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ALMOST PRIME IDEALS IN Γ−SEMIRINGS

Hitesh Kumar Ranote

Abstract. In this paper, we generalize the results of almost prime ideals in

a commutative Γ−semiring which are analogues to the results of almost prime
ideals in commutative semirings. Further, we investigate the results regarding

k-ideals, k-closure and local Γ−semirings. Finally, we prove a characterization

theorem for n-almost prime ideals in Γ−semirings.

1. Introduction

The algebraic structure of a semiring, which is a common generalization of
a ring was first introduced by Vandiver [15] in 1934. But non-trivial examples of a
semiring appeared in the theory of commutative ideals of a ring studied by Dedekind
in the 19th century. Despite the great efforts of some mathematicians on semiring
theory in 1940, 1950 and early 1960, they were apparently not successful at drawing
the attention of mathematical society to consider semiring theory as a serious line
of mathematical research. Actually, it was in the late 1960 that semiring theory was
considered a more important topic for research when real applications were found
for semirings. Semirings are useful in the areas of theoretical computer science as
well as in the solutions of graph theory in particular for studying automata theory,
coding theory and formal languages. Semiring theory has many applications in
other branches. A natural example of a semiring that is not a ring is the set of
all non-negative integers under the usual addition and multiplication. In 1995,
Rao [8] first introduced the concept of a Γ− semiring. The important reason for
the development of Γ− semirings is a generalization of the results of rings, Γ− rings,
semirings, semi-groups and ternary semirings. The set of all negative integers Z−

is not a semiring with respect to usual addition and multiplication, but Z− forms

2010 Mathematics Subject Classification. Primary 16Y60; Secondary 46J20.

Key words and phrases. k-ideals, Q-ideal, k-closure, local Γ− semiring, almost prime ideals.
Communicated by Dusko Bogdanic.

31



32 RANOTE

a Γ− semiring where Γ = Z. However, the properties of ideals in semirings and
Γ− semirings are somewhat different from the properties of the usual ring ideals.
In order to address these differences, the concept of k-ideals in a semiring was
introduced and considered by Torre [7] in 1965.

Bhatwadekar and Sharma [5] introduced the concept of almost prime ideals in
commutative rings with non-zero identity, which arises from the study of factor-
ization in Noetherian domains. Anderson and Smith [2] introduced the notion of
weakly prime ideals that arise from the study of factorization in commutative rings
with zero divisors. The concept of almost prime ideals over a commutative semiring
with identity is studied by Atani [3]. In this paper, we generalize these results in
almost prime ideals over a commutative Γ− semiring with identity. Further, we
study the relationship between almost prime ideals and weakly prime ideals in Γ−
semirings and provide several equivalent conditions for an ideal of a Γ− semiring to
be almost prime, which are analogous to conditions for an ideal to be prime. This
study actually aims to generalize several findings about virtually prime ideals and
weakly prime ideals from commutative semirings to commutative Γ− semirings.

2. Preliminaries

In this section, we examine some of the basic definitions and fundamental
concepts that are important to this paper. R represents a Γ− semiring throughout
this paper.

Definition 2.1. [8] Let R and Γ be two additive commutative semigroups.
Then R is called a Γ− semiring if there exists a mapping R× Γ×R → R denoted
by xαy for all x, y ∈ R and α ∈ Γ satisfying the following conditions:

(1) (x+ y)αz = xαz + yαz.
(2) x(α+ β)z = xαz + xβz.
(3) xα(y + z) = xαy + xαz.
(4) (xαy)βz = xα(yβz) for all x, y, z ∈ R and α, β ∈ Γ.

Definition 2.2. [10] A Γ− semiring R is said to have a zero element if
0γx = 0 = xγ0 and x+ 0 = x = 0 + x for all x ∈ R and γ ∈ Γ.

Definition 2.3. [10] A Γ− semiring R is said to have an identity element if
for all x ∈ R, there exists α ∈ Γ such that 1αx = x = xα1.

