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PELL NUMBERS THAT CAN BE WRITTEN AS THE
SUM OF TWO MERSENNE NUMBERS

Ahmet Emin

Abstract. This study reports an investigation of the Pell (or Mersenne) num-

bers that can be written in terms of the summation of two random Mersenne
(or Pell) numbers within the framework of linear forms in logarithms of al-

gebraic numbers by using Matveev’s theorem and Dujella-Pethö reduction

lemma. More precisely, all the solutions to the Diophantine equations Pk =
Mm +Mn and Mk = Pm + Pn are presented herein. Additionally, the maple

codes used in the calculations made throughout the article are also shared.

1. Introduction

Let {Pn}n⩾0 and {Mn}n⩾0 be the Pell and Mersenne numbers given by the

recursive formulas Pn = 2Pn−1 + Pn−2 with (P0, P1) = (0, 1) and Mn = 3Mn−1 −
2Mn−2 with (M0,M1) = (0, 1), respectively. Moreover, these can also be generated
with the Binet-like formulas in the following:

(1.1) Pn =
γn − δn

γ − δ
and Mn = 2n − 1,

for all non-negative integers, where γ = 1 +
√
2 and δ = 1−

√
2. Scientists have

studied Pell and Mersenne numbers, because they have fascinating and surprising
applications in many branches of science, especially mathematics and geometry.
More precise samples of Pell and Mersenne numbers can be found by consulting
the fundamental reference in [15].

In recent years, there has been an increase in the study of several Diophantine
equations involving integer sequences such as Fibonacci, Lucas, Pell, Pell-Lucas,

2020 Mathematics Subject Classification. Primary 11B39; Secondary 11J86.
Key words and phrases. Diophantine equation, Dujella-Pethö reduction lemma, linear forms
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or Jacobsthal. In particular, the case where the products or sums of integer se-
quences are equal to another integer sequence has been investigated. Ddamulira
et al. investigated Fibonacci or Pell numbers that can be written in terms of the
product of two Pell or Fibonacci numbers in [17]. In [20] Alekseyev researched
the intersection terms of Fibonacci, Pell, Lucas, and Pell-Lucas numbers. In [14],
Bensella and Behloul considered the Leonardo numbers that coincide with the Ja-
cobsthal numbers. In [11] Gaber examined the terms that make the sum of two
Jacobsthal numbers a balancing number or a balancing-Lucas number and the in-
tersections of these terms. In [12] the same author also studied coincidence terms
of Pell, Pell -Lucas numbers, and sums of two Jacobsthal numbers. In [9] and [7],
Erduvan and Keskin find all Fibonacci numbers that are products of two Jacob-
sthal numbers and Fibonacci numbers that are products of two balancing numbers,
respectively. In [18], Marques and Togbé proved that the sum of powers greater
than two of two consecutive Fibonacci numbers cannot be written as a Fibonacci
number. It is possible to increase the number of example papers. It is possible
to increase the number of example papers. To reduce the size of the paper, more
literature surveys are neglected, but readers can investigate the documents listed
in references [3], [4], [5], [8], [10], [13], [16], [21], [22], [23].

Mersenne numbers that can be expressed as the product of two random Pell
numbers were studied by Alan and Alan in [1]. Also, Bravo et al. examined powers
of two, which can be written as the sum of three Pell numbers in [2]. However,
according to the current literature, the Mersenne or Pell numbers that can be
expressed as the sum of two random Pell or Mersenne numbers have yet to be
investigated. Motivated by this, we make an effort to address this issue. In this
paper, we consider the Diophantine equations

(1.2) Pk =Mm +Mn

and

(1.3) Mk = Pm + Pn,

where k ⩾ 1 and 1 ⩽ m ⩽ n.
In this paper, although Eq. (1.3) appears to be a specific case of the study in [2]

(i.e., l = 1 for Pl), we investigate the common solutions of Eqs. (1.2) and (1.3).
Eq. (1.2) has not been previously studied, making this study original. Therefore,
the solution of Eq. (1.2) will be given in detail.

2. Preliminaries

This section of the paper provides fundamental definitions, results, and nota-
tions from algebraic number theory.

The following lemma is found in many articles and books on number theory.

Lemma 2.1. For all n ⩾ 1,

(2.1) γn−2 ⩽ Pn ⩽ γn−1.

Proof. The proof is clear due to the Binet’s formula of Pn in Eq. (1.1). □
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Further, the following lemma related to the Mersenne numbers has been given.

Lemma 2.2. For all n ⩾ 1,

(2.2) 2n−1 ⩽Mn < 2n.

Proof. The proof is clear due to the Binet-like formula ofMn in Eq. (1.1). □

The following lemma will be used in the proof process.

Lemma 2.3 (Ddamulira et al. [17]). For all z ∈
(
− 1

2 ,
1
2

)
, |z| < 2 |ez − 1| is

satisfied.

