BULLETIN OF THE INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE ISSN (p) 2303-4874, ISSN (o) 2303-4955 www.imvibl.org /JOURNALS/BULLETIN Bull. Int. Math. Virtual Inst., 14(1)(2024), 23–30 DOI: 10.7251/BIMVI2401023N

> Former BULLETIN OF THE SOCIETY OF MATHEMATICIANS BANJA LUKA ISSN 0354-5792 (o), ISSN 1986-521X (p)

QUASI B-ALGEBRAS

Naveen Kumar Kakumanu, B. Tharuni, G.C. Rao, and B. Surendranath Reddy

ABSTRACT. In this paper, we introduce the concept of a Quasi B-algebra, building upon the foundational work on Post algebras by G. Epstein and the investigation of semi B-algebras. We systematically explore the properties of Quasi B-algebras, establishing equivalent conditions for the transition from a semi B-algebra to a Quasi B-algebra.

1. Introduction

The remarkable work of Emil L. Post in 1921 paved the way for a comprehensive theory of propositions with the introduction of the Post lattice. This lattice effectively organizes closed classes of Boolean functions and has proven invaluable in practical applications of many-valued logical systems. Post's investigation confirmed the finite basis of each class within the Post lattice, making it a powerful tool for navigating the complexities of Boolean circuits and propositional formulas.

George Epstein further advanced the exploration of Post algebraic characteristics by introducing B-algebras, BL-algebras, and P-algebras. These algebraic systems, each with their unique properties, found applications in various fields, including biological systems and neural science. Specifically, B-algebras and BLalgebras play a critical role in computer science by providing abstractions for specific aspects of Post algebras.

In contrast, A Heyting algebra, named after Arend Heyting, is a bounded lattice equipped with an implication binary operation denoted as $x \to y$. While Heyting algebras position the implication operation $x \to y$ within the distributive lattice A, B-algebras place $x \Rightarrow y$ in the Boolean center B of the distributive lattice A.

²⁰¹⁰ Mathematics Subject Classification. Primary 03G10; Secondary 06D99. Key words and phrases. B-algebra, quasi B-algebra, semi B-algebra. Communicated by Dusko Bogdanic.

This distinction highlights the specific location of the implication operation within the broader mathematical structure, emphasizing the nuanced behavior of logical operations in Heyting algebras and B-algebras within the context of distributive lattices. The implication operator \Rightarrow plays a significant role in programming and logic, serving as a crucial tool for expressing conditional statements.

Building upon the research of G. Epstein on Post algebras [4] and our previous work on semi B-algebras [8], this paper introduces the concept of a Quasi B-algebra. We explore its properties and establish equivalent conditions for a semi B-algebra to become a Quasi B-algebra. Additionally, we offer additional characterizations of B-algebras, contributing to an enhanced understanding of these algebraic structures in various applications.

2. Preliminaries

In this section, we revisit fundamental notations and key foundational results, ensuring the self-contained nature of this paper.

DEFINITION 2.1. [1] An algebra (A, \lor, \land) of type (2, 2) is called a lattice if it satisfies the following identities.

(i) Idempotency: $x \wedge x = x$ and $x \vee x = x$.

- (ii) Commutativity: $x \wedge y = y \wedge x$ and $x \vee y = y \vee x$.
- (iii) Associativity: $(x \land y) \land z = x \land (y \land z)$ and $(x \lor y) \lor z = x \lor (y \lor z)$.
- (iv) Absorption laws: $x \land (x \lor y) = x$ and $x \lor (x \land y) = x$.

DEFINITION 2.2. [1] A uniquely bounded complemented distributive lattice $(A, \lor, \land, ', 0, 1)$ is called a Boolean algebra. In other words a Boolean algebra is a Boolean lattice in which 0,1 and '(complementation) are also considered to be fundamental operations.

For a comprehensive exploration of lattice theory, readers are referred to the works of [1] and [6]. The subsequent definition is extracted from [4].

DEFINITION 2.3. Let A be a distributive lattice with 0, 1 and B as the set of all complemented elements of A. An algebra $(A, \lor, \land, \Rightarrow, 0, 1)$ is termed a B-algebra if, for all $x, y \in A$, there exists a greatest element $b \in B$ such that $x \land b \leq y$. Here, the complemented element b is denoted by $x \Rightarrow y$.

For further properties of B-algebras, readers are directed to [4].