Definition 2.4. [8] A Γ− semiring R is said to be commutative if xγy = yγx
for all x, y ∈ R and for all γ ∈ Γ.

Definition 2.5. [6] A Γ− semiring R with a zero element is said to be right
(left) multiplicative cancellable if for all a, b, c ∈ R and α ∈ Γ we have that a ̸= 0,
aαb = aαc and bαa = cαa implies b = c.

Definition 2.6. [10] An element x of a Γ− semiring R is said to be multi-
plicative Γ− idempotent if there exists γ ∈ Γ such that x = xγx. If every element
of R is multiplicative Γ− idempotent then R is called multiplicative Γ− idempotent
Γ− semiring.
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Definition 2.7. [6] A non empty subset I of R is said to be a left (right) ideal
of R if I is sub semigroup of (R,+) and xαy ∈ I(yαx ∈ I) for all y ∈ I, x ∈ R and
α ∈ Γ. If I is both a left and right ideal of R, then I is known to be an ideal of R.

Definition 2.8. [6] An ideal I of a Γ− semiring R is called k-ideal if for
x, y ∈ R, x+ y ∈ I and y ∈ I implies that x ∈ I.

Definition 2.9. [11] A proper ideal M of a Γ− semiring R is said to be
maximal (resp. k-maximal) ideal if there does not exist any other proper ideal (resp.
k-ideal) of R containing M properly.

Definition 2.10. [6] Let R be a Γ− semiring and J be an ideal of R. Then
the k-closure of J is denoted by cl(J) and defined by cl(J) = {x ∈ R : x+ j ∈ J for
some j ∈ J}.

Definition 2.11. [6] Let R be a Γ− semiring. An ideal P of R is a prime
ideal if for any two ideals A and B of R such that AΓB ⊆ P implies that either
A ⊆ P or B ⊆ P .

Definition 2.12. A Γ− semiring R is said to be Γ− semidomain if x, y ∈ R
and α ∈ Γ such that xαy = 0, then either x = 0 or y = 0.

Remark 2.1. All through here, R will signify with “0” and “1” as zero and
identity element except if in any case expressed.

3. Almost prime ideals in a Γ−semiring

In this section, we investigate the properties of almost prime ideals and
prove some results.

Definition 3.1. Let R be a commutative Γ− semiring. A proper ideal M of R
is said to be an n-almost prime (n ⩾ 2) ideal of R in which m ∈ M or n ∈ M and
α ∈ Γ such that mαn ∈ M − (MΓ)n−1M . In particular, the almost prime ideals
are just the 2-almost prime ideals.

example 3.1. Let R = (Z10,+10) be an additive commutative semigroup of
addition modulo 10 and Γ = {0, 2, 4}. Then R is a Γ− semiring, since the function
R×Γ×R → R with (x, α, y) → (xαy) usual under scalar multiplication of integers
is well defined and satisfied all the properties, where x, y ∈ R,α ∈ Γ. Let M =
2Z10 = {0, 2, 4, 8} and let MΓM = {0, 6}, then M −MΓM = {2, 4, 8}. As 1, 2 ∈ R
and 4 ∈ Γ such that 1.4.2 = 8 ∈ M − MΓM , where 2 ∈ M . Therefore, M is an
almost prime ideal in R.

Definition 3.2. [9] An ideal P of Γ− semiring R is said to be a weakly prime
ideal if 0 ̸= xαy ∈ P , α ∈ Γ implies x ∈ P or y ∈ P .

Every prime ideal is weakly prime, but converse need not be true.

example 3.2. Let R = (Z6,+6) be an additive commutative semigroup of ad-
dition modulo 6 and Γ = {0, 2, 4}. Then R is a Γ− semiring. If P = {0}, then it
is a weakly prime ideal by definition but it is not prime, since 1, 3 ∈ R and 2 ∈ Γ
such that 1.2.3 = 0 ∈ P , where neither 1 ∈ P nor 3 ∈ P
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Definition 3.3. [6] Let R be a Γ− semiring. An ideal J of R is said to be a
partitioning ideal (Q− ideal) if there exists a subset Q of R such that:

(1) R = ∪{q + J : q ∈ Q}.
(2) If q1, q2 ∈ Q, then (q1 + J) ∩ (q2 + J) ̸= ϕ if and only if q1 = q2.

