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QUASI B—-ALGEBRAS

Naveen Kumar Kakumanu, B. Tharuni, G.C. Rao,
and B. Surendranath Reddy

ABSTRACT. In this paper, we introduce the concept of a Quasi B—algebra,
building upon the foundational work on Post algebras by G. Epstein and the
investigation of semi B—algebras. We systematically explore the properties of
Quasi B—algebras, establishing equivalent conditions for the transition from
a semi B—algebra to a Quasi B—algebra.

1. Introduction

The remarkable work of Emil L. Post in 1921 paved the way for a comprehen-
sive theory of propositions with the introduction of the Post lattice. This lattice
effectively organizes closed classes of Boolean functions and has proven invaluable
in practical applications of many-valued logical systems. Post’s investigation con-
firmed the finite basis of each class within the Post lattice, making it a powerful
tool for navigating the complexities of Boolean circuits and propositional formulas.

George Epstein further advanced the exploration of Post algebraic character-
istics by introducing B-algebras, BL-algebras, and P-algebras. These algebraic
systems, each with their unique properties, found applications in various fields,
including biological systems and neural science. Specifically, B-algebras and BL-
algebras play a critical role in computer science by providing abstractions for specific
aspects of Post algebras.

In contrast, A Heyting algebra, named after Arend Heyting, is a bounded lattice
equipped with an implication binary operation denoted as x — y. While Heyting
algebras position the implication operation x — y within the distributive lattice
A, B—algebras place z = y in the Boolean center B of the distributive lattice A.
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This distinction highlights the specific location of the implication operation within
the broader mathematical structure, emphasizing the nuanced behavior of logical
operations in Heyting algebras and B-algebras within the context of distributive
lattices. The implication operator = plays a significant role in programming and
logic, serving as a crucial tool for expressing conditional statements.

Building upon the research of G. Epstein on Post algebras [4]and our previous
work on semi B-algebras [8], this paper introduces the concept of a Quasi B-algebra.
We explore its properties and establish equivalent conditions for a semi B-algebra
to become a Quasi B-algebra. Additionally, we offer additional characterizations of
B-algebras, contributing to an enhanced understanding of these algebraic structures
in various applications.

2. Preliminaries

In this section, we revisit fundamental notations and key foundational results,
ensuring the self-contained nature of this paper.

DEFINITION 2.1. [1] An algebra (A,V,A\) of type (2,2) is called a lattice if it

satisfies the following identities.
(i) Idempotency: x Ax =x and x V x = .
(ii) Commutativity: t Ay =y Az andzVy=yV .

(iii) Associativity: (x Ay)ANz=xA(yAz) and (xVy)Vz=xV(yVz).

(iv) Absorption laws: x A (xVy) =z and x V (x \y) = x.

DEFINITION 2.2. [1] A uniquely bounded complemented distributive lattice
(A,V,A,,0,1) is called a Boolean algebra. In other words a Boolean algebra is
a Boolean lattice in which 0,1 and '(complementation) are also considered to be
fundamental operations.

For a comprehensive exploration of lattice theory, readers are referred to the
works of [1] and [6]. The subsequent definition is extracted from [4].

DEFINITION 2.3. Let A be a distributive lattice with 0,1 and B as the set of all
complemented elements of A. An algebra (A,V,A,=,0,1) is termed a B—algebra
if, for all x,y € A, there exists a greatest element b € B such that x ANb < y. Here,
the complemented element b is denoted by x = y.

For further properties of B—algebras, readers are directed to [4].

In our publication [8], we introduced the concept of a semi B—algebra and
delineated its properties. The ensuing definition was extracted from [8].

DEFINITION 2.4. Let A be a distributive lattice with 0,1 and B as the set of
all complemented elements of A. An algebra (A,V,A,=,0,1) is deemed a semi
B—algebra if it satisfies the following conditions for all x,y € A and b€ B

B : (z=2z)=1

By: (xA(x=0b)=xAb

Bs: bA(z=y)=DbA((bAZ)= (bAY))]

For further properties of semi B—algebras, we direct the reader to [8].
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3. Quasi B—algebras

In this section, we present the concept of a Quasi B—algebra and explore its
properties. Additionally, we establish equivalent conditions for a semi B—algebra
to transform into a Quasi B—algebra. We commence with the following:

DEFINITION 3.1. Let A be a distributive lattice with elements 0,1, and B as
the set comprising all complemented elements of A. An element x € A is termed
AN—irreducible if, for y,z € A such that x =y A z, it follows that x =y or x = z.

