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STRONGLY REGULAR INTEGRAL

CIRCULANT GRAPHS AND THEIR ENERGIES

Thirugnanam Tamizh Chelvam1, Sekar Raja2 and Ivan Gutman3

Abstract. Let S ⊂ Zn be a finite cyclic group of order n > 1. Assume that
0 /∈ S and −S = {−s : s ∈ S} = S. The circulant graph G = Cir(n, S) is
the undirected graph having the vertex set V (G) = Zn and edge set E(G) =
{ab : a, b ∈ Zn, a− b ∈ S}. Let D be a set of positive, proper divisors of the
integer n. We characterize certain strongly regular integral circulant graphs
with energy 2n(1− 1/d) for a fixed d ∈ D , d > 1.

1. Introduction

In this paper, we characterize integral circulant graphs with three eigenvalues.
Graphs with few distinct eigenvalues form an interesting class of graphs. Clearly
if all the eigenvalues of a graph coincide, then the graph is trivial. Connected
graphs with only two distinct eigenvalues are easily proven to be complete graphs.
The first non-trivial graphs with three distinct eigenvalues are the strongly regular
graphs [10, 11]. Graphs with exactly three distinct eigenvalues are generalizations
of strongly regular graphs by dropping the regularity requirement [9].

Let G be an undirected finite simple graph with n vertices and adjacency
matrix A(G). Since A(G) is a real symmetric matrix, its eigenvalues are real
numbers. Without loss of generality one can assume that the eigenvalue set of
A(G) is {λ1, λ2, λ3, . . . , λn}, such that λ1 > λ2 > λ3 > · · · > λn. The energy
En(G) of a graph G is defined as the sum of the absolute values of its eigenvalues
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of A(G). The concept of graph energy has a chemical origin but is nowadays much
studied in mathematics; for details see the reviews [12, 14].

A graph is integral if all the eigenvalues of its adjacency matrix are integers.
The notion of integral graphs dates back to Harary and Schwenk [15]. Since then,
many integral graphs have been discovered; for a survey see [3]. The problem
of characterizing integral graphs seems to be very difficult and so it is wise to
restrict ourselves to certain families of graphs. In this paper we proceed towards a
characterization of divisors and corresponding integral circulant graphs.

The concept of Cayley graphs was introduced by Arthur Cayley, aimed at
explaining the concept of abstract groups that are described by a set of generators.
The Cayley graph Cay(Γ, Ω) of a group Γ with identity 1 and a set Ω ⊂ Γ is defined
to have vertex set Γ and edge set {a, b ∈ Γ, ab−1 ∈ Ω}. The set Ω is usually assumed
to satisfy 1 /∈ Ω and Ω = Ω−1 = {a−1 : a ∈ Ω} which implies that Cay(Γ, Ω) is
loop-free and undirected. For general properties of Cayley graphs we refer to Godsil
and Royle [11].

Circulant graphs are Cayley graphs on finite cyclic groups, and found applica-
tions in telecommunication networks and distributed computation [5]. Recall that
for a positive integer n and a subset S ⊆ {0, 1, 2, . . . , n − 1}, the circulant graph
G(n, S) is the graph with n vertices, labeled with integers modulo n, such that each
vertex i is adjacent to |S| other vertices {i + s(mod n)|s ⊂ S}.

Wasin So [26] studied integral circulant graphs. Actually he proved that there
are exactly 2τ(n)−1 non-isomorphic integral circulant graphs on n vertices, where
τ(n) is the number of divisors of n.

Integral circulant graphs can be characterized as follows: Given an integer n
and a set D of positive divisors of n, define the integral circulant graph ICG(n, S)
to have vertex set Zn = {0, 1, 2, . . . , n− 1} and edge set {{a, b} : a, b ∈ Zn, gcd(a−
b, n) ∈ D}. The necessary and sufficient condition for the circulant graph to
be integral is S = ∪

d∈D
Gn(d) for some set of divisors D ∈ Dn, where Gn(d) =

{k | gcd(k, n) = d, 1 6 k < n} is the set of all positive integers less than n, having
the same greatest common divisor d with n. In addition, Dn is the set of positive
divisors d of n, such that d 6 n/2. By this characterization, it is easy to see that
the integral circulant graphs arise as a natural generalization of the unitary Cayley
graphs, that are exactly the integral circulant graphs ICG(n, S).

