## QUASI $B$-ALGEBRAS

Naveen Kumar Kakumanu, B. Tharuni, G.C. Rao, and B. Surendranath Reddy


#### Abstract

In this paper, we introduce the concept of a Quasi $B$-algebra, building upon the foundational work on Post algebras by G. Epstein and the investigation of semi $B$-algebras. We systematically explore the properties of Quasi $B$-algebras, establishing equivalent conditions for the transition from a semi $B$-algebra to a Quasi $B$-algebra.


## 1. Introduction

The remarkable work of Emil L. Post in 1921 paved the way for a comprehensive theory of propositions with the introduction of the Post lattice. This lattice effectively organizes closed classes of Boolean functions and has proven invaluable in practical applications of many-valued logical systems. Post's investigation confirmed the finite basis of each class within the Post lattice, making it a powerful tool for navigating the complexities of Boolean circuits and propositional formulas.

George Epstein further advanced the exploration of Post algebraic characteristics by introducing B-algebras, BL-algebras, and P-algebras. These algebraic systems, each with their unique properties, found applications in various fields, including biological systems and neural science. Specifically, B-algebras and BLalgebras play a critical role in computer science by providing abstractions for specific aspects of Post algebras.

In contrast, A Heyting algebra, named after Arend Heyting, is a bounded lattice equipped with an implication binary operation denoted as $x \rightarrow y$. While Heyting algebras position the implication operation $x \rightarrow y$ within the distributive lattice $A, B$-algebras place $x \Rightarrow y$ in the Boolean center $B$ of the distributive lattice $A$.

[^0]This distinction highlights the specific location of the implication operation within the broader mathematical structure, emphasizing the nuanced behavior of logical operations in Heyting algebras and B-algebras within the context of distributive lattices. The implication operator $\Rightarrow$ plays a significant role in programming and logic, serving as a crucial tool for expressing conditional statements.

Building upon the research of G. Epstein on Post algebras [4]and our previous work on semi B-algebras [8], this paper introduces the concept of a Quasi B-algebra. We explore its properties and establish equivalent conditions for a semi B-algebra to become a Quasi B-algebra. Additionally, we offer additional characterizations of B-algebras, contributing to an enhanced understanding of these algebraic structures in various applications.

## 2. Preliminaries

In this section, we revisit fundamental notations and key foundational results, ensuring the self-contained nature of this paper.

Definition 2.1. [1] An algebra $(A, \vee, \wedge)$ of type $(2,2)$ is called a lattice if it satisfies the following identities.
(i) Idempotency: $x \wedge x=x$ and $x \vee x=x$.
(ii) Commutativity: $x \wedge y=y \wedge x$ and $x \vee y=y \vee x$.
(iii) Associativity: $(x \wedge y) \wedge z=x \wedge(y \wedge z)$ and $(x \vee y) \vee z=x \vee(y \vee z)$.
(iv) Absorption laws: $x \wedge(x \vee y)=x$ and $x \vee(x \wedge y)=x$.

Definition 2.2. [1] A uniquely bounded complemented distributive lattice $\left(A, \vee, \wedge,{ }^{\prime}, 0,1\right)$ is called a Boolean algebra. In other words a Boolean algebra is a Boolean lattice in which 0,1 and '(complementation) are also considered to be fundamental operations.

For a comprehensive exploration of lattice theory, readers are referred to the works of $[\mathbf{1}]$ and $[\mathbf{6}]$. The subsequent definition is extracted from [4].

Definition 2.3. Let $A$ be a distributive lattice with 0,1 and $B$ as the set of all complemented elements of $A$. An algebra $(A, \vee, \wedge, \Rightarrow, 0,1)$ is termed a $B$-algebra if, for all $x, y \in A$, there exists a greatest element $b \in B$ such that $x \wedge b \leqslant y$. Here, the complemented element $b$ is denoted by $x \Rightarrow y$.

For further properties of $B$-algebras, readers are directed to [4].
In our publication [8], we introduced the concept of a semi $B$-algebra and delineated its properties. The ensuing definition was extracted from [8].

