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EQUI-INTEGRATY PARTITIONS IN GRAPHS

Sundareswaran, R. and Swaminathan, V.

Abstract. C.A. Barefoot, et. al. introduced the concept of the integrity of
a graph. It is an useful measure of vulnerability and it is defined as follows
I(G) = min{|S|+ m(G− S) : S ⊂ V (G)}, where m(G− S) denotes the order
of the largest component in G − S. The integrity of the set S is defined as
|S| + m(G − S) and is denoted by IS , where m(G − S) denotes the order of
maximum component in G−S. A partition of V (G) into subsets V1, V2, · · · , Vt

such that IVi
, 1 6 i 6 t is a constant is called equi-integrity partition of G.

The maximum cardinality of such a partition is called equi-integrity partition
number of G and is denoted by EI(G). Since V (G) itself is an equi-integrity
partition of G, the existence of EI-partition is guaranteed. In this paper, a
study of this new parameter is initiated.
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1. Introduction

The stability of a communication network is of prime importance for network
designers. In an analysis of the vulnerability of a communication network to disrup-
tion, two quantities that come to our mind are the number of elements that are not
functioning and the size of the largest remaining sub network within which mutual
communications can still occur. In adverse relationship, it would be desirable for an
opponent’s network to be such that the two quantities can be made simultaneously
small. In articles of C.A. Barefoot, R.Entriger and H.Swart ([1]) and G. Chartrand,
S.F. Kapoor, T.A. McKee and O.R. Oellermann ([4]) and (See, also, W.D.Goddard
[2] and K.S. Bagga, L.W. Beineke, W.D. Goddard, M.J. Lipman and R.E. Pippert
[3]) introduced the concept of the integrity of a graph. It is an useful measure of
vulnerability and it is defined as follows I(G) = min{|S|+ m(G−S) : S ⊂ V (G)},
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where m(G− S) denotes the order of the largest component in G− S. Unlike the
connectivity measures, integrity shows not only the difficulty to break down the net-
work but also the damage that has been caused. A partition of V (G) into subsets
V1, V2, · · · , Vt such that IVi , 1 6 i 6 t is a constant is called equi-integrity partition
of G. The maximum cardinality of such a partition is called equi-integrity parti-
tion number of G and is denoted by EI(G). Since V (G) itself is an equi-integrity
partition of G, the existence of EI-partition is guaranteed.

This new parameter is related to the connectivity of the graph. If G has no cut
vertices, then EI(G) is maximum, namely the order of the graph. If a graph has
more cut vertices such that the connected components resulting out of the removal
of a cut vertex are more in number and have smaller orders, then EI(G) becomes
small. Thus, this parameter has relationship with connected graphs of connectivity
one.

2. Equi-Integrity Partitions of graphs

Definition 2.1. ([1]) A set of vertices S in a graph G is an I-set of G if
|S|+ m(G− S) = I(G).

Definition 2.2. For a subset S of V (G), let Is = |S| + m(G − S) , where
m(G− S) denotes the order of the largest component in G− S.

Definition 2.3. A partition of V (G) into subsets V1, V2, · · · , Vt such that
IVi , 1 6 i 6 t is a constant is called equi-integrity partition of G. The maximum
cardinality of such a partition is called equi-integrity partition number of G and is
denoted by EI(G).

Remark 2.1. Since V (G) itself is an equi-integrity partition of G, the existence
of EI-partition is guaranteed.

Theorem 2.1. Let G be a nontrivial connected graph with order n. Then
EI(G) = n if and only if G has no cut vertex.

Proof. Suppose G is a nontrivial connected graph without cut vertex. Then
EI(G) = n.

Conversely, suppose G is a nontrivial connected graph. Then G has at least
two vertices which are not cut vertices. For such a vertex say u, Iu = n. If G has a
cut vertex say v. Then Iv = 1 + m(G− v) < 1 + n− 1 = n, a contradiction . ¤

Remark 2.2. It can be easily shown that EI(Kn) = n, EI(Km,n) = m +
n,EI(W1,n) = n + 1, EI(Cn) = n.

Theorem 2.2. EI(Pn) = dn
2 e.