Our motivation for this research came from the constructions of the circulant
graphs G = Cir(n, S) which are not unitary Cayley graphs, except for n/d = 2,
where d is a divisor of n. There has been some recent work on the energy of unitary
Cayley graphs [22, 17, 20, 23, 24, 18, 19]. In particular, Ramaswamy and Veena
[22] calculated the energy of arbitrary unitary Cayley graphs with prime power,
by showing that En(Cay(Zn, Un)) = 2k φ(n) for n = pα1

1 pα2
2 . . . pαk

k with distinct
primes pi and positive integer αi’s. The same result was independently obtained
also by Ilić [17].

It should be noted that the energy of strongly regular graphs was not much
studied so far (with two noteworthy exceptions [16, 21]). This is interesting,
bearing in mind that general expressions for the eigenvalues of strongly regular
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graphs are known, and thus the calculation of their energy looks as a simple task.
In reality, this task is not at all easy. The present work may be viewed as an
attempt to partially fill this gap in the theory of graph energy.

In this paper our intention is to move a step forward in the investigation of
properties of integral circulant graphs. Our paper is organized as follows. In Section
2 we present some preliminary definitions and results on integral circulant graphs,
while in Section 3 we obtain the energy of certain circulant graphs. In Section 4
we characterize some strongly regular integral circulant graphs.

2. Definitions and preliminaries

In this section, we outline a few useful definitions and results.

Theorem 2.1. [26] A circulant graph G = Cir(n, S) is integral if and only if
S = ∪

d∈D
Gn(d) for some set of divisors D and 0 /∈ S,−S = {−s : s ∈ S} = S.

Definition 2.1. The tensor product A⊗B of an r× s matrix A = (aij) and a
t× u matrix B = (bij) is defined as the rt× su matrix obtained by replacing each
entry aij of A by the double array aij B.

Definition 2.2. [2] The tensor product of two graphs G1 and G2 is the graph
G1⊗G2 with vertex set V (G1)× V (G2), in which the vertices (u1, u2) and (v1, v2)
are adjacent if and only if u1v1 ∈ E(G1) and u2v2 ∈ E(G2).

It may be noted that if G1 and G2 are finite graphs with adjacency matrices
A and A′, respectively, then G1 ⊗G2, is graph whose adjacency matrix is A⊗A′.

Lemma 2.1. [10] If A is a matrix of order r with spectrum {λ1, λ2, . . . , λr},
and B, a matrix of order s with spectrum {µ1, µ2, . . . , µs}, then the spectrum of
A⊗B is {λi µj : 1 6 i 6 r ; 1 6 j 6 s}.

Definition 2.3. Two graphs G = (V, E) and H = (V ′, E′) are said to be
isomorphic if there is a bijective mapping φ from the vertex set V to the vertex
set V ′ such that (u, v) ∈ E(G) if and only if (φ(u), φ(v)) ∈ E′(H). The mapping
φ is called an isomorphism. We denote the fact that G and H are isomorphic by
G ∼= H.

That is, an isomorphism between two graphs is a bijection on the vertices that
preserves edges and nonedges. This definition has the following special case:

Definition 2.4. An automorphism of a graph is an isomorphism from the
graph to itself.

Definition 2.5. The set of all automorphisms of a graph G forms a group,
denoted by Aut(G), the automorphism group of G.

3. A class of integral circulant graphs

Let n > 1 be a composite integer and D the set of all its positive, proper integer
divisors. Let d ∈ D.
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Throughout this paper we denote by Mn(d) the set of multiples of d less than
n, i. e.,

Mn(d) = {d, 2d, 3d, . . . , n− d} .

In this section, we consider circulant graphs G = Cir(n, S), where S = Z∗nrMn(d)
for a fixed d ∈ D , d > 1.

Theorem 3.1. Let d be a proper divisor of a positive composite integer n and
Mn(d) = {d, 2d, . . . , n − d}. If S = Z∗n rMn(d) and G = Cir(n, S), then G is an
integral circulant graph.

Proof. Clearly Z∗n = ∪
d∈D

Gn(d) for all d, 1 6 d 6 n− 1. Let G = Cir(n, S),

where S = Z∗n r Mn(d). It means that S = ∪
d∈D′

Gn(d), where D′ = D r
{d, 2d, . . . , n− d}. Then by Theorem 2.1, G = Cir(n, S) is integral. ¤

Theorem 3.2. Let d be a proper divisor of a positive composite integer n. If
S = Z∗n rMn(d) and G = Cir(n, S), then the energy of G is equal to 2n(1− 1/d).