Let J be a Q-ideal of Γ− semiring R and let R/J = {q + J : q ∈ Q}, then
R/J form a Γ− semiring under the binary operations ⊕,⊙ defined as follows:
((q1 + J) ⊕ (q2 + J)) = q3 + J , where q3 ∈ Q is the unique element such that
q1 + q2 + J ⊆ q3 + J and ((q1 + J) ⊙ α ⊙ (q2 + J)) = q4 + J , where q4 ∈ Q is the
unique element such that q1αq2 + J ⊆ q4 + J for all α ∈ Γ. This Γ− semiring R/J
is called the quotient Γ− semiring of R by J [6].

Lemma 3.1. [9] Let R be a Γ− semiring.

(1) If an ideal of R is the union of two k-ideals, then it is equal to one of
them.

(2) Let J and K be ideals of R with J being a k-ideal and x ∈ R. Then
(I : J) = {r ∈ R : rΓK ⊆ J}, (0 : x) and (J : x) are k-ideals of R.

Theorem 3.1. Let R be a Γ− semiring. Then every weakly prime k-ideal of R
is an almost prime ideal.

Proof. Let M be a weakly prime k-ideal of R. Assume that x, y ∈ R and
α ∈ Γ such that xαy ∈ M −MΓM with x /∈ M . Obviously, M ∪ (0 : x) ⊆ (M : x).
Suppose z ∈ (M : x). If zαx ̸= 0, then M is weakly prime, giving z ∈ M . If
zαx = 0, then we have z ∈ (0 : x). Thus, M ∪ (0 : x) = (M : x). Therefore by
Lemma 3.1 (i), either (M : x) = M or (M : x) = (0 : x). As y /∈ (0 : x) and
y ∈ (M : x). Hence, y ∈ M . □

Theorem 3.2. [6] Let R be a commutative Γ− semiring with zero element
and J be a Q-ideal in R. If a ∈ Q and a+ J is the zero in R/J , then a+ J = J .

Theorem 3.3. Let R be a Γ− semiring and J be a proper Q-ideal of R. Then
J is prime if and only if R/J is a Γ− semidomain.

Proof. Let p be the unique element in Q such that p+ J is the zero in R/J .
Let J be a prime ideal of R and p1 + J and p2 + J be elements of R/J in such
a way that (p1 + J) ⊙ α ⊙ (p2 + J) = p + J where p1, p2 ∈ Q,α ∈ Γ. If p1 ∈ J ,
then p1 ∈ (p + J) ∩ (p1 + J). Hence p1 + J = p + J . Let p1 /∈ J . Assume that
p1αp2+J ⊆ p+J , α ∈ Γ, so p+a = p1αp2+ b ∈ p+J = J and gives p1αp2 ∈ J for
some a, b ∈ J . Since J is prime, p2 ∈ J = p+ J . Therefore, p2 ∈ (p2 + J)∩ (p+ J)
and it follows that p2+J = p+J . Hence, R/J is a Γ− semidomain. Conversely, let
R/J be a Γ− semidomain. Assume that x, y ∈ R and α ∈ Γ such that xαy ∈ J with
x /∈ J . Then by Theorem 3.2, we have xαy ∈ p + J and x /∈ p + J = J . As J is a
Q-ideal of R, then p1, p2 ∈ Q such that x+J ⊆ p1+J and y+J ⊆ p2+J . Therefore,
x = p1+ i and y = p2+ j for some i, j ∈ J . Since x ∈ p1+J and x /∈ p+J , we have
p1 + J ̸= p + J . It is easy to prove that xαy ∈ p1αp2 + J . Let p3 be the unique
element in Q such that p1αp2+J ⊆ p3+J . Since xαy ∈ (p+J)∩ (p3+J), we must
have p = p3 and (p1 + J)⊙ α ⊙ (p2 + J) = p+ J . Hence y ∈ p2 + J = p+ j = J ,
as R/J is a Γ− semidomain. Therefore, J is prime. □
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Corollary 3.1. Let R be a Γ− semiring. Then {0} is prime if and only if R
is Γ− semidomain.