Definition 2.4. Let $A$ be a distributive lattice with 0,1 and $B$ as the set of all complemented elements of $A$. An algebra $(A, \vee, \wedge, \Rightarrow, 0,1)$ is deemed a semi $B$-algebra if it satisfies the following conditions for all $x, y \in A$ and $b \in B$
$B_{1}:(x \Rightarrow x)=1$
$B_{2}:(x \wedge(x \Rightarrow b))=x \wedge b$
$B_{3}: b \wedge(x \Rightarrow y)=[b \wedge((b \wedge x) \Rightarrow(b \wedge y))]$
For further properties of semi $B$-algebras, we direct the reader to $[\mathbf{8}]$.

## 3. Quasi $B$-algebras

In this section, we present the concept of a Quasi $B$-algebra and explore its properties. Additionally, we establish equivalent conditions for a semi $B$-algebra to transform into a Quasi $B$-algebra. We commence with the following:

Definition 3.1. Let $A$ be a distributive lattice with elements 0,1 , and $B$ as the set comprising all complemented elements of $A$. An element $x \in A$ is termed $\wedge$-irreducible if, for $y, z \in A$ such that $x=y \wedge z$, it follows that $x=y$ or $x=z$.

Now, we establish the following theorem:
Theorem 3.1. Let $A$ be a semi $B$-algebra with 0,1 and $B$ as the set comprising all complemented elements of $A$. If $x<b \leqslant y$ and $x$ is $\wedge$-irreducible, then for all $x, y \in A$ and $b \in B$,
(i) $b \wedge(x \Rightarrow b)=b \wedge(x \Rightarrow y)$
(ii) $(x \Rightarrow y)=x$ if and only if $(x \Rightarrow b)=x$
(iii) $(0 \Rightarrow 1)=x$ if and only if $(0 \Rightarrow b)=x$
(iv) $(b \Rightarrow x)=x$ if $x \in B$

Proof. Suppose $x<b \leqslant y$ and $x$ is $\wedge$-irreducible.
(i). $(b \wedge(x \Rightarrow b))=\{b \wedge[(x \wedge b) \Rightarrow(b \wedge y)]\} \quad(\because x<b \leqslant y)$

$$
\begin{aligned}
& =\{b \wedge b \wedge(x \Rightarrow y)\}\left(\text { as per } B_{3}\right. \text { in Definition 2.2) } \\
& =\{b \wedge(x \Rightarrow y)\}
\end{aligned}
$$

(ii). Suppose $(x \Rightarrow y)=x$. Then $b \wedge(x \Rightarrow y)=b \wedge x$

$$
\begin{aligned}
& \text { implies } b \wedge(x \Rightarrow b)=x \quad(\because x<b \text { and by (i) }) \\
& \text { implies } x=b \text { or } x=(x \Rightarrow b)(\because x \text { is } \wedge \text {-irreducible }) \\
& \text { implies } x=(x \Rightarrow b)
\end{aligned}
$$

Similarly, we establish the converse.
(iii) Suppose $(0 \Rightarrow 1)=x$.

Then $b \wedge(0 \Rightarrow 1)=b \wedge x$ implies $\{b \wedge[(b \wedge 0) \Rightarrow(b \wedge 1)]\}=x$
implies $(b \wedge(0 \Rightarrow b))=x$
implies $x=b$ or $x=(0 \Rightarrow b)(\because x$ is $\wedge$-irreducible $)$
implies $x=(0 \Rightarrow b)$
Similarly, we establish the converse.
(iv). Suppose $(b \Rightarrow x)=x$. Now $x=(b \wedge x)$

$$
\begin{aligned}
& \qquad x=(b \wedge(b \Rightarrow x)) \\
& \text { implies } x=b \text { or } x=(b \Rightarrow x)(\because x \text { is } \wedge \text {-irreducible }) \\
& \text { implies } x=(b \Rightarrow x)
\end{aligned}
$$