Proof. Note that |S| = |Z∗n| − |Mn(d)| = (n− 1)− (n/d− 1) = n− n/d. The
adjacency matrix of G is




1 2 ... d− 1 d d + 1 ... 2d− 1 2d ... n− 1
1 0 1 ... 1 0 1 ... 1 0 ... 1
2 1 0 ... 1 1 0 ... 1 1 ... 1
... ... ... ... ... ... ... ... ... ... ... ...
d− 1 1 1 ... 0 1 1 ... 0 1 ... 0
d 0 1 ... 1 0 1 ... 1 0 ... 1
d + 1 1 0 ... 1 1 0 ... 1 1 ... 1
... ... ... ... ... ... ... ... ... ... ... ...
2d 0 1 ... 1 0 1 ... 1 0 ... 1
... ... ... ... ... ... ... ... ... ... ... ...
... ... ... ... ... ... ... ... ... ... ... ...
n− 1 1 1 ... 0 1 1 ... 0 1 ... 0




=




B B ... B B
B B ... B B
.. .. ... .. ...
B B ... B B
B B ... B B




n
d×n

d

where B = [Bij ]d×d = A(Kd).

From the above and by the definition of tensor product,

A(G) = C ⊗B, where C =




1 1 ... 1 1
1 1 ... 1 1
.. .. ... .. ...
1 1 ... 1 1
1 1 ... 1 1




(n/d)×(n/d)

.
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Note that

Spec(B) =
{
d− 1 , −1d−1

}
and Spec(C) =

{n

d
, 0n/d−1

}
.

From Lemma 2.1,

Spec(A) = Spec(B)Spec(C) =
{

(d− 1)
n

d
, −n

d

d−1
, 0n−d

}

implying that the energy of G is equal to

n− n

d
+ (d− 1)

n

d
= 2n

(
1− 1

d

)
.

¤

Remark 3.1. For any proper divisor d of n, n − n/d < n − 1 and therefore
En(G) < 2(n− 1). Thus the circulant graphs G = Cir(n, S) are not hypeenergetic
(cf. [13]).

Theorem 3.3. Let d be a proper divisor of a positive composite integer n. If
S = Z∗n rMn(d), then G = Cir(n, S) is a complete regular d-partite graph.

Proof. Consider Vi = Mn(d) ∪ {i} for i = 0, 1, . . . , d − 1. Clearly V (G) =
∪i=d−1

i=0 Vi. Since d /∈ S, no two elements in Vi are adjacent and so Vi for i =
0, 1, . . . , n − 1 are independent sets in G = Cir(n, S). For i 6= j, the difference
between an element in Vi and Vj is an element of S and therefore the respective
vertices are adjacent in G. Hence the circulant graph G = Cir(n, S) is a complete
regular d-partite graph. ¤

Since any regular d-partite graph is a circulant graph, we have:

Theorem 3.4. A graph G with n vertices is a regular complete d-partite graph
if and only if G = Cir(n, S) where S = Z∗nrMn(d) and d is a proper divisor of n.

Remark 3.2. Theorems 3.3 and 3.4 are relatively easy, and previously known
results. We stated their proofs in order to make the paper self-contained. The same
is the case with Theorem 4.1 in the subsequent section.

4. Strongly regular circulant graphs

A k-regular graph G with n vertices is said to be strongly regular with param-
eters (n, k, a, c) if the following conditions are obeyed [10].

(1) G is neither complete, nor empty;
(2) any two adjacency vertices of G have a common neighbors;
(3) any two nonadjacent vertices of G have c common neighbors.

We assume throughout that the considered strongly regular graph G is con-
nected. Consequently, k is an eigenvalue of the adjacency matrix of G with unit
multiplicity, and

n− 1 > k > c > 0 and k − 1 > a > 0 .
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Counting the number of edges in G connecting the vertices adjacent to a vertex x
and the vertices not adjacent to x in two ways, we obtain

k(k − a− 1) = (n− k − 1)c .

Thus, if three of the parameters (n, k, a, c) are given, then the fourth is uniquely
determined [10]. If A is the adjacency matrix of a strongly regular graph with
parameters n, k, a, c, then

(4.1) A2 = kI + aA + c(J −A− I) .

Since eigenvectors with eigenvalue λ = k are orthogonal to the all-one vector, by
Eq. (4.1) the remaining eigenvalues must satisfy the equation

(4.2) λ2 − (a− c)λ− (k − c) = 0 .

