a

b
=

rpm+1 + spm
rqm+1 + sqm

, where

(r, s) ∈ R2 = {(0, 1), (1, 1), (1, 2), (2, 1), (3, 1)} ,

or
a

b
=

spm+2 − tpm+1

sqm+2 − tqm+1
, where

(s, t) ∈ T2 = {(1, 1), (1, 2), (1, 3), (2, 1)}
(for an integer m > −1).

This result for k = 2 has been in [4] applied for solving the family of Thue
inequalities

|x4 − 4cx3y + (6c+ 2)x2y2 + 4cxy2 + y4| 6 6c+ 4.

Theorem 1.1 was used in [1] for a description of a modification of Verheul and
van Tilborg variant of Wiener’s attack ( [12,13]) on RSA cryptosystem with small
secret exponent.

Dujella and Ibrahimpašić [2] extended Worley’s work [14] and gave explicit
and sharp versions of Theorems 1.1 and 1.2 for k = 3, 4, 5, . . . , 12. They gave
the pairs (r, s) which appear in the expression of solutions of (1.2) in the form
(a, b) = (rpm+1 ± spm, rqm+1 ± sqm).

These results have been applied to cryptanalysis of the KMOV [7] and LUC [8]
cryptosystems with short secret exponent, and in [3] applied for solving the family
of Thue inequalities

|x4 + 2(1− c2)x2y2 + y4| 6 2c+ 3,

where the system and the original Thue equation are not equivalent: each solution
of the Thue equation induces a solution of the system, but not vice-versa.

In this paper we will extend Worley’s work (and also the work of Dujella and
Ibrahimpašić) and give explicit and sharp version of Theorems 1.1 and 1.2 for
k = 13. We will list the pairs (r, s) which appear in the expression of solutions
of (1.2) in the form (a, b) = (rpm+1 ± spm, rqm+1 ± sqm), and we will show by
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explicit examples that all pairs from the list are indeed necessary. We will prove
some patterns in pairs (r, s) and (s, t) which appear in representations (a, b) =
(rpm+1 + spm, rqm+1 + sqm) and (a, b) = (spm+2 − tpm+1, sqm+2 − tqm+1) of
solutions of inequality (1.2).

Our main result is the following theorem.

Theorem 1.3. Let k > 3 be a integer. There exist a real number α and rational
numbers a1

b1
and a2

b2
such that ∣∣∣∣α− a1

b1

∣∣∣∣ < k

b21

and ∣∣∣∣α− a2
b2

∣∣∣∣ < k

b22

where

(a1, b1) = (rpm+1 + 2pm, rqm+1 + 2qm) and

(a2, b2) = (2pm+2 − tpm+1, 2qm+2 − tqm+1) ,

for some m > −1 and integers r and t such that 1 6 r, t 6 k − 1.

2. Explicit version of Worley’s theorem for k = 13

Dujella and Ibrahimpašić [2] gave the following result.

Proposition 2.1. Let k ∈ {3, 4, 5, 6, 7, 8, 9, 10, 11, 12}. If a real number α and

a rational number a
b satisfy the inequality (1.2), then

a

b
=

rpm+1 + spm
rqm+1 + sqm

, where

(r, s) ∈ Rk = Rk−1 ∪ R′
k, or

a

b
=

spm+2 − tpm+1

sqm+2 − tqm+1
, where (s, t) ∈ Tk = Tk−1 ∪ T ′

k

(for an integer m > −1), where the sets R′
k and T ′

k are given in the following table.
Moreover, if any of the elements in sets Rk or Tk is omitted, the statement will no
longer be valid.

k R′
k T ′

k

3 {(1, 3), (4, 1), (5, 1)} {(3, 1), (1, 4), (1, 5)}
4 {(1, 4), (3, 2), (6, 1), (7, 1)} {(4, 1), (2, 3), (1, 6), (1, 7)}
5 {(1, 5), (2, 3), (8, 1), (9, 1)} {(5, 1), (3, 2), (1, 8), (1, 9)}
6 {(1, 6), (5, 2), (10, 1), (11, 1)} {(6, 1), (2, 5), (1, 10), (1, 11)}
7 {(1, 7), (2, 5), (4, 3), (12, 1), (13, 1)} {(7, 1), (5, 2), (3, 4), (1, 12), (1, 13)}
8 {(1, 8), (3, 4), (7, 2), (14, 1), (15, 1)} {(8, 1), (4, 3), (2, 7), (1, 14), (1, 15)}
9 {(1, 9), (5, 3), (16, 1), (17, 1)} {(9, 1), (3, 5), (1, 16), (1, 17)}
10 {(1, 10), (9, 2), (18, 1), (19, 1)} {(10, 1), (2, 9), (1, 18), (1, 19)}
11 {(1, 11), (2, 7), (3, 5), (20, 1), (21, 1)} {(11, 1), (7, 2), (5, 3), (1, 20), (1, 21)}
12 {(1, 12), (5, 4), (7, 3), {(12, 1), (4, 5), (3, 7),