In our publication [8], we introduced the concept of a semi B-algebra and delineated its properties. The ensuing definition was extracted from [8].

DEFINITION 2.4. Let A be a distributive lattice with 0,1 and B as the set of all complemented elements of A. An algebra $(A, \lor, \land, \Rightarrow, 0, 1)$ is deemed a semi B-algebra if it satisfies the following conditions for all $x, y \in A$ and $b \in B$

 $\begin{array}{l} B_1: \ (x \Rightarrow x) = 1 \\ B_2: \ (x \land (x \Rightarrow b)) = x \land b \\ B_3: \ b \land (x \Rightarrow y) = [b \land ((b \land x) \Rightarrow (b \land y))] \end{array}$

For further properties of semi B-algebras, we direct the reader to [8].

3. Quasi *B*-algebras

In this section, we present the concept of a Quasi B-algebra and explore its properties. Additionally, we establish equivalent conditions for a semi B-algebra to transform into a Quasi B-algebra. We commence with the following:

DEFINITION 3.1. Let A be a distributive lattice with elements 0, 1, and B as the set comprising all complemented elements of A. An element $x \in A$ is termed \wedge -irreducible if, for $y, z \in A$ such that $x = y \wedge z$, it follows that x = y or x = z.

Now, we establish the following theorem:

THEOREM 3.1. Let A be a semi B-algebra with 0, 1 and B as the set comprising all complemented elements of A. If $x < b \leq y$ and x is \wedge -irreducible, then for all $x, y \in A$ and $b \in B$,

(i) $b \land (x \Rightarrow b) = b \land (x \Rightarrow y)$ (ii) $(x \Rightarrow y) = x$ if and only if $(x \Rightarrow b) = x$ (iii) $(0 \Rightarrow 1) = x$ if and only if $(0 \Rightarrow b) = x$ (iv) $(b \Rightarrow x) = x$ if $x \in B$ PROOF. Suppose $x < b \leq y$ and x is \wedge -irreducible. (i). $(b \land (x \Rightarrow b)) = \{b \land [(x \land b) \Rightarrow (b \land y)]\}$ $(:: x < b \leq y)$ $= \{b \land b \land (x \Rightarrow y)\}$ (as per B_3 in Definition 2.2) $= \{b \land (x \Rightarrow y)\}$ (ii). Suppose $(x \Rightarrow y) = x$. Then $b \land (x \Rightarrow y) = b \land x$ implies $b \wedge (x \Rightarrow b) = x$ (:: x < b and by (i))implies x = b or $x = (x \Rightarrow b)$ ($\therefore x$ is \land -irreducible) implies $x = (x \Rightarrow b)$ Similarly, we establish the converse. (iii) Suppose $(0 \Rightarrow 1) = x$. Then $b \land (0 \Rightarrow 1) = b \land x$ implies $\{b \land [(b \land 0) \Rightarrow (b \land 1)]\} = x$ implies $(b \land (0 \Rightarrow b)) = x$ implies x = b or $x = (0 \Rightarrow b)$ (: x is \land -irreducible) implies $x = (0 \Rightarrow b)$ Similarly, we establish the converse. (iv). Suppose $(b \Rightarrow x) = x$. Now $x = (b \land x)$ $x = (b \land (b \Rightarrow x))$ implies x = b or $x = (b \Rightarrow x)(\because x$ is \land -irreducible) implies $x = (b \Rightarrow x)$

THEOREM 3.2. Let A be a semi B-algebra with 0,1 and B, the set of all complemented elements of A. Then, for $b \in B$, $(0 \Rightarrow 1) = 1$ if and only if $b \land (0 \Rightarrow b) = b$

PROOF. Suppose $(0 \Rightarrow 1) = 1$. Then $b \land (0 \Rightarrow 1) = b \land 1$ implies $b \land [(b \land 0) \Rightarrow (b \land 1)] = b$ implies $b \land (0 \Rightarrow b) = b$.

We can readily confirm the converse.

DEFINITION 3.2. Let A be a semi B-algebra with 0,1 and B, the set of all complemented elements of A. Then A is said to be a Quasi B-algebra if $((x \Rightarrow b) \land b) = b$ for $x \in A, b \in B$.

EXAMPLE 3.1. Let $A = \{0, x, 1\}$ be three element chain and $0, 1 \in B$. Define a binary operation \Rightarrow on A as follows

\Rightarrow	0	x	1
0	1	x	1
x	0	1	1
1	0	x	1

A satisfies all the conditions of both a semi B-algebra and a Quasi B-algebra.