Proof. It follows from Theorem 3.3, since {0} is a Q-ideal of R ∼= R/{0} with
Q = R.

□

Definition 3.4. [6] Let R be a Γ− semiring with non-zero identity. A non-
zero element x of R is said to be a semi-unit in R. If there exist r, s ∈ R and
α, β ∈ Γ such that 1 + rαx = sβx.

Definition 3.5. [6] A Γ− semiring R is said to be local Γ− semiring if and
only if R has a unique maximal k-ideal.

Moreover, a is a semi-unit of R if and only if a lies outside each maximal k-ideal
of R ( [6], Lemma 4.9). Let I be a proper Q-ideal of a Γ− semiring R, then there
exists a maximal k-ideal M of R with I ⊆ M ( [6], Theorem 4.4). The ideal {0}
is always weakly prime and hence almost prime by Theorem 3.1, but it is prime
if and only if R is a Γ− semidomain by Corollary 3.1. Thus, weakly prime ideals
and almost prime ideals need not be prime ideals. Moreover, an idempotent ideal
I(I = IΓI) is almost prime. We next give a non-trivial example of an almost prime
ideal which is not a prime.

example 3.3. Let (R,M) be a local Γ− semiring with MΓM = 0. Let J be a
proper k-ideal of R such that 0 ̸= xαy ∈ J, α ∈ Γ. Since MΓM = 0 and xαy ̸= 0,
either x or y does not lie in M. If x /∈ M , then x is a semi-unit. Thus, for some
r, s ∈ R and α, β ∈ Γ such that 1 + rαx = sβx. Therefore, (1 + rαx)γy = (sβx)γy
implies that 1γy + (rαx)γy = (sβx)γy. As J is a k-ideal of R, so y ∈ J . Hence,
every proper k-ideal of J is weakly prime ideal and hence almost prime. While, if
J ⊂ M , J is not prime, since M is the unique prime k-ideal of R.

Theorem 3.4. Let R be a Γ− semiring. If J and K are k-ideals of R with
JΓK = J ∩K, then JΓK is a k-ideal of R.

Proof. It is sufficient to show that JΓK = cl(JΓK). As, it is clear that
JΓK ⊆ cl(JΓK). We will now show the reverse inclusion. Assume that y ∈
cl(JΓK), then y + j = k for some j, k ∈ JΓK. Therefore, y ∈ J ∩K = JΓK. □

Theorem 3.5. Let J be a Q-ideal of R and M be a k-ideal of R such that
J ⊆ M . Then M/J = {q + J : q ∈ M ∩Q} is a k-ideal of R/J .

Proof. Let p be the unique element of Q such that p+ J is the zero in R/J .
We first prove that p+ J ∈ M/J . Let x ∈ M ∩Q such that x+ J ∈ M/J ⊆ R/J .
Then (x+J)⊕(p+J) = x+J where x+p+J ⊆ x+J implies that x+p+j = x+k
for some j, k ∈ J . As M is a k-ideal of R, p ∈ M ∩ Q. Therefore, p + J ∈ M/J .
Let p1, p2 ∈ M ∩ Q such that p1 = p′1 + J, p2 = p′2 + J ∈ M/J , then there exists
a unique element p3 ∈ Q with p1 + p2 = p3 + J and p1 + p2 + J ⊆ p3 + J . Thus,
p1 + p2 + l = p3 +m ∈ M for some l,m ∈ J . Hence, p3 ∈ Q ∩M , as M is a k-ideal
of R. Therefore, p1 + p2 ∈ M/J . It is sufficient to prove that if r + J ∈ R/J and
x+ J ∈ M/J where r ∈ Q, x ∈ M ∩Q, then (r + J)⊙ α ⊙ (x+ J) ∈ M/J, α ∈ Γ.
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There exists a unique element p4 ∈ Q such that (r+J)⊙α⊙(x+J) = p4+J, α ∈ Γ
and rαx + J ⊆ p4 + J so rαx + a = p4 + b ∈ M for some a, b ∈ J . Consequently,
p4 ∈ M ∩Q. Therefore, p4 + J ∈ M/J . Thus, M/J is an ideal of R/J . Finally, let
y + J ∈ M/J and (y + J) ⊕ (z + J) = w + J ∈ M/J where y, w ∈ M ∩ Q, z ∈ Q
and y + z + J ⊆ w+ J . Then y + z + c = w+ d ∈ M for some c, d ∈ J . Since M is
a k-ideal of R, thus w ∈ M ∩Q. Therefore, w + J ∈ M/J . □

