Former BULLETIN OF SOCIETY OF MATHEMATICIANS BANJA LUKA ISSN 0354-5792 (o), ISSN 1986-521X (p)

About functional equation $f(st) = f(s) + f(t) (s, t \in \mathbb{R} \setminus \{0\})$

Ramiz Vugdalić and Fatih Destović

ABSTRACT. We analyse continuously differentiable functions $f : \mathbb{R} \setminus \{0\} \to \mathbb{R}$, that are the solutions of functional equation f(st) = f(s) + f(t). We prove that $f \equiv 0$, and logarithmic functions $f(t) = \log_a |t|$, $(0 < a \neq 1)$ are the only solutions of the equation above.

1. Introduction

The motivation for this paper is the property $\log_a(xy) = \log_a x + \log_a y$ $(x, y > 0; 0 < a \neq 1)$, of logarithmic function. We want these functions to explain as the solutions of functional equation. Also, we obtain some properties of these solutions.

2. Continuously differentiable solutions of equation f(st) = f(s) + f(t)

At first we consider the equation above for $s, t \in \mathbb{R}^+$. Hence, we analyse the equation

$$f(st) = f(s) + f(t) (s, t > 0) (1)$$

We are interesting for continuously differentiable functions $f : \mathbb{R}^+ \to \mathbb{R}$, that are solutions of equation (1). Let S denotes the set of all solutions of (1), and let $f \in S$ be a concrete solution. Obviously, f(1) = 0.

The relation $0 = f(1) = f(t \cdot \frac{1}{t}) = f(t) + f(\frac{1}{t})$ implies that $f(\frac{1}{t}) = -f(t)$ for every t > 0. Hence, for any fixed $f \in S$, the structure $(\{f(s) : s > 0\}, +)$ is an Abelian group. Note that

$$f(\frac{s}{t}) = f(s \cdot \frac{1}{t}) = f(s) + f(\frac{1}{t}) = f(s) - f(t).$$

²⁰¹⁰ Mathematics Subject Classification. 39B22, 30D05.

Key words and phrases. Functional equation, solutions of equation, logarithmic function, Abelian group.

VUGDALIĆ AND DESTOVIĆ

Also, for every $k \in \mathbb{N}$ and t > 0, it holds $f(t^k) = kf(t)$. For a fixed t > 0 we have

$$f'(t) = \lim_{h \to 0+} \frac{f(t+h) - f(t)}{h} = \lim_{h \to 0+} \frac{f\left[t\left(1 + \frac{h}{t}\right)\right] - f(t)}{h}$$
$$= \lim_{h \to 0+} \frac{f(t) + f\left(1 + \frac{h}{t}\right) - f(t)}{h} = \lim_{h \to 0+} \frac{f\left(1 + \frac{h}{t}\right)}{h}.$$

Because f(1) = 0 and the function f is continuously differentiable at every point t > 0, we have (by L'Hospital's rule) :

$$f'(t) = \lim_{h \to 0+} \frac{f\left(1 + \frac{h}{t}\right)}{h} = \lim_{h \to 0+} f'\left(1 + \frac{h}{t}\right) \frac{1}{t} = f'(1)\frac{1}{t}.$$

Hence,

$$f'(t) = \frac{f'(1)}{t} \ (t > 0) \ (2)$$

Now, we have

$$f'(st) = \frac{1}{f'(1)} \frac{f'(1)}{s} \frac{f'(1)}{t} = \frac{1}{f'(1)} f'(s)f'(t)$$

For $s = \frac{1}{t}$ we obtain

$$f'(t)f'\left(\frac{1}{t}\right) = \left[f'(1)\right]^2$$

The relation $f(t) = -f\left(\frac{1}{t}\right)$ implies $f'(t) = \frac{1}{t^2}f'\left(\frac{1}{t}\right)$, i.e.,

$$f'\left(\frac{1}{t}\right) = t^2 f'(t)$$

Therefore,

$$f'(t)f'\left(\frac{1}{t}\right) = t^2 \left[f'(t)\right]^2 = \left[f'(1)\right]^2$$

From relation (2) we see that the behaviour of f on interval $(0, \infty)$ is dependent of value and sign of number f'(1). Hence, we have the following discussion

a) If f'(1) = 0, then f'(t) = 0 for all t > 0, i.e., $f(t) \equiv const. = C$. From equation (1) we conclude that C = 0.

b) If f'(1) > 0, then f'(t) > 0 for all t > 0. Then, f is monotonous increasing function on $(0, \infty)$.

c) If f'(1) < 0, then f'(t) < 0 for all t > 0. Then, f is monotonous decreasing function on $(0, \infty)$.

If f'(1) > 0, then, f is strict monotonous increasing on $(0, \infty)$. Therefore, $\lim_{t \to \infty} f(t) = \infty$, and

$$\lim_{t \to 0+} f(t) = \lim_{s \to \infty} f\left(\frac{1}{s}\right) = -\lim_{s \to \infty} f(s) = -\infty.$$

236

In the same manner we conclude : If f'(1) < 0, then, $\lim_{t \to \infty} f(t) = -\infty$, and $\lim_{t \to 0+} f(t) = +\infty$.

Remark 1

From (2) we see that : If f'(1) = 0, then $f \equiv 0$ on $(0, \infty)$. If $f'(1) \neq 0$, then, we have a differential equation $\frac{f'(t)}{f'(1)} = \frac{1}{t}$, and we obtain the solution $f(t) = f'(1) \ln t + C$. Using the fact that f(1) = 0 we conclude that C = 0, i.e., $f(t) = f'(1) \ln t$. Because $f'(1) \neq 0$, we can write $f'(1) = \frac{1}{\ln a}$, for some $a \neq 1$. If f'(1) > 0, then $a \in (1, +\infty)$, if f'(1) < 0, then $a \in (0, 1)$. Hence, $f(t) = \frac{\ln t}{\ln a} = \log_a t$.

Conclusion The only continuously differentiable solutions of equation (1) are the functions : $f \equiv 0$, and the logarithmic functions $f(t) = \log_a t \quad (0 < a \neq 1)$.

Remark 2 If we consider the solutions of functional equation (1) that are defined on $\mathbb{R} \setminus \{0\}$, then 0 = f(1) = f((-1)(-1)) = f(-1) + f(-1) = 2f(-1) implies f(-1) = 0. Also, from $0 = f(-1) = f(\frac{-s}{s}) = f(-s) - f(s)$, we conclude that f(-s) = f(s) for every $s \in \mathbb{R} \setminus \{0\}$. Hence, f is a even function.

Corollary The set of all solutions of functional equation f(st) = f(s) + f(t), that are defined and continuously differentiable on $\mathbb{R} \setminus \{0\}$, consists of the following functions : a) $f \equiv 0$, b) $f(t) = \log_a |t|$ (a > 1), c) $f(t) = \log_a |t|$ (0 < a < 1).

References

[1] C. G. Small, Functional Equations and How to Solve Them, Springer, 2007.

[2] J. Aczel, Functional Equations : History, Applications and Theory, Kluwer, 2002.

Received by editors 28.02.2012; in revised form 03.10.2012; available online 12.11.2012

Department of Mathematics, University of Tuzla, 75000, 4, Universitetska Street, Tuzla, Bosnia and Herzegovina

E-mail address: ramiz.vugdalic@untz.ba

Department of Mathematics, University of Sarajevo, 71000 Sarajevo, 33-35, Zmaja od Bosne Street, Bosnia and Herzegovina

E-mail address: fatih_d@msn.com