BULLETIN OF INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE ISSN 1840-4367 Vol. 2(2012), 163-166

> Former BULLETIN OF SOCIETY OF MATHEMATICIANS BANJA LUKA ISSN 0354-5792 (o), ISSN 1986-521X (p)

A CONSTRUCTION OF A QUASI-ANTIORDER BY ANTI-CONGRUENCE ON SEMIGROUP WITH APARTNESS

Daniel A. Romano

ABSTRACT. Each quasi-antiorder τ on anti-ordered semigroup S induces anticongruence q on S such that S/q is an ordered semigroup under anti-order induced by τ . In this note we prove that the converse of this statement also holds: Each anti-congruence q on a semigroup $(S, =, \neq, \cdot)$ such that S/q is an anti-ordered semigroup induces a quasi-antiorder on S.

1. Introduction and Preliminaries

This short investigation, in Bishop's constructive algebra in sense of well-known books [1]- [3], [6] and Romano's papers [4] and [5], is a continuation of the author's paper [4]. Bishop's constructive mathematics is develop on Constructive logic - logic without the Law of Excluded Middle $P \vee \neg P$. Let us note that in Constructive logic the 'Double Negation Law' $P \iff \neg \neg P$ does not hold, but the following implication $P \implies \neg \neg P$ holds even in the Minimal logic.

Let $(S, =, \neq)$ be a set. The relation ' \neq ' is a binary relation on S, which satisfies the following properties:

 $\neg(x \neq x), x \neq y \Longrightarrow y \neq x, x \neq z \Longrightarrow x \neq y \lor y \neq z, x \neq y \land y = z \Longrightarrow x \neq z$. Follows Heyting, it called apartness. Let Y be a subset of S and $x \in S$. A relation q on S is a coequality relation on S if and only if it is consistent, symmetric and cotransitive (see, for example, [4], [5]). Let $(S, =, \neq, \cdot)$ be a semigroup with an apartness (see, for example [4] or [5]). As in [4], a coequality relation q on S is an anti-congruence if and only if it is cancellative with the semigroup operation in the following sense:

163

²⁰¹⁰ Mathematics Subject Classification. Primary 03F65; Secondary 06F05, 20M10.

 $Key\ words\ and\ phrases.$ Constructive mathematics, semigroup with apartness, anti-congruence, anti-order, quasi-antiorder.

Partially supported by Ministry of Science and Technology of the Republic of Srpska, Banja Luka, Bosnia and Herzegovina.

ROMANO

 $(\forall x, y, z \in S)(((xz, yz) \in q \Longrightarrow (x, y) \in q) \land ((zx, zy) \in q \Longrightarrow (x, y) \in q)).$ A relation α on S is anti-order (see: [4], [5]) on S if and only if

 $\begin{array}{l} \alpha \subseteq \neq, \\ (\forall x, y, z \in S)((x, z) \in \alpha \Longrightarrow ((x, y) \in \alpha \lor (y, z) \in \alpha)), \\ (\forall x, y \in S)(x \neq y \Longrightarrow ((x, y) \in \alpha \lor (y, x) \in \alpha)), \text{ (linearity) and} \\ (\forall x, y, z \in S)(((xz, yz) \in \alpha \Longrightarrow (x, y) \in \alpha) \land ((zx, zy) \in \alpha \Longrightarrow (x, y) \in \alpha)). \end{array}$

A relation σ on S is a quasi-antiorder (see: [4], [5]) on S if

$$\sigma \subseteq \neq, (\forall x, y, z \in S)((x, z) \in \alpha \Longrightarrow ((x, y) \in \sigma \lor (y, z) \in \sigma)), (\forall x, y, z \in S)(((xz, yz) \in \sigma \Longrightarrow (x, y) \in \sigma) \land ((zx, zy) \in \sigma \Longrightarrow (x, y) \in \sigma)).$$