Theorem 3.6. Let R be a Γ− semiring. Then the following holds:.

(1) If I and J are k-ideals of R, then I + J is a k-ideal of R.
(2) An intersection of a family of k-ideals of R is a k-ideal.

Proof. The proof is straightforward. □

Theorem 3.7. Let J be a Q-ideal of R and M be an almost prime ideal of R
with J ⊆ M . If MΓM is a k-ideal of R, then M/J is an almost prime ideal of
R/J .

Proof. By Theorem 3.5, M/J = {q+ J : q ∈ M ∩Q} is a k-ideal of R/J . By
Theorem 3.6, MΓM + J is a k-ideal of R. We first prove that (MΓM + J)/J =

(M/J)Γ(M/J). Let xj , yj ∈ M/J and αj ∈ Γ such that Z =
n∑

j=1

xjαjyj ∈

(M/J)Γ(M/J). It is sufficient to prove that xjαjyj ∈ (MΓM + J)/J , for all
j (1 ⩽ j ⩽ n). As J is a Q-ideal of R, xj = qj + J and yj = q′j + J for some
qj , q

′
j ∈ Q ∩M . Then there is a unique element p ∈ Q such that xjαjyj = p + J

where qjαjq
′
j+J ⊆ p+J . Consequently, qjαjq

′
j+l = p+k for some k, l ∈ J . There-

fore, p ∈ (MΓM+J)∩Q and so xjαjyj ∈ (MΓM+J)/J . Hence, (M/J)Γ(M/J) ⊆
(MΓM+J)/J . For the reverse inclusion, suppose that q+J ∈ (MΓM+J)/J , where

q ∈ (MΓM + J) ∩ Q. Then q =

m∑
j=1

zjαjwj + a for some zj , wj ∈ M(1 ⩽ j ⩽ m)

and a ∈ J . Since J is a Q-ideal of R and M is a k-ideal of R, then there exist

uj , vj ∈ M ∩ Q such that q =

m∑
j=1

ujαjvj + b, for some b ∈ J, αj ∈ Γ. An inspec-

tion will show that q + J =
m∑
j=1

(uj + J) ⊙ αj ⊙ ((vj + J) ∈ (M/J)Γ(M/J). Let

m1+J,m2+J ∈ R/J such that (m1+J)⊙α⊙(m2+J) ∈ (M/J)−(M/J)Γ(M/J),
where m1,m2 ∈ Q. Then there is a unique element m3 ∈ Q such that m1αm2+J ⊆
m3 + J ∈ M/J − (MΓM + J)/J , so m3 ∈ M ∩ Q. Hence, m1αm2 ∈ M and
m1αm2 /∈ MΓM + J and then m1αm2 /∈ MΓM . Hence, m1 ∈ M or m2 ∈ M , as
M is an almost prime. Therefore, m1 + J ∈ M/J or m2 + J ∈ M/J . □

Definition 3.6. Let R be a Γ− semiring and J be a Q-ideal of R. An element
x ∈ R is called a zero divisor in R/J if there exists y ∈ R− J and α ∈ Γ such that
xαy ∈ J .