Now, we establish the following theorem:

THEOREM 3.1. Let A be a semi B—algebra with 0,1 and B as the set comprising
all complemented elements of A. If © < b <y and x is A—irreducible, then for all
z,y € A and b € B,

(i) bA(x=b)=bA(z=vy)
(ii) (x = y)=2a if and only if (x = b) =x

(iif) (0=1)==z if and only if (0 =b) =x

(iv) (b=z)=zifz B

PROOF. Suppose = < b < y and x is A—irreducible.

1). bA(x=D))={bA[(xAb) = (bAY)]} (Fz<b<y)
={bAbA (z=y)} (as per Bs in Definition 2.2)
={bn(z=y)}

(ii). Suppose (z = y) =z. Then bA (z = y) =bAx

implies bA (x = b) == (" z < band by (i)

implies x = b or x = (z = b) ( " ¢ is A—irreducible)
implies z = (x = b)
Similarly, we establish the converse.
(iii) Suppose (0 = 1) = z.
Then bA (0= 1) =bAx implies {bA[(bA0) = (bAL)]} ==
implies (bA (0=10)) ==
implies z = b or z = (0 = b) (" ¢ is A—irreducible)
implies = (0 = b)
Similarly, we establish the converse.
(iv). Suppose (b= z) = z. Now z = (b A x)
x=(bAD=2x)
implies x =b or z = (b= z)(".- « is A—irreducible)
implies z = (b = ) O

THEOREM 3.2. Let A be a semi B—algebra with 0,1 and B, the set of all
complemented elements of A. Then, forbe B, (0= 1) =1 if and only if bA (0 =
b)="b

PROOF. Suppose (0= 1)=1. Then bA(0=1)=bA1l
implies bA[(bAO) = (bA1)] =D
implies b A (0 = b) = b.
We can readily confirm the converse. O
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DEFINITION 3.2. Let A be a semi B—algebra with 0,1 and B, the set of all
complemented elements of A. Then A is said to be a Quasi B—algebra if ((x =
b) Ab) =0b forx € A,b € B.

EXAMPLE 3.1. Let A ={0,z,1} be three element chain and 0,1 € B.
Define a binary operation = on A as follows

= 0]« ] 1]
ol 1 | x | 1
x| 0| 1 | 1
14 0| = | 1

A satisfies all the conditions of both a semi B—algebra and a Quasi B—algebra.

EXAMPLE 3.2. Let A ={0,z,1} be three element chain and 0,1 € B.
Define a binary operation = on A as follows

T 1
1 1
1 T

0 x 1
Clearly, A is a semi B—algebra but not a Quasi B—algebra (" (x = 1) A1 #1).

THEOREM 3.3. Let A be a Quasi B—algebra with 0,1 and B, representing the
set of all complemented elements of A. Then, for x,y € A, b € B, the following
conditions hold:

1) (z=1)=1

(2) b<(b=0)

B)b<(x=0) and ((x=Db)Ab) =D

4) pA((x=b)=b)]=0

B) bA((x=0b)=b)=b)]=0

6) =y Az=(@=y]=(=y)
(1) bA((@Ay)=Db)]=[A((yAz)="b)]

PRrROOF. The proof is straightforward and is therefore omitted. O

THEOREM 3.4. Let A be a semi B—algebra with 0,1 and B, the set of all
complemented elements of A. Then A is a Quasi B—algebra if and only if (x =
1y=1

PROOF. Suppose (x = 1) = 1. Now

b=bA1
=bA(z=1)
=bA[(bAz)= (bA1)]
=bA[(bAz)= (bAD)
=bA(x=0b).
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Hence, A qualifies as a Quasi B—algebra. The converse can be readily confirmed.
O

4. B-—algebras

As previously mentioned, during the examination of Post algebra properties [4],
G. Epstein introduced the concept of B—algebra, which holds significance in both
logic and computer science. In our work [8], we presented various characterizations
of a B—algebra. This section delves deeper into additional significant characteri-
zations for a B—algebra. The ensuing theorems are extracted from [8].

THEOREM 4.1. [8] Let A be a distributive lattice with 0,1 and B, the set of
all complemented elements of A. The algebra A is classified as a B—algebra if and
only if it adheres to the following conditions: For all x,y,z € A and b € B,”

(i) (z=2)=1
i) ((x=0b)Ab)=D

) (
(iii) (xA(x=0)=2xAb
(iv) z=(zAy)=GEFZ=>2)A(z=y)
(v) (zVy)=2))=(@=2)A(y=2)

Throughout this section, we use the notation A to signify a distributive lattice
with 0,1 and B, representing the set of all complemented elements of A, unless
explicitly stated otherwise

THEOREM 4.2. [8] Let x,y € A and b € B. Then A is a B—algebra if and
only if
(i) (zA(z=0b)=xAb
(i) (2 Ay) = 2) =1
(i) (0A(z=y))=0OA[bAZ)= (bAY)])

In the subsequent three theorems, we establish diverse axiomatizations of
B—algebras.