Let x be an element of S and A a subset of S. We write $x \bowtie A$ if and only if $(\forall a \in A)(x \neq a)$ holds, and $A^C = \{x \in S : x \bowtie A\}$. If τ is a quasi-antiorder on S, then (see: [4], Lemma 0) the relation $q = \tau \cup \tau^{-1}$ is an anti-congruence on S. Firstly, the relation $q^C = \{(x, y) \in S \times S : (x, y) \bowtie q\}$ is a congruence on S compatible with q, in the following sense

 $(\forall a,b,c\in S)(((a,b)\in q^C\,\wedge\,(b,c)\in q)\Longrightarrow (a,c)\in q).$

We can construct semigroup $S/(q^C, q) = \{aq^C : a \in S\}$, where $aq^C = \{x \in S : (a, x) \in q\}$ is the class of relation q^C generated by the element a. If q is an anticongruence on a semigroup S with apartness, then (see: [4], [5]) the set $S/(q, q^C)$ is a semigroup with $aq^C =_1 bq^C \iff (a, b) \bowtie q$, $aq^C \neq_1 bq^C \iff (a, b) \in q$, $aq^C \cdot bq^C = (ab)q^C$. We can also construct the semigroup $S/q = \{aq : a \in S\}$ where $aq = \{x \in S : (x, a) \in q\}$ is the class of relation q generated by the element a. Let q be anti-congruence on a semigroup S with apartness. Then the set S/q is a semigroup with $aq =_1 bq \iff (a, b) \bowtie q$, $aq \neq_1 bq \iff (a, b) \in q$, $aq \cdot bq = (ab)q$.

2. The Result

For a given ordered semigroup $(S, =, \neq, \cdot, \alpha)$ under anti-order α is essential to know if there exists a anti-congruence q on S such that S/q be an anti-ordered semigroup. This plays an important role for studying the structure of anti-ordered semigroups. The following question is natural: If $(S, =, \neq, \cdot, \alpha)$ is an anti-ordered semigroup and q an anti-congruence on S, is the set S/q anti-ordered semigroup? A probable anti-order on S/q could be the relation θ on S/q defined by means of the anti-order on S, that is $\theta = \{(xq, yq) \in S/q \times S/q : (x, y) \in \alpha\}$ is not an antiorder, in general case. The following question arises: Is there anti-congruence q on S for which S/q is anti-ordered semigroup? The concept of quasi-antiorder relation was introduced by this author in his paper [4]. According to [4], if $(S, =, \neq, \cdot, \alpha)$ is an anti-ordered semigroup and σ a quasi-antiorder on S, then the relation q on S, defined by $q = \sigma \cup \sigma^{-1}$ is an anti-congruence on S and the set S/q is an anti-ordered semigroup under anti-order θ defined by $(xq, yq) \in \theta \iff (x, y) \in \sigma$. So, according to results of [?], each quasi-antiorder σ on an ordered semigroup S under anti-order α induces an anti-congruence $q = \sigma \cup \sigma^{-1}$ on S such that S/q is an ordered semigroup under anti-order θ . (For a further study of quasi-antiorder on anti-ordered semigroups we refer to paper [4] and [5].) In this paper we prove

164

that the converse of this statement also holds. If $(S, =, \neq, \cdot)$ is a semigroup and q anti-congruence on S and if there exists an order relation θ on S/q such that the $(S/q, =_1, \neq_1, \circ, \theta)$ is an ordered semigroup under anti-order θ , then there exists a quasi-antiorder τ on S such that $q = \tau \cup \tau^{-1}$. So, each anti-congruence q on a semigroup $(S, =, \neq, \cdot, \alpha)$ such that S/q is an ordered semigroup under anti-order θ induces a quasi-antiorder τ on S.

THEOREM 2.1. Theorem Let q be an anti-congruence on S and suppose there exists an anti-order relation Θ_1 on S/q such that $(S/q, =_1, \neq_1, \circ, \Theta_1)$ is an anti-ordered semigroup. Then there exists a quasi-antiorder σ on S such that $\sigma \cup \sigma^{-1} = q$ and $\Theta_1 = \theta$.

