About functional equation $f(s t)=f(s)+f(t)(s, t \in \mathbf{R} \backslash\{0\})$

Ramiz Vugdalić and Fatih Destović

Abstract. We analyse continuously differentiable functions $f: \mathbb{R} \backslash\{0\} \rightarrow \mathbb{R}$, that are the solutions of functional equation $f(s t)=f(s)+f(t)$. We prove that $f \equiv 0$, and logarithmic functions $f(t)=\log _{a}|t|,(0<a \neq 1)$ are the only solutions of the equation above.

1. Introduction

The motivation for this paper is the property $\log _{a}(x y)=\log _{a} x+\log _{a} y \quad(x, y>$ $0 ; 0<a \neq 1$), of logarithmic function. We want these functions to explain as the solutions of functional equation. Also, we obtain some properties of these solutions.
2. Continuously differentiable solutions of equation $f(s t)=f(s)+f(t)$

At first we consider the equation above for $s, t \in \mathbb{R}^{+}$. Hence, we analyse the equation

$$
f(s t)=f(s)+f(t)(s, t>0)
$$

We are interesting for continuously differentiable functions $f: \mathbb{R}^{+} \rightarrow \mathbb{R}$, that are solutions of equation (1). Let S denotes the set of all solutions of (1), and let $f \in S$ be a concrete solution. Obviously, $f(1)=0$.

The relation $0=f(1)=f\left(t \cdot \frac{1}{t}\right)=f(t)+f\left(\frac{1}{t}\right)$ implies that $f\left(\frac{1}{t}\right)=-f(t)$ for every $t>0$. Hence, for any fixed $f \in S$, the structure $(\{f(s): s>0\},+)$ is an Abelian group. Note that

$$
f\left(\frac{s}{t}\right)=f\left(s \cdot \frac{1}{t}\right)=f(s)+f\left(\frac{1}{t}\right)=f(s)-f(t) .
$$

[^0]Also, for every $k \in \mathbb{N}$ and $t>0$, it holds $f\left(t^{k}\right)=k f(t)$. For a fixed $t>0$ we have

$$
\begin{aligned}
f^{\prime}(t) & =\lim _{h \rightarrow 0+} \frac{f(t+h)-f(t)}{h}=\lim _{h \rightarrow 0+} \frac{f\left[t\left(1+\frac{h}{t}\right)\right]-f(t)}{h} \\
& =\lim _{h \rightarrow 0+} \frac{f(t)+f\left(1+\frac{h}{t}\right)-f(t)}{h}=\lim _{h \rightarrow 0+} \frac{f\left(1+\frac{h}{t}\right)}{h} .
\end{aligned}
$$

Because $f(1)=0$ and the function f is continuously differentiable at every point $t>0$, we have (by L'Hospital's rule) :

$$
f^{\prime}(t)=\lim _{h \rightarrow 0+} \frac{f\left(1+\frac{h}{t}\right)}{h}=\lim _{h \rightarrow 0+} f^{\prime}\left(1+\frac{h}{t}\right) \frac{1}{t}=f^{\prime}(1) \frac{1}{t} .
$$

Hence,

$$
f^{\prime}(t)=\frac{f^{\prime}(1)}{t}(t>0)(2)
$$

Now, we have

$$
f^{\prime}(s t)=\frac{1}{f^{\prime}(1)} \frac{f^{\prime}(1)}{s} \frac{f^{\prime}(1)}{t}=\frac{1}{f^{\prime}(1)} f^{\prime}(s) f^{\prime}(t)
$$

For $s=\frac{1}{t}$ we obtain

$$
f^{\prime}(t) f^{\prime}\left(\frac{1}{t}\right)=\left[f^{\prime}(1)\right]^{2}
$$

The relation $f(t)=-f\left(\frac{1}{t}\right)$ implies $f^{\prime}(t)=\frac{1}{t^{2}} f^{\prime}\left(\frac{1}{t}\right)$, i.e.,

$$
f^{\prime}\left(\frac{1}{t}\right)=t^{2} f^{\prime}(t)
$$

Therefore,

$$
f^{\prime}(t) f^{\prime}\left(\frac{1}{t}\right)=t^{2}\left[f^{\prime}(t)\right]^{2}=\left[f^{\prime}(1)\right]^{2}
$$