(11, 2), (22, 1), (23, 1)} (2, 11), (1, 22), (1, 23)}
If we extend this result, we have:
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Proposition 2.2. If a real number α and a rational number a
b satisfy the

inequality

(2.1)
∣∣∣α− a

b

∣∣∣ < 13

b2
,

then
a

b
=

rpm+1 + spm
rqm+1 + sqm

, where

(r, s) ∈ R13 = R12 ∪ {(1, 13), (3, 7), (4, 5), (24, 1), (25, 1)} ,

or
a

b
=

spm+2 − tpm+1

sqm+2 − tqm+1
, where

(s, t) ∈ T13 = T12 ∪ {(13, 1), (7, 3), (5, 4), (1, 24), (1, 25)}
(for an integer m > −1).

Proof. From the proof of the Theorem 1.1 in [1] (see also [2]) we have that
r, s and t are related with

(2.2) t = sam+2 − r,

and we have the following inequalities

am+2 >
r

s
,(2.3)

r2 − sram+2 + kam+2 > 0,(2.4)

am+2 >
t

s
,(2.5)

t2 − stam+2 + kam+2 > 0,(2.6)

where m is the largest integer satisfying

α <
a

b
6 pm

qm
.

Here we assume that α < a/b, since the other case is completely analogous (see
[1,2]).

By Theorem 1.1, we have to consider only pairs of nonnegative integers (r, s)
and (s, t) satisfying rs < 2k, st < 2k, gcd(r, s) = 1 and gcd(s, t) = 1. The
inequalities (2.4) and (2.6) for r = 1, resp. t = 1, imply that the pairs (r, s) = (1, s)
and (s, t) = (s, 1) with s > k + 1 = 14 can be excluded. Similarly, for r = 2 or 3,
resp. t = 2 or 3, we can exclude the pairs (r, s) = (2, s) and (s, t) = (s, 2) with s >
13
2 +2, and the pairs (r, s) = (3, s) and (s, t) = (s, 3) with s > 13

3 +3. In particular,
the pairs (r, s) = (2, 9) , (2, 11) , (3, 8), and the pairs (s, t) = (9, 2) , (11, 2) , (8, 3) can
be excluded.

Now we show that the pairs (r, s) = (8, 3) and (s, t) = (3, 8) can be replaced
with other pairs with smaller products rs, resp. st.

For (r, s) = (8, 3) and k = 13, from (2.3) and (2.4) we obtain 8
3 < am+2 < 64

11 ,
and therefore we have three possibilities: am+2 = 3, 4 or 5. If am+2 = 3, then from
(2.2) we obtain t = 3 · 3− 8 = 1, and we can replace (r, s) = (8, 3) by (s, t) = (3, 1).
If am+2 = 4, we can replace it by (s, t) = (3, 4) and if am+2 = 5, we can replace it
by (s, t) = (3, 7).
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The proof for pairs (s, t) = (3, 8) is completely analogous. We use the inequal-
ities (2.5) and (2.6), instead of (2.3) and (2.4). We obtain 8

3 < am+2 < 64
11 , and

therefore we have, again, three possibilities: am+2 = 3, 4 or 5. If am+2 = 3, we
can replace (s, t) = (3, 8) by (r, s) = (1, 3), if am+2 = 4, we can replace it by
(r, s) = (4, 3) and if am+2 = 5, we can replace it by (r, s) = (7, 3).

Our next aim is to show that if we exclude any of the pairs (r, s) or (s, t)
appearing in Proposition 2.2, the statement of the proposition will no longer be
valid. More precisely, if we exclude a pair (r′, s′) ∈ R13, then there exist a real
number α and a rational number a

b satisfying (2.1), but such that a
b cannot be

represented in the form a
b = rpm+1+spm

rqm+1+sqm
nor a

b = spm+2−tpm+1

sqm+2−tqm+1
, where m > −1,

(r, s) ∈ R13r{(r′, s′)}, (s, t) ∈ T13 (and similarly for an excluded pair (s′, t′) ∈ T13).
In the next table, we give explicit examples for each pair. There are many such

examples of different form, but we give some numbers α of the form
√
d, where d

is a non-square positive integer.

