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Abstract. In 1920 H. Steinhaus [Sur les distances des points de mesure posi-
tive, Fundamenta Mathematicae 1 (1920) 93-104.] proved the following result:
”Let A be a Lebesgue measurable set of positive measure. Then there exist
at least two points in A such that the distance between them is a rational
number”.

In this paper we shall prove that there exists a sequence (xn)n>1 of
different points in A such that the distance between any two of them is a
rational number. Further, we shall extend our result to the case when A is a
set with the Baire property (non-necessarily Lebesgue measurable).

1. Introduction

The set of rational numbers will be denoted by Q and the set of real numbers
by R.

Let λ be Lebesgue measure on the set of real numbers R. If (An)n>1 is a
sequence of Lebesgue measurable sets in R, then we have the following inequality:

λ( lim
n→∞

An) 6 lim
n→∞

λ(An).

For the inequality
lim

n→∞
λ(An) 6 λ( lim

n→∞
An)

we must suppose that λ
( ∞∪
i=n

An

)
< ∞ for at least one value of n (see [6, p. 40]).

Example 1.1. For a family of intervals In = [ n, n + 1), n = 0, 1, . . ., we have:
lim

n→∞
λ(An) = 1 and λ( lim

n→∞
An) = 0.
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In [1] the first author presented the following general inequality for Lebesgue
measure and gave some of its applications.

Theorem 1.1. (I. Arand-elović [1]) Let A be a measurable set of positive mea-
sure and (xn)n>1 be a bounded sequence of real numbers. Then

λ(A) 6 λ( lim
n→∞

(xn + A)).

Further applications of this inequality can be found in [3], [4] and [2].
A ⊆ R is of first Baire category if it is a countable union of nowhere dense

sets. Otherwise, A is of second Baire category. If A is of second Baire category,
then there exists an open set O and a first Baire category set P such that

A = P∆O,

where ∆ denotes the symmetric difference.
In 1920 H. Steinhaus [8] proved the following result:

Theorem 1.2 (H. Steinhaus [8]). Let A be a Lebesgue measurable set of positive
measure. Then there exist at least two points in A such that the distance between
them is a rational number.

In this paper we shall prove that there exist sequences (xn)n>1 of different
points in A such that the distance between any two of them is a rational number.
Further we extend our result to the case when A is a set with the Baire property
(non-necessarily Lebesgue measurable).

2. Main Results

Now we present our main result.

Theorem 2.1. Let A be a Lebesgue measurable set of positive measure. Then
there exists a sequence (xn)n>1 of different points in A such that the distance be-
tween any two of them is a rational number.

Proof. Let (qn)n>1 be an arbitrary bounded sequence of rational numbers
whose terms are pairwise different. From

0 < λ(A) 6 λ( lim
n→∞

(A + qn))

it follows that there exists x∗ ∈ lim
n→∞

(A + qn). Thus there exists an increasing

sequence of positive integers (nj)j>1 and a sequence of points (pn)n>1 ⊆ A such
that

pj + qnj = x∗,
for any positive integer j.

Hence, for each i 6= j we obtain |pi − pj | = |qni − qnj | 6= 0, so pi 6= pj for i 6= j,
and

|pi − pj | = |qni
− qnj

| ∈ Q.

¤
Now we need the following lemma.
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Lemma 2.1. Let A be a set which has the Baire property and (xn)n>1 be a
bounded sequence of real numbers. Then the set lim

n→∞
(xn + A) is nonempty.

Proof. In [5] it was proved that there exists an open interval I which contains
zero such that for any (yn)n>1 ⊆ I there exists a ∈ A such that for all n we have

a + yn ∈ A.

Also, the sequence (−xn)n>1 has a cluster point x∗ ∈ R, because it is bounded. So,
there exists the subsequence (xnj )j>1 such that

(−xnj − x∗)j>1 ⊆ I,

which implies that there exists a∗ ∈ A such that

(−xnj − x∗ + a∗)j>1 ⊆ A.

It follows that

(a∗ − x∗) ∈ xnj + A,

for any positive integer j. Hence

lim
n→∞

(xn + A) 6= ∅.

¤

The proof of next result is essentially the same as the proof of Theorem 2.1.
For the convenience of the reader, we present it here.

Theorem 2.2. Let A be a set which has the Baire property. Then there exists
a sequence (xn)n>1 of different points in A such that the distance between any two
of them is a rational number.

Proof. Let (qn)n>1 be an arbitrary bounded sequence of rational numbers
whose terms are different. Then the set lim

n→∞
(A + qn) is nonempty, because set A

has the Baire property.
So, there exist an increasing sequence of positive integers (nj)j>1 and a se-

quence of points (pn)n>1 ⊆ A such that

pj + qnj
= x∗,

for any positive integer j.
Hence, for each i 6= j we obtain |pi − pj | = |qni − qnj | 6= 0, so pi 6= pj for i 6= j,

and

|pi − pj | = |qni − qnj | ∈ Q.
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References
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