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SYMMETRIC BI-DERIVATIONS ON d-ALGEBRAS

Iskandar Nasirov and Damla Yılmaz

Abstract. In this paper, we introduce the notions of symmetric bi-derivations

of d-algebras, along with the associated sets Kerδ(Υ) and Fixδ(Υ). We inves-

tigate several of their properties and provide illustrative examples and coun-
terexamples to support our findings.

1. Introduction

Two important classes of logic algebras, BCK algebras and BCI algebras, were
introduced in 1960s [5], [6] and extensively investigated by many authors. It is
known that BCK-algebras form a proper subclass of BCI-algebras. One of the
generalizations of BCK-algebras, d-algebras, was presented by Neggers and Kim
[13]. The notions of d-subalgebra, d-ideal and some related concepts defined and
relations among them investigated by Neggers, Jun and Kim [14].

The notion of derivation was given by Posner who established two very striking
results on derivations in prime rings [17]. Many types of derivations on BCK-BCI-
algebras and d-algebras provide a field of study for many researchers (see [1], [2],
[3], [7], [8], [9], [19]). The notion of symmetric bi-derivation was introduced by
Maksa (see [11]). For symmetric bi-derivations on lattices, some types of algebras
and types of rings can refer to [4], [10], [12], [15], [16], [18], [20].

Based on the previous results, it is natural to ask whether it is possible to define
symmetric bi-derivations in d-algebras. This paper presents the notions of (l, r)-
symmetric bi-derivations and (r, l)-symmetric bi-derivations on d-algebras. Some
different properties provided by symmetric bi-derivations are given with examples
and counterexamples.
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2. Preliminaries

In this section, we recall some definitions and properties that are usefull for
developing the our main results. For information used in this section, see [2], [8],
[13], [14].

Definition 2.1. A non-empty set Υ = (Υ; ∗, 0) of type (2, 0) is called a d-
algebra if for all υ, ω ∈ Υ the following conditions hold:

(1) υ ∗ υ = 0
(2) 0 ∗ υ = 0
(3) υ ∗ ω = 0 and ω ∗ υ = 0 implies υ = ω.

Definition 2.2. Suppose Υ = (Υ; ∗, 0) be a d-algebra and ∅ ≠ Φ ⊆ Υ. If
υ ∗ ω ∈ Φ whenever υ, ω ∈ Φ, then Φ is called a d-subalgebra of Υ. Moreover, Φ is
called a d-ideal of Υ if it satisfies the following:

(1) υ ∗ ω ∈ Φ and ω ∈ Φ imply υ ∈ Φ
(2) υ ∈ Φ and ω ∈ Υ imply υ ∗ ω ∈ Φ, that is, Φ ∗Υ ⊆ Φ.

Lemma 2.1. If Φ is a d-ideal of a d-algebra Υ, then 0 ∈ Φ.

Definition 2.3. Let Υ be a d-algebra and υ ∈ Υ. Define υ∗Υ = {υ ∗ ω|ω ∈ Υ}.
If for any υ ∈ Υ, υ ∗Υ = {υ, 0}, then Υ is called an edge d-algebra.

Lemma 2.2. If Υ is an edge d-algebra, then υ ∗ 0 = υ for any υ ∈ Υ.

Lemma 2.3. If Υ is an edge d-algebra, then (υ∗(υ∗ω))∗ω = 0 for all υ, ω ∈ Υ.

Remark 2.1. Let Υ be a d-algebra and υ, ω ∈ Υ. We write υ∧ω = ω ∗ (ω ∗υ).
Moreover, Υ is called a commutative d-algebra if υ ∧ ω = ω ∧ υ for all υ, ω ∈ Υ.

Definition 2.4. Let Υ be a d-algebra. A map g : Υ → Υ is a left-right
derivation (briefly, (l,r)-derivation) of Υ, if it satisfies g(υ ∗ ω) = (g(υ) ∗ ω) ∧ (υ ∗
g(ω)) for all υ, ω ∈ Υ. If g satisfies g(υ ∗ ω) = (υ ∗ g(ω)) ∧ (g(υ) ∗ ω) for all
υ, ω ∈ Υ, then g is a right-left derivation (briefly, (r,l)-derivation) of Υ. If g is
both a (l,r)-derivation and (r,l)-derivation, then g is a derivation of Υ.

