RELATIONS BETWEEN ORDINARY AND MULTIPLICATIVE ZAGREB INDICES

Tamás Réti and Ivan Gutman

Abstract. The first and second multiplicative Zagreb indices of a graph \(G \) are
\[
\Pi_1(G) = \sum_{x \in V(G)} d(x)^2 \quad \text{and} \quad \Pi_2(G) = \sum_{(x,y) \in E(G)} d(x) d(y),
\]
respectively, where \(d(x) \) is the degree of the vertex \(x \). We provide lower and upper bounds for \(\Pi_1 \) and \(\Pi_2 \) of a connected graph in terms of the number of vertices, number of edges, and the ordinary, additive Zagreb indices \(M_1 \) and \(M_2 \).

1. Introduction

We consider only finite connected graphs without loops and multiple edges. For a connected graph \(G \), by \(V(G) \) and \(E(G) \) we denote the set of vertices and edges. The numbers of vertices and edges of \(G \) are \(n = |V(G)| \) and \(m = |E(G)| \), respectively. An edge of \(G \) connecting the vertices \(x \) and \(y \) is denoted by \((x,y) \). In order to avoid trivialities, we always assume that \(n \geq 3 \).

The degree \(d(x) \) of a vertex \(x \) is the number of edges adjacent to \(x \). A vertex \(x \) is said to be an \(r \)-vertex if its degree is equal to \(r \). The number of \(r \)-vertices in \(G \) is denoted by \(n_r \). The average degree of a connected graph \(G \) is given as \(2m/n \).

A graph is said to be regular if all its vertices have mutually equal degrees. If this vertex degree is equal to \(R \), then the graph is said to be \(R \)-regular. The degree-based graph invariants \(M_1 \) and \(M_2 \), called Zagreb indices, were introduced more than thirty years ago by Trinajstić and one of the present authors [9]. For their main properties, chemical applications, and further references see [1, 7, 17, 21].

The first Zagreb index \(M_1(G) \) is equal to the sum of squares of the degrees of the vertices, and the second Zagreb index \(M_2(G) \) is equal to the sum of products...
of the degrees of pairs of adjacent vertices of the graph \(G \). It is known that
\[
(1.1) \quad M_1(G) = \sum_{x \in V(G)} d(x)^2 = \sum_{(x,y) \in E(G)} [d(x) + d(y)] = \sum_{r \leq s} (r + s) m_{r,s}
\]
and
\[
(1.2) \quad M_2(G) = \sum_{(x,y) \in E(G)} d(x) d(y) = \sum_{r \leq s} rs m_{r,s},
\]
where \(m_{r,s} \) is the number of edges in \(G \) with end-vertex degrees \(r \) and \(s \).

In two recent works, Todeschini et al. \cite{18, 19} proposed that multiplicative variants of molecular structure descriptors be considered. When this idea is applied to Zagreb indices, one arrives at their multiplicative versions \(\Pi_1 \) and \(\Pi_2 \), defined as
\[
(1.3) \quad \Pi_1(G) = \prod_{x \in V(G)} d(x)^2
\]
\[
(1.4) \quad \Pi_2(G) = \prod_{(x,y) \in E(G)} d(x) d(y).
\]

In a series of recently produced papers \cite{3, 5, 12, 15, 22, 23}, some basic properties of the multiplicative Zagreb indices were established. In connection with this, it should be mentioned that already in the 1980s, Narumi and Katayama \cite{16} conceived a simple degree–based multiplicative structure descriptor \(NK(G) = \prod_{x \in V(G)} d(x) \), which nowadays is referred to as the “Narumi–Katayama index”. This index was studied in \cite{20} and recently also in \cite{8, 13, 14}. Evidently, \(\Pi_1(G) \) is just the square of \(NK(G) \).