EXAMPLE 3.2. Let $A = \{0, x, 1\}$ be three element chain and $0, 1 \in B$. Define a binary operation \Rightarrow on A as follows

\Rightarrow	0	x	1
0	1	1	1
x	0	1	x
1	0	x	1

Clearly, A is a semi B-algebra but not a Quasi B-algebra $(:: (x \Rightarrow 1) \land 1 \neq 1)$.

THEOREM 3.3. Let A be a Quasi B-algebra with 0,1 and B, representing the set of all complemented elements of A. Then, for $x, y \in A$, $b \in B$, the following conditions hold:

(1) $(x \Rightarrow 1) = 1$ (2) $b \leq (b \Rightarrow b)$ (3) $b \leq (x \Rightarrow b)$ and $((x \Rightarrow b) \land b) = b$ (4) $[b \land ((x \Rightarrow b) \Rightarrow b)] = b$ (5) $[b \land (((x \Rightarrow b) \Rightarrow b) \Rightarrow b)] = b$ (6) $(x \Rightarrow y) \land [x \Rightarrow (x \Rightarrow y)] = (x \Rightarrow y)$ (7) $[b \land ((x \land y) \Rightarrow b)] = [b \land ((y \land x) \Rightarrow b)]$

PROOF. The proof is straightforward and is therefore omitted.

THEOREM 3.4. Let A be a semi B-algebra with 0,1 and B, the set of all complemented elements of A. Then A is a Quasi B-algebra if and only if $(x \Rightarrow 1) = 1$

PROOF. Suppose $(x \Rightarrow 1) = 1$. Now

$$b = b \land 1$$

= b \langle (x \Rightarrow 1)
= b \langle [(b \langle x) \Rightarrow (b \langle 1)]
= b \langle [(b \langle x) \Rightarrow (b \langle b)]
= b \langle (x \Rightarrow b).

Hence, A qualifies as a Quasi B-algebra. The converse can be readily confirmed.

4. *B*-algebras

As previously mentioned, during the examination of Post algebra properties [4], G. Epstein introduced the concept of B-algebra, which holds significance in both logic and computer science. In our work [8], we presented various characterizations of a B-algebra. This section delves deeper into additional significant characterizations for a B-algebra. The ensuing theorems are extracted from [8].

THEOREM 4.1. [8] Let A be a distributive lattice with 0,1 and B, the set of all complemented elements of A. The algebra A is classified as a B-algebra if and only if it adheres to the following conditions: For all $x, y, z \in A$ and $b \in B$,"

(i) $(x \Rightarrow x) = 1$ (ii) $((x \Rightarrow b) \land b) = b$ (iii) $(x \land (x \Rightarrow b)) = x \land b$ (iv) $(z \Rightarrow (x \land y)) = (z \Rightarrow x) \land (z \Rightarrow y)$ (v) $((x \lor y) \Rightarrow z)) = (x \Rightarrow z) \land (y \Rightarrow z)$

Throughout this section, we use the notation A to signify a distributive lattice with 0, 1 and B, representing the set of all complemented elements of A, unless explicitly stated otherwise

THEOREM 4.2. [8] Let $x, y \in A$ and $b \in B$. Then A is a B-algebra if and only if

- (i) $(x \land (x \Rightarrow b)) = x \land b$
- (ii) $((x \land y) \Rightarrow x) = 1$
- (iii) $(b \land (x \Rightarrow y)) = (b \land [(b \land x) \Rightarrow (b \land y)])$

In the subsequent three theorems, we establish diverse axiomatizations of $B\mathrm{-algebras}.$

THEOREM 4.3. Let $x, y \in A$ and $b \in B$. Then A is a B-algebra if and only if

- i $(x \land (x \Rightarrow b)) \leqslant b$
- ii $b \land (x \Rightarrow y) = (b \land [(b \land x) \Rightarrow (b \land y)])$ iii $((x \land y) \Rightarrow y) = 1$

PROOF. Assuming that A satisfies the provided conditions. Now $b \wedge (x \Rightarrow b) = b \wedge [(b \wedge x) \Rightarrow (b \wedge b)]$ (: by condition (ii))

 $= b \wedge [(b \wedge x) \Rightarrow b]$

 $= b. (\because by condition (iii))$ Thus $b \leq (x \Rightarrow b)$ and hence $x \land b \leq (x \land (x \Rightarrow b))$

Thus $b \leq (x \Rightarrow b)$ and hence $x \land b \leq (x \land (x \Rightarrow b))$...(1) From (i), we have $x \land (x \Rightarrow b) \leq b$ and hence $(x \land (x \Rightarrow b)) \leq x \land b$ (2)

Combining equations (1) and (2), we obtain $(x \land (x \Rightarrow b)) = x \land b$. According to Theorem 4.2, this implies that A is a B-algebra. The converse follows straightforwardly and is therefore omitted.