Proof. Let V (Pn) = {v1, v2, · · · , vn}.
If n is odd and n = 2k+1, then{{v1, vk+1}, {v2, vk+3}, · · · , {vk, v2k+1}, {vk+2}}

is a EI-partition with IVi = k+2 , for all i, 1 6 i 6 k+1 . Therefore, EI(Pn) > n+1
2

. Suppose EI(Pn) > n+1
2 = k + 1. Then any maximum EI-partition has at least

three singletons with equal integrity, a contradiction, since Pn has at most two
singletons have same integrity. Therefore, EI(Pn) = n+1

2 .
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If n is even and n = 2k, then {{v1, vk+1}, {v2, vk+2}, · · · , {vk, v2k}} is a EI-
partition with IVi

= k + 1, for all i, 1 6 i 6 k. Therefore, EI(Pn) > n
2 . Suppose

EI(Pn) > n/2 = k. Then any maximum EI-partition has at least two singletons. If
there are three or more singletons, we get a contradiction. Therefore, any maximum
EI-partition contains exactly two singletons and the remaining are doubletons. It
can be easily verified that in a such a partition, the set may not have equal integrity.
Therefore, EI(Pn) 6 n

2 . Therefore, EI(Pn) = dn
2 e. ¤

Definition 2.4. Let G be graph with V (G) = {v1, v2, · · · , vn}. The Mycielski
transformation of G, denoted µ(G), has for its vertex set, the set {x1, x2, · · · , xn,
y1, y2, · · · , yn, z}. As for adjacency, xi is adjacent with xj in µ(G) if and only if vi

is adjacent with vj in G, xi is adjacent with yj in µ(G) if and only if vi is adjacent
with vj in G, and yi is adjacent with z in µ(G) for all i ∈ {1, 2, · · · , n}.

Corollary 2.1. If G is any connected graph of order n, then EI(µ(G)) =
|V (µ(G))|, since (κ(µ(G))) > 2.

Theorem 2.3. Let G be a connected graph of order n without cut vertices.
Attach one pendent vertex each at k of the vertices of G. Let H be the resulting
graph. Then EI(H) = n.

Proof. Let {u1, u2, · · · , un} be the vertex set of G. Let {u1, u2, · · · , uk} be
the set of vertices of G at which pendent vertices v1, v2, · · · , vk are attached. Then
{{u1, v1}, {u2, v2}, · · · , {uk, vk}, · · · , {uk+1}, · · · , {un}}(= {{V1}, · · · , {Vn}}) is a
maximum EI-partition of H and IVi = n + k for all i, 1 6 i 6 n. Therefore,
EI(H) = n. ¤

Theorem 2.4. EI(K1,n) = 2.

Proof. Let V (K1,n) = {u, v1, v2, · · · , vn} and u be the vertex of degree n.
Let {V1, V2, · · · , Vt} be a maximum EI-partition of V (K1,n). Suppose u ∈ V1. Let
IV1 = i + 2, where |V1| = i + 1. For any Vj , 2 6 j 6 t, IVj = n + 1. Since IV1 = IVj

Therefore, i = n− 1 and hence |V1| = n. Hence t = 2. Therefore, |V2| = 1. ¤

Theorem 2.5. Let G be a star with at least three pendent vertices. Let H be
the graph obtained from G in which each edge of G is subdivided exactly once. Then
EI(H) = 2 or 3.

Proof. Let G be a star with at least three pendent vertices. Let H be the
graph obtained from G in which each edge of the G is subdivided exactly once. Let
u be the center vertex of H and x1, x2, · · · ., xn be the vertices of degree two in H
and y1, y2, · · · , yn be the pendent vertices in H. Let V1 = {u, y1, y2, · · · , yn−1} and
V2 = {x1, x2, · · · , xn, yn}. IV1 = IV2 = n + 2. V1 ∪ V2 = V (H) and V1 ∩ V2 = ∅.
Therefore, EI(H) > 2. Suppose {V1, V2, · · · , Vk} be an EI-partition of maximum
cardinality of G with k > 3. Without loss of generality, let u ∈ V1. Let |V1| = a
and |V2| = b. If a > n+1, then IV1 = a+1 or a+2. If a < n+1, then IV1 = a+2.
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Case (I) Let a > n + 1 and b > n.Then |V1|+ |V2| > 2n + 1. V3 = V4 = · · · =
Vk = ∅, a contradiction, since k > 3.

Case (II) Let a < n + 1 and b > n.
Subcase (i): Suppose V2 contains x1, x2, · · · , xn. Then V3 ⊆ {y1, y2, · · · , yn−1}.