Definition 3.7. An ideal J of a Γ− semiring R is said to be an invertible ideal
if there is an ideal K of R such that JΓK = R.
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Note that, if an ideal J of a Γ− semiring R is invertible and JΓK = R, for
some ideal K of R, then K is unique and we denote that by J−1.

Theorem 3.8. Let R be a Γ− semiring and M be an n-almost prime Q-ideal
of R such that (MΓ)n−1M is a k-ideal. Then the following holds:

(1) If r ∈ R is a zero divisor in R/M then either r ∈ M or rΓM ⊆
(MΓ)n−1M .

(2) If for any ideal J of R, J ⊆ M and J consists of zero divisors on R/M ,
then JΓ(MΓ)n−2M = (MΓ)n−1M .

(3) If M is invertible, then M is a prime k-ideal of R.

Proof. (i) Let rαs ∈ M for some s ∈ R − M and α ∈ Γ. Assume that
r /∈ M . As M is an n-almost prime, then rαs ∈ (MΓ)n−1M . It is sufficient
to prove that rαm ∈ (MΓ)n−1M , for all m ∈ M . Since every Q-ideal is a k-
ideal, so assume that m ∈ M , then m + s /∈ M and rα(m + s) ∈ M . Therefore,
rα(m + s) = rαm + rαs ∈ (MΓ)n−1M , as M is n-almost prime. It follows that,
rαs ∈ (MΓ)n−1M , rαm ∈ (MΓ)n−1M , since (MΓ)n−1M is a k-ideal. Hence,
rΓM ⊆ (MΓ)n−1M .

(ii) Let j ∈ J and m ∈ (MΓ)n−2M . It is sufficient to show that jαm ∈
(MΓ)n−1M . Since j is a zero divisor in R/M , then by (i) either j ∈ M or jΓM ⊆
(MΓ)n−1M . If j ∈ M , then the result is obvious. Assume that jΓM ⊆ (MΓ)n−1M .
Hence, jαm ∈ jΓ((MΓ)n−2M)) ⊆ jΓM ⊆ (MΓ)n−1M , α ∈ Γ.

(iii) Assume that n /∈ M and α ∈ Γ such that mαn ∈ M . If n ∈ M , we
are done. So assume that n /∈ M , then m /∈ M and n /∈ M but mαn ∈ M .
Thus, n is a zero divisor of R/M , then by (i), nΓM ⊆ (MΓ)n−1M . Since M is
invertible, nΓMΓN ⊆ ((MΓ)n−1M)ΓN . Hence, RΓn ⊆ (MΓ)n−2M implies that
n ∈ (MΓ)n−2M ⊆ M , which is a contradiction. Therefore, M is a prime k-ideal of
R. □

Theorem 3.9. Let R be a local Γ− semiring with a unique maximal k-ideal M
and J be a Q-ideal of R such that MΓM ⊆ J ⊆ M and JΓJ is a k-ideal. Then J
is an almost prime if and only if MΓM = JΓJ .

Proof. Let J be an almost prime ideal. Since MΓM ⊆ J , then mαn ∈
MΓM ⊆ J , for all m,n ∈ M and α ∈ Γ. Now, we will prove that mαn ∈ JΓJ . If
mαn /∈ JΓJ , then J is an almost prime givesm ∈ J or n ∈ J . Letm ∈ J , then n /∈ J
otherwise mαn ∈ JΓJ . As nαn ∈ MΓM ⊆ J , α ∈ Γ, n is a zero divisor in R/J ,
Then by Theorem 3.8, mαn ∈ nΓJ ⊆ JΓJ , which is a contradiction. Therefore,
MΓM − JΓJ . Conversely, suppose that MΓM = JΓJ . Let m,n ∈ R and α ∈ Γ
such that mαn ∈ J − JΓJ . If m /∈ M , then it is a semi-unit in R, thus for some
r, s ∈ R and β, γ ∈ Γ such that 1 + rγm = sβm. Hence, (1 + rγm)αn = (sβm)αn
implies that 1αn + rγmαn = sβmαn. Since J is a k-ideal, so n ∈ J . Assume
that m,n ∈ M and α ∈ Γ. In this case mαn ∈ MΓM = JΓJ , which is not true.
Therefore, J is almost prime. □