Theorem 3.2. Let $A$ be a semi $B$-algebra with 0,1 and $B$, the set of all complemented elements of $A$. Then, for $b \in B,(0 \Rightarrow 1)=1$ if and only if $b \wedge(0 \Rightarrow$ b) $=b$

Proof. Suppose $(0 \Rightarrow 1)=1$. Then $b \wedge(0 \Rightarrow 1)=b \wedge 1$ implies $b \wedge[(b \wedge 0) \Rightarrow(b \wedge 1)]=b$ implies $b \wedge(0 \Rightarrow b)=b$.
We can readily confirm the converse.

Definition 3.2. Let $A$ be a semi $B$-algebra with 0,1 and $B$, the set of all complemented elements of $A$. Then $A$ is said to be a Quasi $B$-algebra if $((x \Rightarrow$ b) $\wedge b)=b$ for $x \in A, b \in B$.

EXAMPLE 3.1. Let $A=\{0, x, 1\}$ be three element chain and $0,1 \in B$.
Define a binary operation $\Rightarrow$ on $A$ as follows

| $\Rightarrow$ | 0 | $x$ | 1 |
| :---: | :---: | :---: | :---: |
| 0 | 1 | $x$ | 1 |
| $x$ | 0 | 1 | 1 |
| 1 | 0 | $x$ | 1 |

A satisfies all the conditions of both a semi B-algebra and a Quasi B-algebra.
EXAMPLE 3.2. Let $A=\{0, x, 1\}$ be three element chain and $0,1 \in B$.
Define a binary operation $\Rightarrow$ on $A$ as follows

| $\Rightarrow$ | 0 | $x$ | 1 |
| :---: | :---: | :---: | :---: |
| 0 | 1 | 1 | 1 |
| $x$ | 0 | 1 | $x$ |
| 1 | 0 | $x$ | 1 |

Clearly, $A$ is a semi $B$-algebra but not a Quasi $B$-algebra $(\because(x \Rightarrow 1) \wedge 1 \neq 1)$.
Theorem 3.3. Let $A$ be a Quasi $B$-algebra with 0,1 and $B$, representing the set of all complemented elements of $A$. Then, for $x, y \in A, b \in B$, the following conditions hold:
(1) $(x \Rightarrow 1)=1$
(2) $b \leqslant(b \Rightarrow b)$
(3) $b \leqslant(x \Rightarrow b)$ and $((x \Rightarrow b) \wedge b)=b$
(4) $[b \wedge((x \Rightarrow b) \Rightarrow b)]=b$
(5) $[b \wedge(((x \Rightarrow b) \Rightarrow b) \Rightarrow b)]=b$
(6) $(x \Rightarrow y) \wedge[x \Rightarrow(x \Rightarrow y)]=(x \Rightarrow y)$
(7) $[b \wedge((x \wedge y) \Rightarrow b)]=[b \wedge((y \wedge x) \Rightarrow b)]$

Proof. The proof is straightforward and is therefore omitted.
Theorem 3.4. Let $A$ be a semi $B$-algebra with 0,1 and $B$, the set of all complemented elements of $A$. Then $A$ is a Quasi $B$-algebra if and only if $(x \Rightarrow$ 1) $=1$

Proof. Suppose $(x \Rightarrow 1)=1$. Now

$$
\begin{aligned}
b & =b \wedge 1 \\
& =b \wedge(x \Rightarrow 1) \\
& =b \wedge[(b \wedge x) \Rightarrow(b \wedge 1)] \\
& =b \wedge[(b \wedge x) \Rightarrow(b \wedge b)] \\
& =b \wedge(x \Rightarrow b) .
\end{aligned}
$$

Hence, $A$ qualifies as a Quasi $B$-algebra. The converse can be readily confirmed.

## 4. $B$-algebras

As previously mentioned, during the examination of Post algebra properties [4], G. Epstein introduced the concept of $B$-algebra, which holds significance in both logic and computer science. In our work [8], we presented various characterizations of a $B$-algebra. This section delves deeper into additional significant characterizations for a $B$-algebra. The ensuing theorems are extracted from [8].