3. Symmetric bi-derivations on d-algebras

Definition 3.1. Let Υ be a d-algebra. A mapping ∆ : Υ × Υ → Υ is called
symmetric if ∆(υ, ω) = ∆(ω, υ) holds for all υ, ω ∈ Υ.

Definition 3.2. Let Υ be a d-algebra and δ : Υ → Υ be a mapping defined
by δ(υ) = ∆(υ, υ). Then δ is called the trace of ∆, where ∆ : Υ × Υ → Υ is a
symmetric mapping.

Definition 3.3. Let Υ be a d-algebra and ∆ : Υ × Υ → Υ be a symmetric
mapping. If ∆ satisfies the identity

∆(υ ∗ ω, η) = (∆(υ, η) ∗ ω) ∧ (υ ∗∆(ω, η))
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for all υ, ω, η ∈ Υ, then ∆ is called left-right symmetric bi-derivation (briefly (l,r)-
symmetric bi-derivation). If ∆ satisfies the identity

∆(υ ∗ ω, η) = (υ ∗∆(ω, η)) ∧ (∆(υ, η) ∗ ω)
for all υ, ω, η ∈ Υ, then ∆ is called right-left symmetric bi-derivation (briefly (r,l)-
symmetric bi-derivation). Moreover, ∆ is symmetric bi-derivation if ∆ is both
(l,r)-symmetric bi-derivation and (r,l)-symmetric bi-derivation. It is clear that the
definitions of (l,r)-symmetric bi-derivation and (r,l)-symmetric bi-derivation coin-
cide if Υ is commutative d-algebra.

The existence of the symmetric bi-derivations of d-algebras is showed by the
following examples.

example 3.1. Consider a commutative d-algebra Υ = {0, υ, ω} with the fol-
lowing Cayley table:

∗ 0 υ ω
0 0 0 0
υ υ 0 0
ω ω υ 0

Define a mapping ∆ : Υ×Υ → Υ by

∆(a, b) =

{
υ, (a, b) = (ω, ω)
0, otherwise

.

Then it can be checked that ∆ is a symmetric bi-derivation.

example 3.2. Let Υ = {0, 1, 2, 3, 4, 5} be a d-algebra in which the operation is
defined as follows:

∗ 0 1 2 3 4 5
0 0 0 0 0 0 0
1 1 0 0 0 0 0
2 2 2 0 0 0 0
3 3 3 1 0 0 0
4 4 2 1 1 0 0
5 5 5 3 3 1 0

Define a map ∆ : Υ×Υ → Υ by

∆(υ, ω) =

 3, (υ, ω) = (4, 4)
5, (υ, ω) = (5, 5)
0, otherwise

.

Although ∆ is a (r,l)-symmetric bi-derivation, it is not a (l,r)-symmetric bi-derivation.
The reason is explained below:

∆(4 ∗ 0, 4) = (4 ∗∆(0, 4)) ∧ (∆(4, 4) ∗ 0)
= 4 ∧ 3

= 3
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and

∆(4 ∗ 0, 4) = (∆(4, 4) ∗ 0) ∧ (4 ∗∆(0, 4))

= 3 ∧ 4

= 2.

Proposition 3.1. Let Υ be a d-algebra and ∆ be a (l,r)-symmetric bi-derivation
on Υ. Then ∆(0, υ) = 0 for all υ ∈ Υ.

Proof. For all υ ∈ Υ, we have

∆(0, υ) = ∆(0 ∗ υ, υ)
= (∆(0, υ) ∗ υ) ∧ (0 ∗ δ(υ))
= (∆(0, υ) ∗ υ) ∧ 0

= 0 ∗ (0 ∗ (∆(0, υ) ∗ υ))
= 0.

□

The same result is achieved for (r,l)-symmetric bi-derivations when Υ is an
edge d-algebra.

Proposition 3.2. Let Υ be an edge d-algebra and ∆ be a (r,l)-symmetric bi-
derivation on Υ. Thus ∆(0, υ) = 0 for all υ ∈ Υ.