Therefore, IV2 = 2n + 1 = IV1 = a + 2 =⇒ a = 2n − 1 < n + 1. That is, n < 2,
contradiction.

Subcase (ii): Suppose V2 contains y1, y2, · · · , yn. Then V3 ⊆ {x1, x2, · · · , xn}.
Let |V3| = c (say). Then IV3 = c+2(n−c)+1 = 2n−c+1 . But IV2 = 2n+1 = IV3 .
Therefore, 2n− c + 1 = 2n + 1 =⇒ c = 0 , a contradiction.

Subcase (iii): Suppose V2 contains α1, x
′
is, β1, y

′
js for which xj ∈ V2 and β2, y

′
js

for which xj /∈ V2. Therefore α1 + β1 + β2 = |V2| = b > n. There are n − α1, x
′
is

in V − V2 out of which n − α1 − β2 are pairs of xi, yi and β2, x
′
is. Therefore,

IV2 = 2(n− α1 − β2) + β2 + 1 + b = 2n− α1 + 1 + β1.
Suppose V3 contains α′1, x

′
is, β

′
1, y

′
js for which xj ∈ V3 and β′2, y

′
js for which

xj /∈ V3. Then, IV3 = 2n − α′1 + 1 + β′1 . IV1 = IV2 = IV3 = a + 2. Therefore,
a = 2n − α′1 + 1 + β′1 . Since a < n + 1, we get that 2n − α′1 + 1 + β′1 < n + 1.
Therefore, n− α′1 + 1 + β′′1 < 2. Thus, n− β′1 < α′1 + 2.

Adding β′1 + β′2 to both sides, n + 2β′1 + β′2 < α′1 + β′1 + β′2 + 2 = c + 2 =
(2n + 1− a− b) + 2. Therefore, 2β′1 + β′2 < n + 3− a− b. Since b > n, n− b 6 .0.
Therefore, 2β′1 + β′2 < 3 − a. That is, 2β′1 + β′2 6 2 − a. Since a > 1, 2 − a 6 1.
Therefore, 2β′1 + β′2 6 1.

Subsubcase(i): 2β′1 + β′2 = 0. Therefore, β′1 = 0 = β′2. Thus, 2β′1 + β′2 6 2− a.
This implies that a 6 2. Let a = 2. IV3 = 2n−α′1 +1 = IV1 = a+2 = 4. Therefore,
α′1 = 2n − 3. Therefore, |V3| = 2n − 3, |V1| = 2. Therefore,|V2| = 2 > n. That is,
n 6 2, a contradiction. Let a = 1. IV3 = 2n−α′1 + 1 = IV1 = a + 2 = 3. Therefore,
α′1 = 2n− 2. Therefore, |V3| = 2n− 2, |V1| = 1. Therefore, |V2| = 2 > n. That is,
n 6 2, a contradiction.

Subsubcase(ii): 2β′1 + β′2 = 1. Since 2β′1 + β′2 6 2 − a we get that 1 6 2 − a
implies that a 6 1. Therefore, a = 1. Since β′1 +β′2 = 1, we get that β′1 = 0, β′2 = 1.
IV3 = 2n − α′1 + β′1 + 1 = 2n − α′1 + 1 = IV1 = a + 2 = 3. Therefore, |V3| =
α′1 + β′1 + β′2 = 2n− 1. |V2| = 1 = b > n. Therefore, n 6 1, a contradiction.

Case (III): Let a > n + 1 and b < n.
Subcase (i): IV1 = a + 1.
Subsubcase (i): Suppose V1 contains x1, x2, · · · , xn. Then V2 ⊆ {y1, y2, · · · , yn}.

Therefore, IV2 = 2n + 1 = IV1 = a + 1 =⇒ a + 1. Therefore, a = 2n.V3 = ∅ , con-
tradiction.

Subsubcase (ii): Since IV1 = a + 1, for any xi, yi; 1 6 i 6 n, at least one of
xi, yi belongs to V1. Therefore, β′1 = β1 = 0 Therefore, IV2 = 2n− α1 + 1 = IV3 =
2n− α′1 + 1.