Theorem 4.1. [8] Let $A$ be a distributive lattice with 0,1 and $B$, the set of all complemented elements of $A$. The algebra $A$ is classified as a $B$-algebra if and only if it adheres to the following conditions: For all $x, y, z \in A$ and $b \in B$,"
(i) $(x \Rightarrow x)=1$
(ii) $((x \Rightarrow b) \wedge b)=b$
(iii) $(x \wedge(x \Rightarrow b))=x \wedge b$
(iv) $(z \Rightarrow(x \wedge y))=(z \Rightarrow x) \wedge(z \Rightarrow y)$
$(\mathrm{v})((x \vee y) \Rightarrow z))=(x \Rightarrow z) \wedge(y \Rightarrow z)$
Throughout this section, we use the notation $A$ to signify a distributive lattice with 0,1 and $B$, representing the set of all complemented elements of $A$, unless explicitly stated otherwise

Theorem 4.2. [8] Let $x, y \in A$ and $b \in B$. Then $A$ is a $B$-algebra if and only if
(i) $(x \wedge(x \Rightarrow b))=x \wedge b$
(ii) $((x \wedge y) \Rightarrow x)=1$
(iii) $(b \wedge(x \Rightarrow y))=(b \wedge[(b \wedge x) \Rightarrow(b \wedge y)])$

In the subsequent three theorems, we establish diverse axiomatizations of $B$-algebras.

Theorem 4.3. Let $x, y \in A$ and $b \in B$. Then $A$ is a $B$-algebra if and only if
i $(x \wedge(x \Rightarrow b)) \leqslant b$
ii $b \wedge(x \Rightarrow y)=(b \wedge[(b \wedge x) \Rightarrow(b \wedge y)])$
iii $((x \wedge y) \Rightarrow y)=1$
Proof. Assuming that $A$ satisfies the provided conditions. Now
$b \wedge(x \Rightarrow b)=b \wedge[(b \wedge x) \Rightarrow(b \wedge b)](\because$ by condition (ii) $)$

$$
=b \wedge[(b \wedge x) \Rightarrow b]
$$

$$
\begin{equation*}
=b .(\because \text { by condition (iii) }) \tag{1}
\end{equation*}
$$

Thus $b \leqslant(x \Rightarrow b)$ and hence $x \wedge b \leqslant(x \wedge(x \Rightarrow b))$
From (i), we have $x \wedge(x \Rightarrow b) \leqslant b$ and hence $(x \wedge(x \Rightarrow b)) \leqslant x \wedge b \ldots$...(2)
Combining equations (1) and (2), we obtain $(x \wedge(x \Rightarrow b))=x \wedge b$. According to Theorem 4.2, this implies that $A$ is a $B$-algebra. The converse follows straightforwardly and is therefore omitted.

Theorem 4.4. Let $x, y, z \in A$ and $b \in B$. Then $A$ is a $B$-algebra if and only if
(i) $(x \Rightarrow x)=1$
(ii) $(x \wedge(x \Rightarrow b)) \leqslant b$
(iii) $b \wedge((b \wedge x) \Rightarrow y) \leqslant(b \wedge(x \Rightarrow y))$
(iv) $x \Rightarrow(y \wedge z)=(x \Rightarrow y) \wedge(x \Rightarrow z)$
(v) $((x \vee y) \Rightarrow z))=(x \Rightarrow z) \wedge(y \Rightarrow z)$

Proof. Assuming that $A$ satisfies the provided conditions.
Now $1=(z \Rightarrow z)=(((x \wedge z) \vee z) \Rightarrow z)$

$$
\begin{aligned}
& =((x \wedge z) \Rightarrow z) \wedge(z \Rightarrow z)(\because \text { conditon }(\mathrm{v})) \\
& =((x \wedge z) \Rightarrow z) \wedge 1(\because \text { conditon }(\mathrm{i}))
\end{aligned}
$$

