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ON A LOGARITHMIC INEQUALITY
Jézsef Sandor

ABSTRACT. We offer a new proof of a logarithmic inequality used in the theory
of quasiconformal mappings and norm inequalities for vector functions [1].

1. Introduction

In the recent paper [1], the following logarithmic inequality has been proved
(see Lemma 2.7 of [1]):

THEOREM 1.1. For any k > 1 and t € [tg, 1), where tyg = °- one has:
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The proof of (1) given in [1] is very complicated, based on more subsequent Lem-
mas on various hyperbolic functions. We note that (1) has important applications
in the study of quasiconformal mappings and related vector function inequalities
[1].
The aim of this note is to offer a very simple proof of (1), and in fact to obtain
a more general result.

2. The proof

Our method will be based on the study of monotonicity of a certain function,
combined with a well-known result related to the logarithmic mean
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The following result is well-known (see e.g. [2]):
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LEMMA 2.1. One has L > G for any x,y > 0, x # y, where
G =G(z,y) = /1y
denotes the geometric mean of x and y.
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Put now t = —, where 1 < p < and T=7 in (1). Then the inequality
p
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f(1), where 0 <z < 1,
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and f(1) = log ( > 1.
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Now the following result will be proved:

THEOREM 2.1. Assuming the above conditions, the function f(x) is strictly
increasing on (0, 1].
Particularly, one has f(x) < f(1) for 0 <z < 1.

Proof. An easy computation gives
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log (a + 1) > 1. This implies
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as this is equivalent with L(a?,1) < G(a?,1) of the Lemma.
Since f’(x) > 0, the function f is strictly increasing, and the proof of Theorem

2 is finished.

1
REMARK 2.1. (1) Particularly, by letting pg = 6—1—71 we get f(1) =1, and the
e —

log (pg + 1) <1 )
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follows. For x = z and py = e with the use of (2) an easier proof of Lemma 2.9
0

of [1] can be deduced.
(2) Let 0 <z <y < 1. Then
pY+1 p+1
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and p = —.
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This offers an extension of inequality (1) for z = %
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