α a b m r s t√
5328 11533 158 1 1 13 12√
168 1063 82 1 3 7 4√
56 943 126 1 4 5 6√
626 30049 1201 0 24 1 26√
677 33851 1301 0 25 1 27√
5328 127957 1753 1 12 13 1√
168 1387 107 1 4 7 3√
56 1377 184 1 6 5 4√
626 32551 1301 0 26 1 24√
677 36557 1405 0 27 1 25

Let us consider α =
√
56 = [7, 2, 14]. The some convergents of

√
56 are 7

1 ,
15
2 , 217

29 , 449
60 , 6503

869 , . . . . Its rational approximation 943
126 (the third row of the table)

satisfies
∣∣√56− 943

126

∣∣ / 0.0008123 < 13
1262 . We have that the only representation of

the fraction 943
126 in the form rpm+1+spm

rqm+1+sqm
, (r, s) ∈ R13 or spm+2−tpm+1

sqm+2−tqm+1
, (s, t) ∈ T13 is

943
126 = 4·217+5·15

4·29+5·2 = 4·p2+5·p1

4·q2+5·q1 , which implies that the pair (4, 5) cannot be excluded

from the set R13.
�

3. Case s = 2

Dujella and Ibrahimpašić [2] prove some patterns in pairs (r, s) and (s, t)
which appear in representations (a, b) = (rpm+1 + spm, rqm+1 + sqm) and (a, b) =
(spm+2 − tpm+1, sqm+2 − tqm+1) of solutions of inequality (1.2), where k is a posi-
tive integer. They prove that for each positive integer k there exist a real number α

and rational numbers a1

b1
and a2

b2
such that

∣∣∣α− a1

b1

∣∣∣ < k
b21

and
∣∣∣α− a2

b2

∣∣∣ < k
b22

where

(a1, b1) = (rpm+1 + pm, rqm+1 + qm)
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and
(a2, b2) = (pm+2 − tpm+1, qm+2 − tqm+1)

, for some m > −1 and integers r and t such that 1 6 r, t 6 2k − 1.
These results for the pairs (r, s) = (2k− 1, 1) and (s, t) = (1, 2k− 1) (with α =√

4k2 + 1) immediately imply the following result [2] which shows that Theorem
1.1 is sharp.

Proposition 3.1. For each ε > 0 there exist a positive integer k, a real number
α and a rational number a

b , such that∣∣∣α− a

b

∣∣∣ < k

b2
,

and a
b cannot be represented in the form a

b = rpm+1±spm

rqm+1±sqm
, for m > −1 and nonneg-

ative integers r and s such that rs < (2− ε)k.

We will prove some patterns in pairs (r, 2) and (2, t).
Let αm = [am; am+1, am+2, . . .] and

1
βm

= qm−1

qm−2
= [am−1, am−2, . . . , a1], with

the convention that β1 = 0. Then for a
b = rpm+1+spm

rqm+1+sqm
, we have

b2
∣∣α− a

b

∣∣ = b
∣∣∣(rqm+1 + sqm)αm+2pm+1+pm

αm+2qm+1+qm
− (rpm+1 + spm)

∣∣∣
= |sαm+2−r|(rqm+1+sqm)

αm+2qm+1+qm
= |sαm+2−r|(r+sβm+2)

αm+2+βm+2
.(3.1)

The relation (3.1) can be reformulated in terms of s and t = sam+2 − r:

b2
∣∣α− a

b

∣∣ = (t+ s
αm+3

) ∣∣∣∣s− t+ s
αm+3

αm+2+βm+2

∣∣∣∣ .(3.2)

Let s = 2. This implies r is odd, since we assume gcd (r, s) = 1. We claim that
for 1 < r 6 k − 1 (for r = 1 see [2]), where k > 3 ,

∣∣α− a
b

∣∣ < k
b2 holds. For x > 1,

we consider the number α =

√
(3x)

2
+ 3. Its continued fraction expansion has the

form √
(3x)

2
+ 3 =

[
3x; 2x, 6x

]
(see e.g. [10, p.297]). For m > 1 we have α2m−1 = [2x, 6x, 2x, 6x, . . .] and α2m =
[6x, 2x, 6x, 2x, . . .], and obtain

2x+ 1
6x+1 < α2m−1 < 2x+ 1

6x

6x+ 1
2x+1 < α2m < 6x+ 1

2x

6x+ 1
2x+1 < 1

β2m+1
6 6x+ 1

2x
1

6x+ 1
2x+1

> β2m+1 > 1
6x+ 1

2x

.