2. An alternative formulation of first and second multiplicative Zagreb indices

Lemma 2.1. \cite{2} Let \(f \) be a non-negative function defined on the set of positive real numbers. Then the graph invariant \(T(G) \) can be rewritten in the following form:
\[
T(G) = \sum_{x \in V(G)} f(d(x)) = \sum_{(x,y) \in E(G)} \left(\frac{f(d(x))}{d(x)} + \frac{f(d(y))}{d(y)} \right)
\]
\[
= \sum_{r \leq s} \sum_{r \leq s} \left(\frac{f(r)}{r} + \frac{f(s)}{s} \right).
\]

Proposition 2.1. Let \(G \) be a connected graph. Then
\[
(2.2) \quad \Pi_1(G) = \exp \left\{ \sum_{(x,y) \in E(G)} \left(\ln \frac{d(x)^2}{d(x)} + \ln \frac{d(y)^2}{d(y)} \right) \right\}
\]
and

\[
\Pi_1(G) = \exp \left\{ 2 \sum_{r,s \leq r} \left(\frac{\ln(r)}{r} + \frac{\ln(s)}{s} \right) m_{r,s} \right\}.
\]

Proof. Defining the function \(f(d) = \ln(d^2) \), Eqs. (2.2) and (2.3) follow from (1.3) and the identity (2.1). It is worth noting that if \(x \) is a pendent vertex, then \(\ln(d(x)) = 0 \).

Proposition 2.2. The second multiplicative Zagreb index can be reformulated as

\[
\Pi_2(G) = \exp \left\{ \sum_{x \in V(G)} d(x) \ln(d(x)) \right\}.
\]

Proof. Define the function \(f(d) = d \ln(d) \) and apply Lemma 2.1, taking into account Eq. (1.4). \(\square \)

Corollary 2.1. If the connected graphs \(G_1 \) and \(G_2 \) are characterized by the same vertex degree distribution \((n_1, n_2, \ldots, n_r, \ldots) \), then not only the indices \(M_1 \), \(\Pi_1 \), and \(NK \) will be identical for \(G_1 \) and \(G_2 \), but the equality \(\Pi_2(G_1) = \Pi_2(G_2) \) will hold as well.

Proposition 2.3. Let \(G \) be a connected graph. Then \(\Pi_2(G) \geq \Pi_1(G) \), and the equality holds if and only if \(G \) is a path \(P_n \) or a cycle \(C_n \) on \(n \geq 3 \) vertices.

Proof. Comparing the first and second multiplicative Zagreb indices, we have

\[
\ln \frac{\Pi_2(G)}{\Pi_1(G)} = \sum_{x \in V(G)} d(x) \ln(d(x)) - \sum_{x \in V(G)} 2 \ln(d(x))
\]

\[
= n_3 \ln 3 + 2 n_4 \ln 4 + 3 n_5 \ln 5 + \cdots \geq 0.
\]

This implies the claim. \(\square \)

Corollary 2.2. For a hexagonal system \(H \) (that possesses only vertices of degree 2 or 3), the number of vertices of degree 3 is \(n_3 = 2(h - 1) \), where \(h \) is the number of hexagons \([6]\). It follows that

\[
\frac{\Pi_2(H)}{\Pi_1(H)} = \exp[n_3 \ln 3] = \exp \left[\ln \left(3^{2(h-1)} \right) \right] = 9^{h-1}.
\]

Remark 2.1. (an interesting analogy) The molecular graphs of phenylenes and their hexagonal squeezes possess only vertices of degree 2 and 3 \([4]\). Denote by \(NK(PH) \) and \(NK(HS) \) the Narumi–Katayama indices of a phenylene \(PH \) and its hexagonal squeeze \(HS \). It was shown \([20]\) that \(NK(PH)/NK(HS) = 9^{h-1} \).
3. Inequalities for first and second multiplicative Zagreb indices

Proposition 3.1. Let G be a connected graph. Then

$$
\Pi_1(G) \leq \left(\frac{2m}{n} \right)^{2n}.
$$

with equality if and only if G is regular.

Proof. Let P be an arbitrary positive number. Using the inequality between the arithmetic and the geometric mean we get

$$
\frac{1}{n} \sum_{x \in V(G)} d(x) \geq \left(\prod_{x \in V(G)} d(x) \right)^{1/n} = \exp \left[\frac{1}{nP} \sum_{x \in V(G)} \ln (d(x)^P) \right]
$$

from which it follows

$$
\ln \left(\frac{2m}{n} \right) \geq \frac{1}{nP} \sum_{x \in V(G)} \ln (d(x)^P) = \ln \left(\prod_{x \in V(G)} d(x)^P \right)^{1/(nP)}
$$

and

$$
\prod_{x \in V(G)} d(x)^P \leq \left(\frac{2m}{n} \right)^{Pn}.
$$

For the case of $P = 2$, the claim follows. \qed

Corollary 3.1. If $P = 1$, for the Narumi–Katayama index one obtains:

$$
NK(G) \leq \left(\frac{2m}{n} \right)^n
$$

with equality if and only if G is regular.