THEOREM 4.4. Let $x, y, z \in A$ and $b \in B$. Then A is a B-algebra if and only if

(i) $(x \Rightarrow x) = 1$ (ii) $(x \land (x \Rightarrow b)) \le b$ (iii) $b \land ((b \land x) \Rightarrow y) \le (b \land (x \Rightarrow y))$ (iv) $x \Rightarrow (y \land z) = (x \Rightarrow y) \land (x \Rightarrow z)$ (v) $((x \lor y) \Rightarrow z)) = (x \Rightarrow z) \land (y \Rightarrow z)$

PROOF. Assuming that A satisfies the provided conditions.

Now $1 = (z \Rightarrow z) = (((x \land z) \lor z) \Rightarrow z)$ $= ((x \land z) \Rightarrow z) \land (z \Rightarrow z) (\because \text{ conditon } (\mathbf{v}))$ $= ((x \land z) \Rightarrow z) \land 1 (\because \text{ conditon } (\mathbf{i}))$ Therefore $1 = ((x \land z) \Rightarrow z) \dots (1)$ Now $(b \land (x \Rightarrow y)) = b \land [((b \land x) \lor x) \Rightarrow y]$ $= b \land [((b \land x) \Rightarrow y) \land (x \Rightarrow y)] (\because \text{ conditon } (\mathbf{v}))$ $= (b \land ((b \land x) \Rightarrow y)) \land (b \land (x \Rightarrow y))$ hence $(b \land (x \Rightarrow y)) \leq [b \land ((b \land x) \Rightarrow y)] \dots (2)$ Combining equations (iii) and (1), we obtain $b \land ((b \land x) \Rightarrow y) = (b \land (x \Rightarrow y)) \dots (3)$ Now $b \land [(b \land x) \Rightarrow (b \land y)] = b \land [((b \land x) \Rightarrow b) \land ((b \land x) \Rightarrow y)] (\because \text{ by } (\text{iv}))$

$$= \{b \land [1 \land ((b \land x) \Rightarrow y)]\} \qquad (\because ((x \land y) \Rightarrow y) = 1) \\= \{b \land ((b \land x) \Rightarrow y)\} \\= \{b \land (x \Rightarrow y)\} (\because \text{by eq } (2))$$

According to Theorem 4.3, A qualifies as a B-algebra. The converse is straightforward and is therefore omitted.

THEOREM 4.5. Let $x, y, z \in A$ and $b \in B$. Then A is a B-algebra if and only if

 $\begin{array}{l} (\mathrm{i}) \ b \wedge (x \Rightarrow b) = b \\ (\mathrm{ii}) \ (x \wedge (x \Rightarrow b)) = x \wedge b \\ (\mathrm{iii}) \ (x \Rightarrow (y \wedge z)) = \{(x \Rightarrow y) \wedge (x \Rightarrow z)\} \\ (\mathrm{iv}) \ (x \Rightarrow x) = 1 \end{array}$

PROOF. The proof is direct and is thus omitted.

In conclusion, we finalize this paper with the following theorem

THEOREM 4.6. If A is a semi B-algebra, the following conditions are equivalent for all $x, y, z \in A$:

i. A is a B-algebra ii. $x \leq y$ implies $(x \Rightarrow y) = 1$ iii. $x \leq y$ implies $(x \Rightarrow z) \geq (y \Rightarrow z)$ iv. $x \leq y$ implies $z \Rightarrow x \leq z \Rightarrow y$ v. $(x \lor y) \Rightarrow z \leq (x \Rightarrow z) \land (y \Rightarrow z)$ vi. $x \Rightarrow (y \land z) \leq (x \Rightarrow y) \land (x \Rightarrow z)$ vii. $(x \Rightarrow (y \Rightarrow z)) = ((x \land y) \Rightarrow z)$ viii. $((x \lor y) \Rightarrow y) \leq (x \Rightarrow y)$

 28

ix. $(x \Rightarrow y) = x \Rightarrow (x \land y)$.