If we take m = −1 then we have the rational number
a

b
=

r · p0 + 2 · p−1

r · q0 + 2 · q−1
=

3rx+ 2

r
.

We claim that for r 6 k − 1,
∣∣α− a

b

∣∣ < k
b2 holds. By (3.1) this is equivalent to(

2− r

α1

)
r < k.
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It suffices to check that(
2− r

α1

)
r <

(
2− r

2x+ 1
6x

)
r < k .

If we take x =
⌊
k
2

⌋
, since k is a positive integer, we have only two possibilities:

x = k
2 or x = k−1

2 . Thus, we have(
2− r

2x+ 1
6x

)
r 6

(
2− r

k + 1
3(k−1)

)
r =

6k2 − 6k + 2− (3k − 3) r

3k2 − 3k + 1
· r < k

which implies

(3k − 3) r2 −
(
6k2 − 6k + 2

)
r +

(
3k3 − 3k2 + k

)
> 0 .

This condition is satisfied for r 6 k − 1.

The same result for pairs (r, s) = (r, 2) holds also if m > 1 is odd. From (3.1),
for r 6 k − 1, we have that is suffices to check that

(3.3)
(2αm+2 − r) (r + 2βm+2)

αm+2 + βm+2
<

(
2
(
2x+ 1

6x

)
− r
) (

r + 2 · 1
6x+ 1

2x+1

)
2x+ 1

6x+1 + 1
6x+ 1

2x

< k .

We take again x =
⌊
k
2

⌋
. In the case x = k

2 , the condition (3.3) implies(
81k6 + 108k5 + 81k4 + 45k3 + 18k2 + 3k

)
r2−

−
(
162k7 + 216k6 + 162k5 + 90k4 + 54k3 + 12k2 + 6k + 2

)
r+

+
(
81k8 + 108k7 + 27k6 − 36k5 − 54k4 − 81k3 − 33k2 − 16k − 4

)
> 0,

which is satisfied for r 6 k − 1.

In the case x = k−1
2 , the condition (3.3) implies(

81k6 − 378k5 + 756k4 − 819k3 + 504k2 − 168k + 24
)
r2−

−
(
162k7 − 918k6 + 2268k5 − 3150k4 + 2664k3 − 1392k2 + 432k − 64

)
r+

+
(
81k8 − 459k7 + 1080k6 − 1278k5 + 639k4 + 126k3 − 279k2 + 86k

)
> 0

which is satisfied for r 6 k − 1, too.

We have t is odd, since we assume gcd (s, t) = 1. Let us consider pairs (2, t).
We claim that for 1 < t 6 k − 1 (for t = 1 see [2]), where k > 3 ,

∣∣α− a
b

∣∣ < k
b2

holds.

Again, for x > 1 we consider the number α =

√
(3x)

2
+ 3.

Take first m = −1. We have the rational number

a

b
=

2 · p1 − t · p0
2 · q1 − t · q0

=
12x2 + 2− 3xt

4x+ t
.
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We claim that for t 6 k − 1,
∣∣α− a

b

∣∣ < k
b2 holds. By (3.2) this is equivalent to(

t+
2

α2

)(
2−

t+ 2
α2

α1 + β1

)
< k.

It suffices to check that(
t+

2

α2

)(
2−

t+ 2
α2

α1 + β1

)
<

(
t+

2

6x+ 1
2x+1

)(
2−

t+ 2
6x+ 1

2x

2x+ 1
6x

)
< k .

If we take x =
⌊
k
2

⌋
, then for x = k

2 we have(
27k5 + 27k4 + 18k3 + 9k2 + 3k

)
t2−

−
(
54k6 + 54k5 + 18k4 + 6k2 + 2

)
t+

+
(
27k7 + 27k6 − 9k5 − 18k4 − 3k3 − 9k2 − 3k − 4

)
> 0

which is satisfied for t 6 k − 1.

In the case x = k−1
2 , we have(

27k5 − 108k4 + 180k3 − 153k2 + 66k − 12
)
t2−

−
(
54k6 − 270k5 + 558k4 − 612k3 + 384k2 − 138k + 26

)
t+

+
(
27k7 − 135k6 + 261k5 − 216k4 + 24k3 + 72k2 − 36k

)
> 0

which is satisfied for t 6 k − 1, too.