Let V1 contains t, y′js , where t 6 n − 1. Let without loss of generality,
y1, y2, · · · , yt ∈ V1. Then V1 contains xt+1, xt+2, · · · , xn. Suppose Vr = {xi}for
some i, 1 6 i 6 t. Then IVr = 2n = a + 1. Therefore,a = 2n − 1. Thus, there
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are exactly three sets V1, V2, V3 such that V2 and V3 contain exactly one xi and
IV1 = IV2 = IV3 = 2n. Note that, since IV1 = 2n, V2 or V3 can not contain a
single yj . If Vr = {yj} for some j, 1 6 j 6 t. Then IVr

= 2n + 1. Therefore, 2n
+ 1 = a + 1. Therefore, a = 2n. Thus, there are exactly two sets V1, V2 with
IV1 = IV2 = 2n + 1

SupposeVr = {xi1, xi2}. Then IVr = 2n − 1 = a + 1. Therefore, a = 2n − 2.
Since |V1| + |Vr| = 2n, there is exactly one set say V3 which is a singleton. If
V3 = {xi3} , then IV3 = 2n 6= IV1 . Suppose V3 = {yj} , then IV3 = 2n + 1 6= IV1 , a
contradiction.

Suppose Vr = {xi1, yi2}. Then IVr
= 2n = a + 1 =⇒ a = 2n − 1. Suppose,

without loss of generality, V2 = {xi1, xi2, · · · , xir}, r > 2, then IV2 = 2n − r + 1 =
a + 1 =⇒ a = 2n − r. Therefore, |V1| + |V2| = 2n. Therefore, the EI-partition
contains exactly one singleton set V3 other than V1 and V2. If V3 = {xi}, then
IV3 = 2n = IV2 = 2n− r =⇒ r = 0, a contradiction.

If V3 = {yj}. then IV3 = 2n + 1 = IV2 = 2n− r =⇒ r = −1, a contradiction.
Therefore, EI(H) = 3 if there exist V1, V2 and V3 with |V1| = 2n − 1, |V2| =

|V3| = 1 and each of V2 and V3 contains exactly one xi, 1 6 i 6 n. EI(H) = 2 if
there exist V1 and V2 with |V1| = 2n−r+1, |V2| = r and each of V1 and V2 contains
exactly one yj , 1 6 j 6 n.

Subcase (ii): IV1 = a + 2.
Let a = n + k(k > 1). IV1 = n − k + 1. V2 ∪ V3 contains n − k + 1 vertices.

Suppose V3 6= ∅. Then, α1+β1+β2 = |V2| 6 n−k. IV2 = 2n−α1+β1+1 = n+k+2.
Therefore, α1 = β1 + n + k− 1, n > k, if β1 > 1. But α1 6 |V2| 6 n− k. Therefore,
α1 6 n− k. Thus, α1 = n− k and hence β1 = 0, a contradiction (since β1 > 1).

Therefore, α1 = n − k − 1 and hence β1 = 0, IV2 = n + k + 2. V2 contains
n− k − 1, x′is . |V3| 6 2. If |V2| = n− k − 1 then |V3| = 2.

Suppose V3 contains one xi and one yj . If j = i, then IV3 = 2n+1 = n+k+2 =⇒
n = k + 1. Therefore, |V2| = 0, a contradiction. If j 6= i, then IV2 = 2n =
n + k + 2 =⇒ n = k + 2. Therefore, |V2| = 1. Thus, V2 contains exactly one xi ,
since α1 = 1.

s

s s

s s

u

x1

y1

xk+2

yk+2

Then {V1 = {u, y2, · · · , yk+2, x3, · · · , xk+2};V2 = {x1}; V3 = {x2, u1}} is a
EI-partition of G.