Therefore $1=((x \wedge z) \Rightarrow z) \ldots(1)$
Now $(b \wedge(x \Rightarrow y))=b \wedge[((b \wedge x) \vee x) \Rightarrow y]$

$$
\begin{aligned}
& =b \wedge[((b \wedge x) \Rightarrow y) \wedge(x \Rightarrow y)](\because \text { conditon }(\mathrm{v})) \\
& =(b \wedge((b \wedge x) \Rightarrow y)) \wedge(b \wedge(x \Rightarrow y))
\end{aligned}
$$

hence $(b \wedge(x \Rightarrow y)) \leqslant[b \wedge((b \wedge x) \Rightarrow y)] \ldots(2)$
Combining equations (iii) and (1), we obtain $b \wedge((b \wedge x) \Rightarrow y)=(b \wedge(x \Rightarrow y)) \ldots(3)$
Now $b \wedge[(b \wedge x) \Rightarrow(b \wedge y)]=b \wedge[((b \wedge x) \Rightarrow b) \wedge((b \wedge x) \Rightarrow y)](\because$ by (iv) $)$

$$
\begin{aligned}
& =\{b \wedge[1 \wedge((b \wedge x) \Rightarrow y)]\} \quad(\because((x \wedge y) \Rightarrow y)=1) \\
& =\{b \wedge((b \wedge x) \Rightarrow y)\} \\
& =\{b \wedge(x \Rightarrow y)\}(\because \text { by eq }(2))
\end{aligned}
$$

According to Theorem 4.3, $A$ qualifies as a $B$-algebra. The converse is straightforward and is therefore omitted.

Theorem 4.5. Let $x, y, z \in A$ and $b \in B$. Then $A$ is $a B$-algebra if and only if
(i) $b \wedge(x \Rightarrow b)=b$
(ii) $(x \wedge(x \Rightarrow b))=x \wedge b$
(iii) $(x \Rightarrow(y \wedge z))=\{(x \Rightarrow y) \wedge(x \Rightarrow z)\}$
(iv) $(x \Rightarrow x)=1$

Proof. The proof is direct and is thus omitted.
In conclusion, we finalize this paper with the following theorem
TheOrem 4.6. If $A$ is a semi $B$-algebra, the following conditions are equivalent for all $x, y, z \in A$ :
i. $A$ is a $B$-algebra
ii. $x \leqslant y$ implies $(x \Rightarrow y)=1$
iii. $x \leqslant y$ implies $(x \Rightarrow z) \geqslant(y \Rightarrow z)$
iv. $x \leqslant y$ implies $z \Rightarrow x \leqslant z \Rightarrow y$
v. $(x \vee y) \Rightarrow z \leqslant(x \Rightarrow z) \wedge(y \Rightarrow z)$
vi. $x \Rightarrow(y \wedge z) \leqslant(x \Rightarrow y) \wedge(x \Rightarrow z)$
vii. $(x \Rightarrow(y \Rightarrow z))=((x \wedge y) \Rightarrow z)$
viii. $((x \vee y) \Rightarrow y) \leqslant(x \Rightarrow y)$
ix. $(x \Rightarrow y)=x \Rightarrow(x \wedge y)$.

Proof. According to Theorem 3.17 from [8], $A$ is a $B$-algebra if and only if it fulfills all the conditions, namely conditions (ii) to (vi).
(vii) $\Longrightarrow(\mathrm{i})$ :

Suppose $A$ satisfies the condition $(x \Rightarrow(y \Rightarrow z))=((x \wedge y) \Rightarrow z)$. Now
$(x \Rightarrow 1)=(x \Rightarrow(0 \Rightarrow 0))=((x \wedge 0) \Rightarrow 1)=(0 \Rightarrow 0)=1$
Now $((x \wedge y) \Rightarrow y)=(x \Rightarrow(y \Rightarrow y))$

$$
=(x \Rightarrow 1)
$$

$$
=1
$$

Hence $A$ is a $B$-algebra.
(viii) $\Longrightarrow$ (i):