Corollary 3.2. Because $2m/n$ is the average vertex degree, and $d(x) \leq n - 1$, for any connected graph G with n vertices

$$
\Pi_1(G) \leq \Pi_1(K_n) = (n - 1)^{2n} \quad \text{and} \quad NK(G) \leq NK(K_n) = (n - 1)^n.
$$

Equality is attained if and only if $G \cong K_n$.

The following lemma is the classical Jensen inequality [10]:

Lemma 3.1. Let Φ be a real function defined on the interval $(0, \infty)$, and let a_i, $i = 1, 2, \ldots, N$, be positive numbers. Let the functions $B(a_1, a_2, \ldots, a_N)$ and $C(a_1, a_2, \ldots, a_N)$ be defined as

$$
B(a_1, a_2, \ldots, a_N) = \Phi \left(\frac{a_1 + a_2 + \cdots + a_N}{N} \right)
$$

and

$$
C(a_1, a_2, \ldots, a_N) = \frac{\Phi(a_1) + \Phi(a_2) + \cdots + \Phi(a_N)}{N}.
$$

Then $C(a_1, a_2, \ldots, a_N) \geq B(a_1, a_2, \ldots, a_N)$ if Φ is a convex function. If Φ is concave, then the inequality is reversed, i.e., $C(a_1, a_2, \ldots, a_N) \leq B(a_1, a_2, \ldots, a_N)$. Moreover, equality is attained if and only if all a_i are mutually equal.
Proposition 3.2. Let G be a connected graph. Then

$$\Pi_1(G) \leq \left(\frac{M_1(G)}{n} \right)^n$$

with equality if and only if G is regular.

Proof. The function $\Phi(d) = \ln(d^2)$ is a strictly concave on the interval $(0, \infty)$, because its second derivative, $\Phi'' = -4/d^2$, is negative. Assuming that $N = n$ and that the positive numbers a_i, are the squares of degrees of the vertices, from Lemma 3.1 one obtains

$$\ln \left(\frac{1}{n} \sum_{x \in V(G)} d(x)^2 \right) \geq \frac{1}{n} \sum_{x \in V(G)} \ln(d(x)^2) = \frac{1}{n} \ln \left(\prod_{x \in V(G)} d(x)^2 \right)$$

i.e.,

$$\ln \left(\frac{M_1(G)}{n} \right) \geq \frac{1}{n} \sum_{x \in V(G)} \ln(d(x)^2) = \ln \left(\prod_{x \in V(G)} d(x)^2 \right)^{1/n}.$$

Because the function $\Phi(d) = \ln(d^2)$ is strictly concave, equality holds if and only if the graph G is regular. \qed

Proposition 3.3. Let G be a connected graph. Then

$$\Pi_2(G) \geq \left(\frac{2m}{n} \right)^{2m}$$

with equality if and only if G is regular.

Proof. $\Phi(d) = d \ln(d)$ is a strictly convex function on the interval $(0, \infty)$, because its second derivative, $\Phi'' = 1/d$, is positive. Assuming that $N = n$ and that the positive constants a_i, $i = 1, 2, \ldots, n$, are the degrees of the vertices, from Lemma 3.1 we get

$$\sum_{x \in V(G)} d(x) \ln(d(x)) \geq \left(\sum_{x \in V(G)} d(x) \right) \ln \left(\frac{\sum_{x \in V(G)} d(x)}{n} \right) = 2m \ln \left(\frac{2m}{n} \right)$$

implying

$$\ln \left(\prod_{x \in V(G)} d(x) \ln(d(x)) \right) \geq \ln \left(\frac{2m}{n} \right)^{2m}.$$

Because $\Phi(d) = d \ln(d)$ is a strictly convex function, equality holds if and only if the graph G is regular. \qed

Corollary 3.3. If G is a unicyclic graph, then $n = m$. Then $\Pi_2(G) \geq 4^n$, with equality if and only if G is a cycle C_n on $n \geq 3$ vertices.
Corollary 3.4. For any connected graph G with n vertices,
\[\Pi_2(G) \leq \Pi_2(K_n) = (n-1)^{n(n-1)}. \]
Equality is attained if and only if $G \cong K_n$.