Proof. Since ∆ is a (r,l)-symmetric bi-derivation, we have

∆(0, υ) = ∆(0 ∗ υ, υ)
= (0 ∗ δ(υ)) ∧ (∆(0, υ) ∗ υ)
= 0 ∧ (∆(0, υ) ∗ υ)
= (∆(0, υ) ∗ υ) ∗ ((∆(0, υ) ∗ υ) ∗ 0)
= (∆(0, υ) ∗ υ) ∗ (∆(0, υ) ∗ υ)
= 0.

□

Proposition 3.3. Let Υ be an edge d-algebra and ∆ be a (r,l)-symmetric bi-
derivation on Υ. Thus for all υ, ω, η ∈ Υ

(1) ∆(υ, ω) = υ ∧∆(υ, ω)
(2) δ(υ) = υ ∧ δ(υ)
(3) ∆(υ, ω) ⩽ υ
(4) δ(υ) ⩽ υ
(5) δ(δ(υ) ∗ υ) = 0
(6) ∆(υ ∗ ω, η) ⩽ υ ∗∆(ω, η)
(7) ∆(δ(υ), ω) ⩽ δ(υ).
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Proof. (1) Let υ, ω ∈ Υ. Using Proposition 3.2, we have

∆(υ, ω) = ∆(υ ∗ 0, ω)
= (υ ∗∆(0, ω)) ∧ (∆(υ, ω) ∗ 0)
= (υ ∗ 0) ∧∆(υ, ω)

= υ ∧∆(υ, ω).

(2) Since δ is the trace of ∆, the proof is obtained from (1).
(3) Let υ, ω ∈ Υ. By using (1) and Lemma 2.3, we get

∆(υ, ω) = υ ∧∆(υ, ω)

= ∆(υ, ω) ∗ (∆(υ, ω) ∗ υ)

and

∆(υ, ω) ∗ υ = (∆(υ, ω) ∗ (∆(υ, ω) ∗ υ)) ∗ υ = 0.

Therefore, ∆(υ, ω) ⩽ υ for all υ, ω ∈ Υ.
(4) It can be easily obtained from (3).
(5) By using (4) and (2), we have δ(0) = 0∧δ(0) = 0. Hence, we get δ(δ(υ)∗υ) =

δ(0) = 0 for all υ ∈ Υ.
(6) Let υ, ω, η ∈ Υ. Then, we get

∆(υ ∗ ω, η) = (υ ∗∆(ω, η)) ∧ (∆(υ, η) ∗ ω)
= (∆(υ, η) ∗ ω) ∗ ((∆(υ, η) ∗ ω) ∗ (υ ∗∆(ω, η)))

and

∆(υ ∗ ω, η) ∗ (υ ∗∆(ω, η))

= [(∆(υ, η) ∗ ω) ∗ ((∆(υ, η) ∗ ω) ∗ (υ ∗∆(ω, η)))] ∗ (υ ∗∆(ω, η))

= 0.

Therefore, we get ∆(υ ∗ ω, η) ⩽ υ ∗∆(ω, η) for all υ, ω, η ∈ Υ, as required.
(7) Let υ, ω ∈ Υ. By using (1), we have

∆(δ(υ), ω) = δ(υ) ∧∆(δ(υ), ω)

= ∆(δ(υ), ω) ∗ (∆(δ(υ), ω) ∗ δ(υ))

and

∆(δ(υ), ω) ∗ δ(υ) = (∆(δ(υ), ω) ∗ (∆(δ(υ), ω) ∗ δ(υ))) ∗ δ(υ)
= 0.

□

Proposition 3.4. Let Υ be an edge d-algebra and ∆ be a (l,r)-symmetric bi-
derivation on Υ. Then, for all υ, ω, η ∈ Υ

(1) ∆(υ, ω) = ∆(υ, ω) ∧ υ
(2) δ(υ) = δ(υ) ∧ υ
(3) ∆(υ ∗ ω, η) ⩽ ∆(υ, η) ∗ ω.
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Proof. (1) Let υ, ω ∈ Υ. Using Proposition 3.1, we get

∆(υ, ω) = ∆(υ ∗ 0, ω)
= (∆(υ, ω) ∗ 0) ∧ (υ ∗∆(0, ω))

= ∆(υ, ω) ∧ υ.