Suppose V3 contains two y′js. Then IV3 = 2n + 1 = n + k + 2 =⇒ n = k + 1, a
contradiction, since |V2| = 0. Suppose V3 contains two x′is. Then IV3 = 2n − 1 =
n + k + 2 =⇒ n = k + 3. Therefore, |V2| = 2 and α1 = 2. Therefore, V1 contains
all y′js , a contradiction.
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Suppose V4 6= ∅ and |V3 ∪ V4| = 2 . Then |V3| = 1 = |V4|. If V3 and V4 each
contains exactly one xi, then IV3 = IV4 = 2n = n+k+2 =⇒ n = k+2. V2 contains
exactly one xi , since α1 = 1. Therefore, all y′js are contained in V1, a contradiction.
If V3 contains one xi and V4 each contains one yj , then IV2 6= IV4 , a contradiction.
If V3 and V4 each contains exactly yj , then IV3 = 2n+1 = n+ k +2 =⇒ n = k +1.
Therefore, |V2| = 0, a contradiction. Suppose |V2| = n − k. Then |V3| = 1. If
V3 contains exactly one yj . Then IV2 = 2n + 1 = n + k + 2 =⇒ n = k + 1.
Therefore, |V2| = 1 and α1 = 0. V2 contains exactly one yj . Therefore, V1 con-
tains all x′1s , a contradiction. If V3 contains exactly one xi, then IV3 = 2n =
n + k + 2 =⇒ n = k + 2. Therefore, |V2| = 2 and α1 = 1 . Then EI-partition of
G is given by {V1 = {u, y1, y2, · · · , yk+2, x3, · · · , xk+2};V2 = {x1, y2};V3 = {x2}}.
IV1 = IV2 = IV3 = n + k + 2.

Case (IV): Let a 6 n and b 6 n.
Let a = n−k(k > 0). Then IV1 = n−k+2. V2∪V3 contains n−k+1 vertices.

Suppose V3 6= ∅. Since b < n, |V2| 6 n− 1. Therefore, α1 + β1 + β2 = |V2| 6 n− 1.
IV2 = 2n − α1 + β1 + 1 = n − k + 2. α1 = n + k + 1 + β1. Since β1 and k are
non-negative and since α1 6 |V2|+ 6 n − 1, we get that k = β1 = 0. Therefore,
a = n.

Let a = n. Then IV1 = n + 2, V2 ∪ V3 contains n + 1 vertices. Suppose V3 6= ∅.
Since b < n, |V2| 6 n− 1 ad |V3| 6 n− 1. Therefore, α1 + β1 + β2 = |V2| 6 n− 1.
IV1 = 2n − α1 6 |V2| 6 n − 1. Therefore, β1 + n − 1 6 n − 1. Therefore, β1 = 0
and α1 = n− 1. Therefore, |V2| = n− 1. Therefore, V2 contains n− 1, x′is and no
yj . Therefore, |V3| 6 2.

Suppose |V3| = 2. If V3 contains one xi, then V1 contains no xj . If V3 contains
one xi and corresponding yj , then IV3 = 2n+1 = n+2 =⇒ n = 1, a contradiction.
If V3 contains one xi and one yj , j 6= i, then IV3 = 2n = n + 2 =⇒ n = 2, a
contradiction. If V3 contains two y′js, then IV3 = 2n + 1 = n + 2 =⇒ n = 1, a
contradiction. Suppose |V3| = 1 and |V4| = 1. If either V3 or V4 contains one xi,
then V1 does not contain any xi. IV3 = 2n = n + 2 =⇒ n = 2, a contradiction. ¤

Theorem 2.6. Let H = G ∪ tK1. Then EI(H) = t + 1.

Proof. Let V (H) = {v1, v2, · · · , vn, u1, · · · , ut} and V (G) = {v1, v2, · · · , vn}.
Let V1 = V (G), V2 = {u1}, V3 = {u2}, · · · , Vt+1 = {ut}. Then IV1 = n + 1 and
IVj = n + 1, for all j, 2 6 j 6 t + 1. Therefore, EI(H) > t + 1. Suppose
EI(H) > t + 2. Then there exists V1, V2 in π ( which is an EI-partition) such that
V1 and V2 are proper subsets of V (G). Then IV1 = |V1| + m(H − V1). Suppose
m(H − V1) = 1 . Then IV1 = |V1| + 1 < n + 1 = IVj , where Vj = {uj−1}, j > 2, a
contradiction. Suppose m(H − V1) > 2 . Therefore, |V1| = n −m(H − V1). Then
IV1 = n−m(H − V1) + m(H − V1) = n < n + 1 = IVj , where Vj = {uj−1}, j > 2, a
contradiction. Therefore EI(H) 6 t + 1. Hence EI(H) = t + 1. ¤

Theorem 2.7. If G =
k⋃

i=1

Gi, where each Gi is connected and G is a vertex

disjoint union of some same order graphs Gi, 1 6 i 6 k, then E(G) = |V (G)|.
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Proof. Since G1, G2, · · · , Gk all have the same order and are all connected, for
each vertex u of G, Iu = |V (Gi)|+1 is a constant. Therefore, EI(G) = |V (G)|. ¤

Theorem 2.8. Let G =
k⋃

i=1

Gi, where each Gi is connected.