THEOREM 4.3. Let x,y € A and b € B. Then A is a B—algebra if and only if
i(xA(z=0) <D
iboA(z=y)=0BA[AZ)= (DAY)])
iii (xAy)=y)=1

PROOF. Assuming that A satisfies the provided conditions. Now
bA(x=0)=bA[(bAx)= (bAD)] (. by condition (ii) )
=bA[(bAZ) =D
= b. ("' by condition (iii) )
Thus b < (z = b) and hence zAb < (x A (z = b)) (1)
From (i), we have x A (x = b) < b and hence (z A (z = b)) <z Ab ....(2)
Combining equations (1) and (2), we obtain (x A (z = b)) = x A b. According to
Theorem 4.2, this implies that A is a B—algebra. The converse follows straightfor-
wardly and is therefore omitted. O
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THEOREM 4.4. Let x,y,z € A and b € B. Then A is a B—algebra if and only

if
(i) (x=x) =
(i) (zA(z=D0))<Db
(iii) bDA((bAZ) = y) < (bA (= y))
(iv) x=(yhz)=(xz=y) A (z=2)

V) ((Vvy)=2)=(x=2)A(y=2)

PROOF. Assuming that A satisfies the provided conditions.
Now 1=(z=2)=((zAz)Vz)=2)
=((xANz)=2z)A(z=z) (. conditon (v))
=((xAz)=2z)A1 (. conditon (i) )
Therefore 1 = ((z A z) = 2) ...(1)
Now (bA(z=1y))=bA[((bAzZ) V)= 9]
=bA [((b ANz)=y)A(z=y)] (. conditon (v))
=0bA((bAT) =) A BN (=)
hence (bA (z=y)) K DA ((DAZ)=y)] ... (2)
Combining equations (iii) and (1), we obtain bA ((bAx) = y) = (DA (x = y)) ...(3)
Now bA[(bAz) = (bAy)=bA[(bAZ)=b)A((bAx)=y)] (. by (iv))

={bA[A((bAT) =y} C(eAy)=y) =1)
={bA((bAz)=y)}
={boA(z=y)} (- byeq(2)
According to Theorem 4.3, A qualifies as a B—algebra. The converse is straight-
forward and is therefore omitted. O

THEOREM 4.5. Let x,y,z € A and b € B. Then A is a B—algebra if and only
if
(i) bA(z=Db)=b
(i) (xA(x=b))=zADb
(i) (z= (yn2)={@=y) A(z=2)}
(iv) (z=2)=1

PROOF. The proof is direct and is thus omitted. O
In conclusion, we finalize this paper with the following theorem

THEOREM 4.6. If A is a semi B-algebra, the following conditions are equivalent
forall z,y,z € A:
i. A is a B—algebra
ii. z <y implies (z=y)=1
ili. @ <y implies (x = 2) > (y = 2)
iv. z <y implies z=>x < 2=y
v. (xVy)=z<(z=>2)A(y=2)
viiz=(yAz) < (z=y)A(z=2)
vil. (z= (y=2))=((zAy)= %)
viil. ((zVy)=y) <(z=1y)
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ix. (x=y)=xz= (zAvy).

PROOF. According to Theorem 3.17 from [8], A is a B-algebra if and only if it
fulfills all the conditions, namely conditions (ii) to (vi).
(vil)=(i):
Suppose A satisfies the condition (x = (y = 2)) = ((x Ay) = z). Now
(x=1)=(@x=(0=0)=((zA0)=1)
Now ((z Ay) = y) = (z = (y = v))
=(z=1)

=1
Hence A is a B—algebra.
(viil)=(i):
Suppose A hold the condition ((zVy) = y) < (x = y).
Now 1= (y =vy)
= ((zAy)Vy) =)
< ((@Ay) =)
Therefore ((z Ay) = y) = L.
Hence A is a B—algebra.
(ix)=(i):
Suppose (z = y) = (v = (z Ay)).
Replace z by z Ay in (z = y) =z = (x Ay),
implies ((z Ay) = y) = ((x Ay) = (@ Ay Ay))
implies ((z Ay) = y) =1
Hence A is a B—algebra.
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