(2) Since δ is the trace of ∆, the proof is obtained from (1).
(3) Let υ, ω, η ∈ Υ. Hence, we get

∆(υ ∗ ω, η) = (∆(υ, η) ∗ ω) ∧ (υ ∗∆(ω, η))

= (υ ∗∆(ω, η)) ∗ ((υ ∗∆(ω, η)) ∗ (∆(υ, η) ∗ ω))

and so

∆(υ ∗ ω, η) ∗ (∆(υ, η) ∗ ω)
= [(υ ∗∆(ω, η)) ∗ ((υ ∗∆(ω, η)) ∗ (∆(υ, η) ∗ ω))] ∗ (∆(υ, η) ∗ ω)
= 0.

It implies that ∆(υ ∗ ω, η) ⩽ ∆(υ, η) ∗ ω for all υ, ω, η ∈ Υ. □

example 3.3. Let Υ = {0, υ, ω, η} be a d-algebra in which the operation is
defined as follows:

∗ 0 υ ω η
0 0 0 0 0
υ υ 0 υ 0
ω ω ω 0 0
η ω ω ω 0

Let ∆ : Υ×Υ → Υ by

∆(x, y) =

{
υ, (x, y) = (η, η)
0, otherwise

.

It is easy to check that ∆ is both a (l,r) symmetric bi-derivation and a (r,l) sym-
metric bi-derivation on Υ. We remark that Υ is not an edge d-algebra. On the other
hand, δ(η) = υ ̸= δ(η) ∧ η = υ ∧ η = ω and ∆(0, η) = 0 ̸= ∆(0, η) ∧ η = 0 ∧ η = ω.
Therefore, in Proposition 3.3 and Proposition 3.4 the condition of edge cannot be
omitted.

Proposition 3.5. Let Υ be an edge d-algebra and ∆ be a (r,l)-symmetric bi-
derivation on Υ. If there exists υ ∈ Υ such that υ ⩽ ∆(ω, η) for all ω, η ∈ Υ, then
υ ⩽ ω.

Proof. Assume that there exists υ ∈ Υ such that υ ⩽ ∆(ω, η) for all ω, η ∈ Υ.
By Proposition 3.3(1), we get υ ⩽ ∆(ω, η) ∗ (∆(ω, η) ∗ ω) and υ ∗ ω ⩽ (∆(ω, η) ∗
(∆(ω, η) ∗ ω)) ∗ ω which implies that υ ∗ ω = 0. Thus, we have υ ⩽ ω. □

Definition 3.4. Let Υ be a d-algebra and B be a non-empty subset of Υ. Then,
B is said to be ∆-invariant if
∆(B,B) ⊆ B, where ∆(B,B) = {∆(ω1, ω2)|ω1, ω2 ∈ B}.
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Proposition 3.6. Let ∆ be a (r,l)-symmetric bi-derivation of an edge d-algebra
Υ. Then, every d-ideal B of Υ is ∆-invariant.

Proof. Let η ∈ ∆(B,B). Thus, we have η = ∆(ω1, ω2) for some ω1, ω2 ∈ B.
By Proposition 3.3(3), we get ∆(ω1, ω2) ⩽ ω1 and so ∆(ω1, ω2)∗ω1 = 0. Since B is a
d-ideal and ω1 ∈ B, we have ∆(ω1, ω2) = η ∈ B. Thus, we obtain ∆(B,B) ⊆ B. □

Definition 3.5. Let Υ be a d-algebra and ∆ be a (l,r)-(or (r,l)-)symmetric
bi-derivation of Υ. For a fixed element υ ∈ Υ, we define a map δυ : Υ → Υ by
δυ(ω) = ∆(υ, ω) for all ω ∈ Υ.

Theorem 3.1. Let Υ be a d-algebra and ∆ be a (l,r)-(resp. (r,l)-)symmetric
bi-derivation of Υ. Then, the map δυ defined in Definition 3.5 is a (l,r)-(resp.
(r,l)-) derivation of Υ for all υ ∈ Υ.