Theorem 3.10. Let R be a commutative Γ− semiring and x ∈ R. Then
cl(RΓxΓx) = cl(RΓx)Γcl(RΓx). In particular, cl(RΓx)Γcl(RΓx) is a k-ideal of R.
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Proof. Let y ∈ cl(RΓxΓx), then for some m,n ∈ R and α, β, γ ∈ Γ such that
y+mβxαx = nγxαx. Sincemβxαx, nγxαx ∈ cl(RΓx)Γ(RΓx) ⊆ cl(RΓx)Γcl(RΓx).
We have cl(RΓxΓx) ⊆ cl(RΓx)Γcl(RΓx). For the reverse inclusion, suppose that
k ∈ cl(RΓx) and n ∈ R such that l = nβkαk ∈ cl(RΓx)Γcl(RΓx). Then there are
elements u, v ∈ R and α ∈ Γ such that k + uαx = vαx so nδkγk + nδkγuαx +
nδkγuαx+nδuαuγxαx+nδuαuγxαx = nδvαvγxαx+nδuαuγxαx and nδkγuαx+
nδkγuαx+nδuαuγxαx+nδuαuγxαx = nδvαuγxαx+nδvαuγxαx for some α, γ, δ ∈
Γ. Hence, nδkγk+nδvαuγxαx+nδvαuγxαx = nδvαvγxαx+nδuαuγxαx for some
α, γ, δ ∈ Γ. Therefore, x ∈ cl(RΓxΓx). □

Theorem 3.11. Let R be a cancellative Γ− semiring and x ∈ R. Then cl(RΓx)
is an almost prime if and only if cl(RΓx) is a prime ideal of R.

Proof. Let cl(RΓx) be almost prime and mαn ∈ cl(RΓx) for some m,n ∈ R
and α ∈ Γ. Assume that m /∈ cl(RΓx) and n /∈ cl(RΓx). Then cl(RΓx) is an
almost prime gives mαn ∈ cl(RΓx)Γcl(RΓx), Thus, mα(n + x) ∈ cl(RΓx) and
m,n+ x /∈ cl(RΓx), as it is a k-ideal of R. By Theorem 3.10, we have mα(n+ x) ∈
cl(RΓx)Γcl(RΓx) = cl(RΓxΓx). Hence, mαx ∈ cl(RΓxΓx), then for some k, l ∈ R
and α, β ∈ Γ such that mαx+ lαxαx = kβxαx implies that m+ lαx = kβx, which
is a contradiction. Thus, cl(RΓx) is a prime ideal of R. The converse is trivial. □

Theorem 3.12. [9] Let R1 and R2 be Γ1 and Γ2 semirings respectively. If we
define:

(1) (x, y) + (z, w) = (x+ z, y + w)
(2) (x, y)(α, β)(z, w) = (xαz, yβw), for all (x, y), (z, w) ∈ R1×R2 and (α, β) ∈

Γ1 × Γ2. Then R1 ×R2 is a Γ1 × Γ2− semiring.

Theorem 3.13. Let R1 and R2 be Γ = Γ1 × Γ2− semirings. An ideal J of
R = R1 × R2 is an almost prime if and only if J satisfies one of the following
conditions:

(1) J = M1 ×R2 for some almost prime ideal M1 of R1.
(2) J = R1 ×M2 for some almost prime ideal M2 of R2.
(3) J = M1 ×M2 for some idempotent ideals M1 and M2 of R1 and R2.