From relation (2) we see that the behaviour of f on interval $(0, \infty)$ is dependent of value and sign of number $f^{\prime}(1)$. Hence, we have the following discussion
a) If $f^{\prime}(1)=0$, then $f^{\prime}(t)=0$ for all $t>0$, i.e., $f(t) \equiv$ const. $=C$. From equation (1) we conclude that $C=0$.
b) If $f^{\prime}(1)>0$, then $f^{\prime}(t)>0$ for all $t>0$. Then, f is monotonous increasing function on $(0, \infty)$.
c) If $f^{\prime}(1)<0$, then $f^{\prime}(t)<0$ for all $t>0$. Then, f is monotonous decreasing function on $(0, \infty)$.

If $f^{\prime}(1)>0$, then, f is strict monotonous increasing on $(0, \infty)$. Therefore, $\lim _{t \rightarrow \infty} f(t)=\infty$, and

$$
\lim _{t \rightarrow 0+} f(t)=\lim _{s \rightarrow \infty} f\left(\frac{1}{s}\right)=-\lim _{s \rightarrow \infty} f(s)=-\infty
$$

In the same manner we conclude : If $f^{\prime}(1)<0$, then, $\lim _{t \rightarrow \infty} f(t)=-\infty$, and $\lim _{t \rightarrow 0+} f(t)=+\infty$.

Remark 1

From (2) we see that : If $f^{\prime}(1)=0$, then $f \equiv 0$ on $(0, \infty)$. If $f^{\prime}(1) \neq 0$, then, we have a differential equation $\frac{f^{\prime}(t)}{f^{\prime}(1)}=\frac{1}{t}$, and we obtain the solution $f(t)=f^{\prime}(1) \ln t+C$. Using the fact that $f(1)=0$ we conclude that $C=0$, i.e., $f(t)=f^{\prime}(1) \ln t$. Because $f^{\prime}(1) \neq 0$, we can write $f^{\prime}(1)=\frac{1}{\ln a}$, for some $a \neq 1$. If $f^{\prime}(1)>0$, then $a \in(1,+\infty)$, if $f^{\prime}(1)<0$, then $a \in(0,1)$. Hence, $f(t)=\frac{\ln t}{\ln a}=\log _{a} t$.

Conclusion The only continuously differentiable solutions of equation (1) are the functions : $f \equiv 0$, and the logarithmic functions $f(t)=\log _{a} t \quad(0<a \neq 1)$.

Remark 2 If we consider the solutions of functional equation (1) that are defined on $\mathbb{R} \backslash\{0\}$, then $0=f(1)=f((-1)(-1))=f(-1)+f(-1)=2 f(-1)$ implies $f(-1)=0$. Also, from $0=f(-1)=f\left(\frac{-s}{s}\right)=f(-s)-f(s)$, we conclude that $f(-s)=f(s)$ for every $s \in \mathbb{R} \backslash\{0\}$. Hence, f is a even function.

Corollary The set of all solutions of functional equation $f(s t)=f(s)+f(t)$, that are defined and continuously differentiable on $\mathbb{R} \backslash\{0\}$, consists of the following functions : a) $f \equiv 0, \mathrm{~b}) f(t)=\log _{a}|t|(a>1)$, c) $f(t)=\log _{a}|t|(0<a<1)$.

References

[1] C. G. Small, Functional Equations and How to Solve Them, Springer, 2007.
[2] J. Aczel, Functional Equations : History, Applications and Theory, Kluwer, 2002.
Received by editors 28.02.2012; in revised form 03.10.2012; available online 12.11 .2012
Department of Mathematics, University of Tuzla, 75000, 4, Universitetska Street, Tuzla, Bosnia and Herzegovina

E-mail address: ramiz.vugdalic@untz.ba
Department of Mathematics, University of Sarajevo, 71000 Sarajevo, 33-35, Zmaja od Bosne Street, Bosnia and Herzegovina

E-mail address: fatih_d@msn.com

[^0]: 2010 Mathematics Subject Classification. 39B22, 30D05.
 Key words and phrases. Functional equation, solutions of equation, logarithmic function, Abelian group.