Proof. For all ω, η ∈ Υ, we have

δυ(ω ∗ η) = ∆(υ, ω ∗ η)
= (∆(υ, ω) ∗ η) ∧ (ω ∗∆(υ, η))

= (δυ(ω) ∗ η) ∧ (ω ∗ δυ(η)).
□

Definition 3.6. Let Υ be a d-algebra and ∆ be a (l,r)-(or (r,l)-)symmetric
bi-derivation of Υ and δ be the trace of ∆. We define a subset Kerδ(Υ) of Υ by
Kerδ(Υ) = {υ ∈ Υ| δ(υ) = 0}.

Theorem 3.2. Let Υ be an edge d-algebra and ∆ be a (l,r)-(or (r,l)-)symmetric
bi-derivation of Υ and δ be the trace of ∆. Then Kerδ(Υ) is a d-subalgebra of Υ.

Proof. Since δ(0) = 0, we have 0 ∈ Kerδ(Υ) and so Kerδ(Υ) ̸= ∅. Let
υ, ω ∈ Kerδ(Υ). Thus, we have δ(υ) = δ(ω) = 0. By using the definition of
(l,r)-symmetric bi-derivation, we have

δ(υ ∗ ω) = ∆(υ ∗ ω, υ ∗ ω)
= (∆(υ, υ ∗ ω) ∗ ω) ∧ (υ ∗∆(ω, υ ∗ ω))
= [((δ(υ) ∗ ω) ∧ (υ ∗∆(υ, ω))) ∗ ω]

∧[υ ∗ ((∆(ω, υ) ∗ ω) ∧ (υ ∗ δ(ω)))]
= 0 ∧ [υ ∗ ((∆(ω, υ) ∗ ω) ∧ υ]

= 0.

Therefore, Kerδ(Υ) is a d-subalgebra of Υ. □

example 3.4. Υ = {0, υ, ω, η} be a d-algebra in which the operation is defined
as follows:

∗ 0 υ ω η
0 0 0 0 0
υ υ 0 0 υ
ω ω ω 0 0
η η 0 η 0
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Define a map ∆ : Υ×Υ → Υ by

∆(x, y) =

{
η, (x, y) = (η, η)
0, otherwise

.

Then we can see that ∆ is a both (r,l)- and (l,r)-symmetric bi-derivation and
Kerδ(Υ) = {0, υ, ω}. Since η ∗ υ ∈ Kerδ(Υ) and υ ∈ Kerδ(Υ) but η /∈ Kerδ(Υ),
we have Kerδ(Υ) is not a d-ideal.

Theorem 3.3. Let ∆ be a (r,l)-(resp. (l,r)-)symmetric bi-derivation of d-
algebra (resp. edge d-algebra) Υ and δ be the trace of ∆. If υ ∈ Υ and ω ∈ Kerδ(Υ),
then υ ∧ ω ∈ Kerδ(Υ) (resp. ω ∧ υ ∈ Kerδ(Υ)).

Proof. Suppose that ∆ is a (r,l)-symmetric bi-derivation of Υ. Let υ ∈ Υ
and ω ∈ Kerδ(Υ). Then, we have δ(ω) = 0 and

δ(υ ∧ ω) = ∆(υ ∧ ω, υ ∧ ω)

= ∆(υ ∧ ω, ω ∗ (ω ∗ υ))
= (ω ∗∆(υ ∧ ω, ω ∗ υ)) ∧ (∆(ω, υ ∧ ω) ∗ (ω ∗ υ))
= (ω ∗∆(υ ∧ ω, ω ∗ υ)) ∧ (∆(ω, ω ∗ (ω ∗ υ)) ∗ (ω ∗ υ))
= (ω ∗∆(υ ∧ ω, ω ∗ υ)) ∧ [((ω ∗∆(ω, ω ∗ υ)) ∧ (δ(ω) ∗ (ω ∗ υ))) ∗ (ω ∗ υ)]
= (ω ∗∆(υ ∧ ω, ω ∗ υ)) ∧ 0

= 0.

Therefore, we get υ ∧ ω ∈ Kerδ(Υ) for all υ ∈ Υ and ω ∈ Kerδ(Υ). □

example 3.5. Υ = {0, υ, ω, η} be a d-algebra (not an edge d-algebra) in which
the operation is defined as follows:

∗ 0 υ ω η
0 0 0 0 0
υ υ 0 0 ω
ω ω ω 0 0
η η η υ 0

Define a map ∆ : Υ×Υ → Υ by

∆(x, y) =

{
η, (x, y) = (η, η)
0, otherwise

.