Let max
16i6k

|V (Gi)| = t.

(a) Suppose there exists Gi1, Gi2 such that |V (Gi1)| = |V (Gi2)| = t. Then
EI(G) = |V (G)|.

(b)Suppose there exists a unique Gi, 1 6 i 6 t such that |V (Gi)| = t.
(i) if there exists Gj such that |V (Gj)| = t− 1, 1 6 j 6 k, then

EI(G) =

{
|V (G)| − t

2 if t is even
|V (G)| − t+1

2 if t is odd
(ii) Suppose there exists no Gj such that |V (Gj)| = t−1. Let max

|V (Gi)|<t
|V (Gi)| =

t1 , where t1 < t− 1., Then EI(G) = n− t− b t
t−t1+1c.

Proof. (a) In this case, for any vertex u of G, Iu = t+1 = constant. Therefore,
EI(G) = |V (G)|.

(b) (i) In this case, for any vertex u of V (Gl), l 6= i, l 6= j, Iu = t + 1 = 1 = a
constant. For any vertex u ∈ V (Gi), Iu = t. Consider S = {u, v}, where u ∈ V (Gi)
and v ∈ V (Gj). Then, Is = t + 1. Also, for any u1, u2 ∈ V (Gi), I{u1,u2} = t + 1.

Therefore,

EI(G) =

{
|V (G)| − t

2 if t is even
|V (G)| − t+1

2 if t is odd
(ii) Let t = λ(t − t1 + 1) + µ, where 0 6 µ < t − t1 + 1. For any t − t1 + 1

vertices of V (Gi) constituting a set say S, IS = t − t1 + 1 = t + 1 (note that
m(Gi−S) 6 t− (t− t1) + 1 = t1 + 1 and hence |S|+ m(Gi−S) 6 t− t1 + 1 + t1 =
t < (t + 1). Then a set S1 of at most µ vertices of V (Gi) has IS1 = t + 1. But
IS1 = µ + t < t − t1 + 1 = t + 1. That is, IS1 < t + 1, a contradiction. Therefore,
EI(G) 6 n− t + µ. Therefore, EI(G) 6 n− t + λ = n− t + b t

t−t1+1c. ¤

Remark 2.3. Integrity is a vulnerability parameter and it gives a measure of
the strength of the network to withstand the failure of certain nodes. If the network
is capable of being divided into sub networks, each of which has the same integrity,
then the failure in any sub network may be managed in the same way as in any
other sub network and that in the event of an attack on the net work, it is possible
to remedy it since all sub networks are of equal integrity.

3. Acknowledgements

We are thankful to Department of Science and Technology, Govt. of In-
dia, New Delhi for their financial support for the project titled ”Domination In-
tegrity in graphs” under which this work was done (DST major Research Project
SR/S4/MS:365/06). We thank the referee for his very useful comments and sug-
gestions which resulted in substantial improvement of the paper.



100 SUNDARESWARAN AND SWAMINATHAN

References

[1] C.A. Barefoot, R. Entringer and H. C. Swart, Vulnerability in graphs - a comparative survey,
J. Combin. Math. Combin. Comput. 1(1987), 13-22

[2] W.D.Goddard, On the vulnerability of graphs, Ph.D. thesis, University of Natal, Durban,
South Africa, 1989

[3] K.S. Bagga, L.W. Beineke, W.D. Goddard, M.J. Lipman and R.E. Pippert, A survey of
integrity, Discrete Appl. Math., 37-38 (1992), 13-28

[4] G. Chartrand, S.F.Kapoor, T.A. McKee and O.R.Oellermann; The Mean Integrity of a Graph,
Recent Studies in Graph Theory, Vishwa International Publications, (1989) 70-80.

(received by editors 20.12.2011; available on internet 26.03.2012)

JRF, Ramanujan Research Center in Mathematics, Saraswathi Narayanan College,
Madurai, India

E-mail address: neyamsundar@yahoo.com

Head, Ramanujan Research Center in Mathematics, Saraswathi Narayanan Col-
lege, Madurai, India

E-mail address: sulanesri@yahoo.com