Lemma 3.2. ([11]) Let G be a connected graph with m edges. Then
\[m \ln \left(\frac{M_2(G)}{m} \right) \geq \sum_{x \in V(G)} d(x) \ln(d(x)) \]
with equality if and only if the graph G is regular.

A direct consequence of Lemma 3.2 is:

Proposition 3.4. Let G be a connected graph. Then
\[\Pi_2(G) = \exp \left(\sum_{x \in V(G)} d(x) \ln(d(x)) \right) \leq \left(\frac{M_2(G)}{m} \right)^m \]
with equality if and only if G is regular.

4. Chemical graphs

Let G be a chemical graph, namely a graph with vertex degree set $D(G) = \{1, 2, 3, 4\}$. To avoid the trivialities, we assume that the condition $n_3 + n_4 > 0$ holds. Then the following relations hold:
\[2m - n = n_2 + 2n_3 + 3n_4 \]
\[M_1 - n = 3n_2 + 8n_3 + 15n_4 \]
\[\ln(\Pi_2/\Pi_1) = n_3 \ln 3 + n_4 \ln 16. \]

The determinant $Det(1)$ of this linear system is equal to $\ln(256/729) < 0$. Consequently, the three unknown variables n_2, n_3, and n_4 can be computed as:
\[n_2 = Det(2)/Det(1), \]
\[n_3 = Det(3)/Det(1) \text{ and } n_4 = Det(4)/Det(1), \]
where
\[Det(2) = (2m - n)(16 \ln 4 - 15 \ln 3) + (M_1 - n)(3 \ln 3 - 4 \ln 4) \]
\[+ 6 \ln(\Pi_2/\Pi_1) \leq 0 \]
\[Det(3) = (M_1 + 2n - 6m) \ln 16 - 6 \ln(\Pi_2/\Pi_1) \leq 0 \]
\[Det(4) = 2 \ln(\Pi_2/\Pi_1) - (M_1 + 2n - 6m) \ln 3 \leq 0. \]

This immediately implies:

Proposition 4.1. Let G be a chemical graph with n vertices and m edges, whose first Zagreb index is M_1. Then
\[\ln \frac{\Pi_2(G)}{\Pi_1(G)} \leq \frac{1}{6} \left((M_1 - n)(4 \ln 4 - 3 \ln 3) - (2m - n)(16 \ln 4 - 15 \ln 3) \right) \]
with equality if $n_2 = 0$.

\[\ln \frac{\Pi_2(G)}{\Pi_1(G)} \geq \frac{1}{3} (M_1 + 2n - 6m) \ln 4 \]
with equality if $n_3 = 0$.

$$\ln \frac{\Pi_2(G)}{\Pi_1(G)} \leq \frac{1}{2} (M_1 + 2n - 6m) \ln 3$$

with equality if $n_4 = 0$.

For a number of important chemical graphs the vertex degree set $D(G) = \{2, 3\}$ (see [4, 6]). For such graphs we have:

Corollary 4.1. If the graph G has only vertices of degree 2 and 3, then

$$\ln \frac{\Pi_2(G)}{\Pi_1(G)} = \frac{1}{2} (M_1 + 2n - 6m) \ln 3.$$

References

(Received by editors 05.06.2012; in revised form 08.06.2012; available on internet 30.06.2012)

SZECHENYI ISTVÁN UNIVERSITY, EGYETEM TÉR 1, 9026 GYŐR, HUNGARY
E-mail address: reti@sze.hu

FACULTY OF SCIENCE, UNIVERSITY OF KRAGUJEVAC, P. O. BOX 60, 34000 KRAGUJEVAC, SERBIA
E-mail address: gutman@kg.ac.rs