Then we can see that ∆ is a both (r,l)- and (l,r)-symmetric bi-derivation. In the
conditions of Theorem 3.3 for (l,r)-symmetric bi-derivations, the edge condition
cannot be removed. Because η ∈ Υ and ω ∈ Kerδ(Υ) but ω ∧ η = η /∈ Kerδ(Υ).

Definition 3.7. Let ∆ be a (l,r)-(or (r,l)-) symmetric bi-derivation of a d-
algebra Υ. For a fixed element η ∈ Υ, we define a set Fix∆(Υ) = {υ ∈ Υ|∆(υ, η) = υ}.

Proposition 3.7. Let ∆ be a (l,r)-(or (r,l)-)symmetric bi-derivation on an
edge d-algebra Υ. Then Fix∆(Υ) is a d-subalgebra of Υ.
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Proof. Since ∆(0, η) = 0, we get 0 ∈ Fix∆(Υ) and so Fix∆(Υ) ̸= ∅. Let
υ, ω ∈ Fix∆(Υ). Thus,

∆(υ ∗ ω, η) = (∆(υ, η) ∗ ω) ∧ (υ ∗∆(ω, η))

= (υ ∗ ω) ∧ (υ ∗ ω)
= υ ∗ ω.

Therefore, υ ∗ ω ∈ Fix∆(Υ) and so Fix∆(Υ) is a d-subalgebra of Υ. □

example 3.6. Υ = {0, υ, ω, η} be a d-algebra in which the operation is defined
as follows:

∗ 0 υ ω η
0 0 0 0 0
υ υ 0 υ 0
ω ω ω 0 0
η η η 0 0

Define a map ∆ : Υ×Υ → Υ by

∆(x, y) =

{
ω, (x, y) ∈ {(ω, η), (η, ω)}
0, otherwise

.

Then we can see that ∆ is a (r,l)-symmetric bi-derivation but it is not a (l,r)-
symmetric bi-derivation. Because

∆(η ∗ υ, ω) = (η ∗∆(υ, ω)) ∧ (∆(η, ω) ∗ υ) = η ∗ ω = ω

and

∆(η ∗ υ, ω) = (∆(η, ω) ∗ υ) ∧ (η ∗∆(υ, ω)) = ω ∗ η = η.

Moreover, and Fix∆(Υ) = {0, ω}. Since η ∗ ω ∈ Fix∆(Υ) and ω ∈ Fix∆(Υ) but
η /∈ Fix∆(Υ), we have Fix∆(Υ) is not a d-ideal.

Proposition 3.8. Let ∆ be a (l,r)-(or (r,l)-)symmetric bi-derivation on an
edge d-algebra Υ. If υ, ω ∈ Fix∆(Υ), then υ ∧ ω ∈ Fix∆(Υ).

Proof. Let υ, ω ∈ Fix∆(Υ). Hence, we get

∆(υ ∧ ω, η) = ∆(ω ∗ (ω ∗ υ), η)
= (∆(ω, η) ∗ (ω ∗ υ)) ∧ (ω ∗∆(ω ∗ υ, η))
= (ω ∗ (ω ∗ υ)) ∧ (ω ∗ ((∆(ω, η) ∗ υ) ∧ (ω ∗∆(υ, η))

= (υ ∧ ω) ∧ (ω ∗ ((ω ∗ υ) ∧ (ω ∗ υ)))
= (υ ∧ ω) ∧ (υ ∧ ω)

= υ ∧ ω.

□
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6. K. Iséki, An algebra related with a propositional calculus. Proceedings of the Japan Academy,

42(1) (1966), 26–29.
7. Y.B. Jun and X. L. Xin, On derivations of BCI-algebras. Information Sciences, 159(3-4)

(2004), 167–176.
8. N. Kandaraj and M. Chandramouleeswaran, On Left derivations of d-algebras. Int. J Math.

Arch, 3(11) (2012), 3961–3966.

9. Y.H. Kim, Some derivations on d-algebras. International Journal of Fuzzy Logic and Intelligent
Systems, 18(4) (2018), 298–302.
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