PROOF. According to Theorem 3.17 from [8], A is a B-algebra if and only if it fulfills all the conditions, namely conditions (ii) to (vi). $(vii) \Longrightarrow (i):$ Suppose A satisfies the condition $(x \Rightarrow (y \Rightarrow z)) = ((x \land y) \Rightarrow z)$. Now $(x \Rightarrow 1) = (x \Rightarrow (0 \Rightarrow 0)) = ((x \land 0) \Rightarrow 1) = (0 \Rightarrow 0) = 1$ Now $((x \land y) \Rightarrow y) = (x \Rightarrow (y \Rightarrow y))$ $= (x \Rightarrow 1)$ = 1Hence A is a B-algebra. $(viii) \Longrightarrow (i):$ Suppose A hold the condition $((x \lor y) \Rightarrow y) \leqslant (x \Rightarrow y)$. Now $1 = (y \Rightarrow y)$ $= (((x \land y) \lor y) \Rightarrow y)$ $\leqslant ((x \land y) \Rightarrow y)$ Therefore $((x \land y) \Rightarrow y) = 1$. Hence A is a B-algebra. $(ix) \Longrightarrow (i):$ Suppose $(x \Rightarrow y) = (x \Rightarrow (x \land y)).$ Replace x by $x \wedge y$ in $(x \Rightarrow y) = x \Rightarrow (x \wedge y)$, implies $((x \land y) \Rightarrow y) = ((x \land y) \Rightarrow (x \land y \land y))$ implies $((x \land y) \Rightarrow y) = 1$ Hence A is a B-algebra.

Acknowledgments

The first author expresses gratitude to Government College Autonomous, Rajamahendravaram, for their financial support.

References

- 1. G. Birkhoff, Lattice Theory. Amer. Math. Soc. Colloq. Publ. XXV, Providence(1967), U.S.A.
- G. Epstein, The lattice theory of Post algebras, Trans. Amer. Math. Soc, 95 (1960), 300-317
 G. Epstein, An equational axiomatization for the disjoint system of Post algebras, IEEE Transactions on Computers, C-22 (1973), 422-423
- G. Epstein and A. Horn, P-algebras, an abstraction from Post algebras, Vol 4, Number 1,195-206,1974, Algebra Universalis.
- G. Epstein and A. Horn, *Chain based Lattices*, Pacific Journal Of Mathematics, Vol. 55, No. 1, 1974, 65-84.
- 6. G. Gratzer, General Lattice Theory, Academic Press, New York, Sanfransisco (1978).
- A. Heyting, Die formalen Regeln der intuitionistischen Logik, Sitzungsberichte der Preussischen Akad. der Wessenschaften Physikalisch-mathematische Klasse, 1930, pp. 42-56.
- N. K. Kakumanu, B. Tharuni, Daniel A. Romano, and G.C. Rao, Semi B-algebra, Bull. of Int. Math. Virt. Inst., 14 (1) 2024, 13-20.
- T. Katrinak and A. Mitscke, Stonesche verbände der ordnung n und Postalgebren, Mathematische Annalen, 199 (1972), 13-30.

 E.L. Post, The Two-Valued Iterative Systems of Mathematical Logic, Annals of Mathematics Studies, no. 5. Princeton University Press, Princeton, N. J., 1941. viii+122 pp.

 T. Traczyk, Axioms and some properties of Post algebras, Colloquium Mathematicum, 10 (1963), 193-209.

Received by editors 27.9.2023; Revised version 5.1.2023; Available online 10.4.2024.

NAVEEN KUMAR KAKUMANU, DEPARTMENT OF MATHEMATICS, GOVERNMENT COLLEGE (A), RAJAMAHENDRAVARAM, INDIA,

Email address: ramanawinmaths@gmail.com

B. THARUNI, DEPARTMENT OF MATHEMATICS, SAMHITHA DEGREE COLLEGE, RAJAMAHENDRAVARAM, AP-INDIA,

Email address: tharunimaths@gmail.com

G.C. RAO, DEPARTMENT OF MATHEMATICS, ANDHRA UNIVERSITY, VISAKHAPATNAM, AP-INDIA,

Email address: gcraomaths@yahoo.co.in

B. Surendranath Reddy, School of Mathematical Sciences, S.R.T.M.University, Nanded, INDIA – 431 606,

Email address: surendra.phd@gmail.com