Thus the eigenvalues of G are [10]

(4.3) k and λ1, λ2 =
(a− c)±√∆

2
where ∆ = (a − c)2 + 4(k − c) > 0. Because the sum of the eigenvalues equals
trace(A) = 0, it easily follows that the corresponding multiplicities are [10]

m1 = 1 and m2,m3 =
1
2

(
n− 1± (n− 1)(c− a)− 2k√

∆

)
.

Lemma 4.1. [4] Let G be a connected regular graph with exactly three distinct
eigenvalues. Then G is strongly regular.

Lemma 4.2. [8] A strongly regular graph with parameters (n, k, a, c) is con-
nected if and only if c 6= 0.

Lemma 4.3. [25] A graph has exactly one positive eigenvalue if and only if its
non-isolated vertices form a complete multipartite graph.

We are now prepared to prove our main result.

Theorem 4.1. Let d be a proper divisor of a positive composite integer n,
S = Z∗nr {d, 2d, . . . , n− d} and G = Cir(n, S). Then G is a strongly regular graph
with parameters (

n , n− n

d
, n− 2n

d
, n− n

d

)
.

Proof. As specified in the proof of Theorem 3.2, G has exactly three distinct
eigenvalues and so by Lemma 4.1, G is strongly regular. Clearly, G is |S| = n−n/d
regular. By Theorem 3.3, G is a d-partite graph with n/d vertices in each partition.
Hence any two adjacent vertices in G have n− 2n/d common neighbors. Also any
two non-adjacent vertices G have n− n/d common neighbors. ¤

Remark 4.1. Theorem 4.1 has the following immediate consequences: Because
n − n/d 6= (n − 1)/2, the graph G specified in Theorem 4.1 is not a conference
graphs. Then by Theorem 1.3.1(ii) from [7], the eigenvalues of G must be integers.
Furthermore, by Theorems 1.3.1(v) and 1.3.1(vi) from [7], these eigenvalues are



STRONGLY REGULAR INTEGRAL CIRCULANT GRAPHS AND THEIR ENERGIES 15

n− n/d with multiplicity 1, 0 with multiplicity n− d, and −n/d with multiplicity
d− 1 .

The same conclusion could be obtained also by the following reasoning. Any
strongly regular circulant graph is either a Paley graph on p vertices, where p is a
prime congruent 1 modulo 4, or a complete multipartite graph or the complement
of a complete multipartite graph, see Corollary 2.10.6 in [7]. Since the Paley graph
on p vertices is not integral, every strongly regular integral circulant graph is either
a complete multipartite graph or its complement. The spectra of these graphs are
well understood (see, for instance, [10, 11]) and it is elementary to establish when
these consist of integers.

Theorem 4.2. Let n be a positive composite integer and G = Cir(n, S) a
(connected) circulant graph with three distinct integer eigenvalues. Then S = Z∗nr
Mn(d) for some proper divisor d of n.

Proof. Let G = Cir(n, S) be a circulant graph with three distinct eigenvalues
λ1, λ2, and λ3. Without loss of generality, let us take λ1 > λ2 > λ3 with respective
multiplicities 1, m1,m2. Since δ(G) 6 λ1 6 ∆(G), it is λ1 = |S|. Since G is
connected, the multiplicity of λ1 is unity [10, 6]. By Lemma 4.1, G is strongly
regular with parameters (n, k, a, c).

Suppose that λ2 < 0. Note that always λ3 < 0 and hence λ2 λ3 = a − k > 0.
Hence a > k, which is a contradiction.

Suppose that λ2 > 0. By Eq. 4.2, λ2 λ3 = c − k 6= 0. By a result of Ahmadi
[1], G is not isomorphic to mKk+1. Hence G is not a complete regular d-partite
graphs and so by Theorem 3.4, G is not a circulant graph, a contradiction to our
assumption. Hence λ2 = 0. By Eq. 4.2, λ2 λ3 = 0 = c − k. By [1], c = k if and
only if G ∼= mKk+1, for some m > 1.

Case (i) Suppose that a = 0. Then G must be a complete bipartite graph. By
Theorem 3.4, S = Z∗n rMn(2).

Case (ii) Suppose that a 6= 0. Then by Theorem 3.4, S = Z∗n rMn(d) for
some d ∈ D , d > 2. ¤
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