The analogous result for pairs (s, t) = (2, t) holds for all odd m > 1. By (3.2)
we have that, for t 6 k − 1, is sufficiently to check(

t+
2

6x+ 1
2x+1

)2−
t+ 2

6x+ 1
2x

2x+ 1
6x + 1

6x+ 1
2x+1

 < k .

Again, if we take x =
⌊
k
2

⌋
, then in the case x = k

2 , we obtain(
81k7 + 162k6 + 162k5 + 108k4 + 54k3 + 18k2 + 3k

)
t2−(

162k8 + 324k7 + 324k6 + 216k5 + 126k4 + 72k3 + 36k2 + 12k + 2
)
t+(

81k9 + 162k8 + 108k7 − 63k5 − 99k4 − 75k3 − 51k2 − 27k − 4
)
> 0 ,

and in the case x = k−1
2 , we have(

81k7 − 405k6 + 891k5 − 1107k4 + 837k3 − 387k2 + 102k − 12
)
t2−(

162k8 − 972k7 + 2592k6 − 3996k5 + 3906k4 − 2484k3 + 1008k2 − 240k + 26
)
t+
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81k9 − 486k8 + 1242k7 − 1674k6 + 1125k5 − 117k4 − 354k3 + 216k2 − 36k

)
> 0.

Both inequalities are satisfied for t 6 k − 1.

We have proved the Theorem 1.3.

4. A Diophantine application

In [4], Dujella and Jadrijević considered the Thue inequality∣∣x4 − 4cx3y + (6c+ 2)x2y2 + 4cxy3 + y4
∣∣ 6 6c+ 4,

where c > 3 is an integer. Using the method of Tzanakis [11], they showed that,
for c > 5, solving the Thue equation x4 − 4cx3y + (6c+ 2)x2y2 + 4cxy3 + y4 = µ,
µ ∈ Z r {0}, reduces to solving the system of Pellian equations

(2c+ 1)U2 − 2cV 2 = µ(4.1)

(c− 2)U2 − cZ2 = −2µ,(4.2)

where U = x2 + y2, V = x2 + xy − y2 and Z = −x2 + 4xy + y2. It suffices to find
solutions of the system (4.1) and (4.2) which satisfy the condition gcd(U, V, Z) = 1.
Then gcd(U, V ) = 1, and gcd(U,Z) = 1 or 2, since 4V 2 + Z2 = 5U2.

Using the result of Worley [14, Corollary, p. 206], in [4, Proposition 2] they
proved that if µ is an integer such that |µ| 6 6c+4 and that the equation (4.1) has
a solution in relatively prime integers U and V , then

µ ∈ {1, −2c, 2c+ 1, −6c+ 1, 6c+ 4}.
Analysing the system (4.1) and (4.2), and using the properties of convergents of√

2c+1
2c , they were able to show that the system has no solutions for µ = −2c, 2c+

1,−6c+ 1.
In [2], Dujella and Ibrahimpašić, applying results for k = 9 to the equation

(4.2), gave a new proof of this result for c > 5, based on the precise information on
µ’s for which (4.2) has a solution in integers U and Z such that gcd(U,Z) ∈ {1, 2}.

But, from [4, Lemma 4] we have the inequality given in the following lemma.

Lemma 4.1. Let c > 3 be an integer. All positive integer solutions (U, V, Z) of
the system of Pellian equations (4.1) and (4.2) satisfy∣∣∣∣∣

√
c− 2

c
− Z

U

∣∣∣∣∣ <
6c+ 4

U2
√
c (c− 2)

<
13

U2
.(4.3)

Using the result from Section 2, it is now easy to prove that for c > 3,
system (4.1) and (4.2) has solutions only for µ ∈ {1, 6c+ 4}. Using results for
k = 3, 4, . . . , 13, from [2] and from Section 2, Ibrahimpašić [6] completely solved
the family of quartic Thue inequalities∣∣x4 − 2cx3y + 2x2y2 + 2cxy3 + y4

∣∣ 6 6c+ 4,

where c is a nonnegative integer.
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[6] B. Ibrahimpašić, A parametric family of quartic Thue inequalities, Bull. Malays. Math. Sci.

Soc (2) 34 (2011), 215–230.
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[8] B. Ibrahimpašić, Cryptanalysis of LUC cryptosystem with short secret exponent , Book of the
Proceedings of the 8th Central European Conference on Cryptography, July 2–4, 2008, Graz,
30–31.

[9] S. Lang, Introduction to Diophantine Approximations, Addison-Wesley, Reading, 1966.
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