Proof: Let q be an anti-congruence on semigroup $(S, =, \neq, \cdot)$ and let Θ_1 be an anti-order relation on S/q such that $(S/q, =_1, \neq_1, \circ, \Theta_1)$ is an anti-ordered semigroup. Let σ be a relation on S defined by $(x, y) \in \sigma \iff (xq, yq) \in \Theta_1$. Then: (1) The relation σ is a quasi-antiorder relation on S compatible with the semigroup operation:

$$\begin{aligned} 1.1 & (x,y) \in \sigma \iff (xq,yq) \in \Theta_1 \\ & \implies xq \neq_1 yq \\ & \iff (x,y) \in q \\ & \implies x \neq y. \end{aligned}$$

$$1.2 & (x,z) \in \sigma \iff (xq,zq) \in \Theta_1 \\ & \implies (\forall yq \in S/q)((xq,yq) \in \Theta_1 \lor (yq,zq) \in \Theta_1) \\ & \implies (\forall y \in S)((x,y) \in \sigma \lor (y,z) \in \sigma); \end{aligned}$$

$$1.3 & (ax,by) \in \sigma \iff ((ax)q, (by)q) \in \Theta_1 \\ & \iff ((aq) \circ (xq), (bq) \circ (yq)) \in \Theta_1 \\ & \implies ((aq,bq) \in \Theta_1 \lor (xq,yq) \in \Theta_1) \\ & \iff ((aq,bq) \in \Theta_1 \lor (xq,yq) \in \Theta_1) \\ & \iff ((aq,bq) \in \sigma \lor (x,y) \in \sigma). \end{aligned}$$

$$(2) & q = \sigma \cup \sigma^{-1}. \text{ Indeed:}$$

$$2.1 & (a,b) \in q \iff aq \neq_1 bq \\ & \implies ((aq,bq) \in \Theta_1 \lor (bq,aq) \in \Theta_1) \\ & ((a,b) \in \sigma \lor (b,a) \in \sigma) \\ & \iff (a,b) \in \sigma \cup \sigma - 1; \end{aligned}$$

$$2.2 & (x,y) \in \sigma \cup \sigma^{-1} \iff ((x,y) \in \sigma \lor (y,x) \in \sigma) \\ & \iff (x,y) \in \Theta_1 \lor (yq,xq) \in \Theta_1) \\ & \implies (x,y) \in q; \end{aligned}$$

$$(3) & \Theta_1 = \Theta. \text{ In fact:} \\ (aq,bq) \in \Theta_1 \iff (a,b) \in \sigma \\ & \iff (a(\sigma \cup \sigma^{-1}), b(\sigma \cup \sigma^{-1}) \in \theta \\ & \iff (aq,bq) \in \theta. \ \Box$$

References

[1] E. Bishop: Foundations of Constructive Analysis; McGraw-Hill, New York 1967.

ROMANO

- [2] D. S. Bridges and F. Richman, Varieties of Constructive Mathematics, London Mathematical Society Lecture Notes 97, Cambridge University Press, Cambridge, 1987
- [3] R. Mines, F. Richman and W. Ruitenburg: A Course of Constructive Algebra, Springer, New York 1988.
- [4] D.A.Romano: A Note on Quasi-antiorder in Semigroup; Novi Sad J. Math., 37(1)(2007), 3-8
- [5] D.A.Romano: On Quasi-antiorder Relation on Semigroup; Mat. Vesnik, 64(3)(2012), 190-199
- [6] A.S. Troelstra and D. van Dalen: Constructivism in Mathematics, An Introduction; North-Holland, Amsterdam 1988.

Received by the editors at May 07, 2011; available on internet at July 16, 2012

Faculty of Education, University of East Sarajevo, Semberskih ratara Street, 76300 Bijeljina, Bosnia and Herzegovina

E-mail address: bato49@hotmail.com

166