Suppose $A$ hold the condition $((x \vee y) \Rightarrow y) \leqslant(x \Rightarrow y)$.
Now $1=(y \Rightarrow y)$

$$
\begin{aligned}
& =(((x \wedge y) \vee y) \Rightarrow y) \\
& \leqslant((x \wedge y) \Rightarrow y)
\end{aligned}
$$

Therefore $((x \wedge y) \Rightarrow y)=1$.
Hence $A$ is a $B$-algebra.
(ix) $\Longrightarrow$ (i):

Suppose $(x \Rightarrow y)=(x \Rightarrow(x \wedge y))$.
Replace $x$ by $x \wedge y$ in $(x \Rightarrow y)=x \Rightarrow(x \wedge y)$,

$$
\begin{aligned}
& \text { implies }((x \wedge y) \Rightarrow y)=((x \wedge y) \Rightarrow(x \wedge y \wedge y)) \\
& \text { implies }((x \wedge y) \Rightarrow y)=1
\end{aligned}
$$

Hence $A$ is a $B$-algebra.

## Acknowledgments

The first author expresses gratitude to Government College Autonomous, Rajamahendravaram, for their financial support.

## References

1. G. Birkhoff, Lattice Theory. Amer. Math. Soc. Colloq. Publ. XXV, Providence(1967), U.S.A.
2. G. Epstein, The lattice theory of Post algebras, Trans. Amer. Math. Soc, 95 (1960), 300-317
3. G. Epstein, An equational axiomatization for the disjoint system of Post algebras, IEEE Transactions on Computers, C-22 (1973), 422-423
4. G. Epstein and A. Horn, P-algebras, an abstraction from Post algebras, Vol 4, Number 1,195206,1974, Algebra Universalis.
5. G. Epstein and A. Horn, Chain based Lattices, Pacific Journal Of Mathematics, Vol. 55, No. 1, 1974, 65-84.
6. G. Gratzer, General Lattice Theory, Academic Press, New York, Sanfransisco (1978).
7. A. Heyting, Die formalen Regeln der intuitionistischen Logik, Sitzungsberichte der Preussischen Akad. der Wessenschaften Physikalisch-mathematische Klasse, 1930, pp. 42-56.
8. N. K. Kakumanu, B. Tharuni, Daniel A. Romano, and G.C. Rao, Semi B-algebra, Bull. of Int. Math. Virt. Inst., 14 (1) 2024, 13-20.
9. T. Katrinak and A. Mitscke, Stonesche verbdnde der ordnung $n$ und Postalgebren, Mathematische Annalen, 199 (1972), 13-30.
10. E.L. Post, The Two-Valued Iterative Systems of Mathematical Logic, Annals of Mathematics Studies, no. 5. Princeton University Press, Princeton, N. J., 1941. viii+122 pp.
11. T. Traczyk, Axioms and some properties of Post algebras, Colloquium Mathematicum, 10 (1963), 193-209.

Received by editors 27.9.2023; Revised version 5.1.2023; Available online 10.4.2024.
Naveen Kumar Kakumanu, Department of Mathematics, Government College (A), Rajamahendravaram, INDIA,

Email address: ramanawinmaths@gmail.com
B. Tharuni, Department of Mathematics, Samhitha Degree College, RajamahenDravaram, AP-INDIA,

Email address: tharunimaths@gmail.com
G.C. Rao, Department of Mathematics, Andhra University, Visakhapatnam, APINDIA,

Email address: gcraomaths@yahoo.co.in
B. Surendranath Reddy, School of Mathematical Sciences, S.R.T.M.University, Nanded, INDIA - 431606 ,

Email address: surendra.phd@gmail.com


[^0]:    2010 Mathematics Subject Classification. Primary 03G10; Secondary 06D99.
    Key words and phrases. $B$-algebra, quasi $B$-algebra, semi $B$-algebra.
    Communicated by Dusko Bogdanic.