Proof. Let M1 be an ideal of R1 and M2 be an ideal of R2 such that J =
M1 ×M2 is an almost prime ideal of R. So J ̸= R. We prove this theorem in two
cases.
Case-I: Assume that M2 = R2. It is sufficient to show that M1 is an almost
prime ideal of R1. Let xαy ∈ M1 − M1Γ1M1 for some x, y ∈ R1, α ∈ Γ. Then
(x, 1)(α, β)(y, 1) ∈ (M1 − M1Γ1M1) × R2 = J − JΓJ , α, β ∈ Γ. Hence, J is an
almost prime gives either x ∈ M1 or y ∈ M1. Therefore, M1 is an almost prime
ideal of R1. Similarly, if M1 = R1, then M2 is an almost prime ideal of R2.
Case-II: Assume that M1 ̸= R1 and M2 ̸= R2. If M1 ̸= M1Γ1M1, then x /∈
M1Γ1M1 for some x ∈ M1. Thus (x, 1)(α, β)(1, 0) = (xα1, 0) ∈ J − JΓJ = ((M1 −
M1Γ1M1) × M2) ∪ ((M1 × (M2 − M2Γ2M2)), either 1 ∈ M1 or 1 ∈ M2, which is
a contradiction. By a similar argument, we have M2 = M2ΓM2. Conversely, let
M1 be an almost prime ideal of R1 such that J = M1 × R2. Now, we show that
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J is an almost prime ideal of R. Let (u1, u2), (v1, v2) ∈ R and α, β ∈ Γ such that
(u1αv1, u2βv2) ∈ J − JΓJ = (M1 − M1Γ1M1) × R2, so u1αv1 ∈ M1 − M1Γ1M1.
Hence, M1 is an almost prime gives either u1 ∈ M1 or v1 ∈ M1. Therefore, either
(u1, u2) ∈ J or (v1, v2) ∈ J . Thus J is an almost prime. The similar reason is true
for J = R1 ×M2, where M2 is an almost prime ideal of R2. Finally, suppose that
J = M1 ×M2, where M1 = M1Γ1M1 and M2 = M2Γ2M2. Then J = JΓJ . Hence
J is an almost prime. □

The characterizations of n-almost prime ideals are provided by the following
theorem.

Theorem 3.14. Let R be a Γ− semiring and M be a proper k-ideal of R, then
the following statements are equivalent:

(1) M is n-almost prime.
(2) For x ∈ R−M , (M : x) = M ∪ ((MΓ)n−1M : x).
(3) For x ∈ R−M , (M : x) = M or (M : x) = ((MΓ)n−1M : x).
(4) For an ideals J and K of R with JΓK ⊆ M and JΓK ⊈ (MΓ)n−1M , then

J ⊆ M or K ⊆ M .

Proof. (i) implies (ii). Let m ∈ (M : x) where x ∈ R −M . Then mαx ∈
M,α ∈ Γ. Assume that mαx ∈ (MΓ)n−1M , then m ∈ ((MΓ)n−1M : x). If
mαx /∈ (MΓ)n−1M , then M is n-almost primes gives m ∈ M . Thus, (M : x) ⊆
M ∪ ((MΓ)n−1M : x). For any ideal M, the reverse inclusion is true.
(ii) implies (iii). Follows from Lemma 3.1 (i).
(iii) implies (iv). Let J and K be two ideals of R such that JΓK ⊆ J . Suppose
J ⊈ M and K ⊈ M . Then there exists n ∈ J − M such that nΓK ⊆ M , so
K ⊆ (M : n), but K ⊈ M . Then by (iii), we have (M : n) = ((MΓ)n−1M : n).
Therefore, K ⊆ ((MΓ)n−1M : n) implies that nΓK ⊆ ((MΓ)n−1M : n). By
a similar way, zΓK ⊆ (MΓ)n−1M , for some z ∈ K − M . Furthermore, nαz ∈
(MΓ)n−1M , for all n ∈ J ∩ M , z ∈ K ∩ M and α ∈ Γ. Therefore, JΓK ⊆
(MΓ)n−1M which is a contradiction. Hence, J ⊆ M or K ⊆ M .
(iv) implies (i). Let m,n ∈ R and α ∈ Γ with mαn ∈ M − (MΓ)n−1M . Assume
that J = RΓm and K = RΓn. Then JΓK ⊆ M but JΓK ⊈ (MΓ)n−1M . By (iv),
either J ⊆ M or K ⊆ M . Thus, M is an n-almost prime ideal of R. □
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