Let ξ be an algebraic number of degree t and

b0x
t + b1x

t−1 + . . .+ bt =

t∑
i=0

bix
t−i

be its minimal polynomial in Z[x] where the bi’s are relatively prime integers and
b0 > 0. The logarithmic height of ξ is denoted by h (ξ) and defined by

(2.3) h (ξ) =
1

t

(
log b0 +

t∑
i=1

log
(
max

{∣∣∣ξ(i)∣∣∣ , 1})) ,
where ξ(i)’s are the conjugates of ξ.

There are also various features related to logarithmic height mentioned in the
references. These features are as follows:

(2.4) h (ξ1 + ξ2) ⩽ h (ξ1) + h (ξ2) + log 2,

(2.5) h
(
ξ1ξ

±1
2

)
⩽ h (ξ1) + h (ξ2) ,

(2.6) h (ξr) = |r|h (ξ) .

Let ξ1, ξ2, . . . , ξr be nonzero real algebraic numbers in a number field L of
degree D, and let s1, s2, . . . , sr be nonzero rational numbers. Also

Λ = ξ1
s1ξ2

s2 . . . ξr
sr − 1 and B ⩾ max {|s1| , |s2| , . . . , |sr|} .

Let A1, A2, . . . , Ar be the positive real numbers such that

(2.7) Aj ⩾ max {Dh (ξj) , |log ξj | , 0.16} for all j = 1, 2, . . . , r.

Based on the notations mentioned above, an important theorem established by
Matveev [19], will be presented as follows:

Theorem 2.1 (Matveev’s theorem [19]). If Λ ̸= 0 and L is real algebraic
number field of degree D, then,

log (|Λ|) > −1.4×30r+3× r4.5×D2× (1 + logD)× (1 + logB)×A1×A2× ...×Ar.

To reduce the bounds from applying Theorem 2.1, the following lemma was
developed by Dujella and Pethö [6].
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Lemma 2.4 (Dujella and Pethö [6]). Let M be a positive integer, p/q be a
convergent of the continued fraction of the irrational number τ such that q > 6M ,
and let A, B, µ be some real numbers with A > 0 and B > 1. Let ε =: ∥µq∥ −
M ∥τq∥, where ∥·∥ is the distance from the nearest integer. If ε > 0, then there is
no integer solution (k, n, ψ) of inequality

0 < kτ − n+ µ < AB−ψ

with

k ⩽M and ψ ⩾
log (Aq/ε)

logB
.

3. Main results

The fundamental result of the paper is given below.

Theorem 3.1. Let k, m, and n be a positive integer. Then,

• Equation (1.2) is satisfied only for the triples of

(3.1) (k,m, n) ∈ {(2, 1, 1) , (6, 3, 6)}

• Eq. (1.3) holds only for the triples of

(3.2) (k,m, n) ∈ {(2, 1, 2) , (3, 2, 3) , (5, 2, 5)} .

Proof. Here, we will focus only on Eq. (1.2) but are making a similar pro-
cess for Eq. (1.3) in the background of the paper. Assume that n > m. Then,
considering Lemmas 2.1 and 2.2, we can write

(3.3) γk−2 ⩽ Pk =Mn +Mm < 2n + 2m < 2n+m

and

(3.4) 2k−1 ⩽Mk = Pn + Pm ⩽ γn−1 + γm−1 < γn+m.

From Eq. (3.3), we conclude that

(k − 2) log γ ⩽ (n+m) log 2 ⇒ k ⩽ 2 + (n+m)
log 2

log γ
< 2n+ 2

which satisfies k < 2n+2. Applying the Binet’s formulas in Eq. (1.1) to Eq. (1.2)
yields

(3.5) Pk =Mn +Mm ⇒ γk − δk

2
√
2

= (2n − 1) + (2m − 1)

and from this, we get

γk −
√
2 · 2n+1 =

√
2 · 2m+1 − 4

√
2 + δk.

Dividing both sides of the last equation by 2
√
2 · 2n and taking absolute values we

get∣∣∣∣γk2−n2
√
2

− 1

∣∣∣∣ = ∣∣∣∣ 1

2n−m
− 2

2n
+

δk√
2 · 2n+1

∣∣∣∣ < 1

2n−m
+

2

2n
+

|δ|k√
2 · 2n+1

<
4

2n−m
.
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As a result, we have

(3.6) |Λ1| <
4

2n−m
, Λ1 := γk · 2−n ·

(
2
√
2
)−1

− 1.

According to Theorem 2.1, we get r = 3, ξ1 = γ, ξ2 = 2, ξ3 = 2
√
2, s1 = k, s2 =

−n, and s3 = −1. Because of ξ1, ξ2, ξ3 ∈ Q
(√

2
)
, we should consider L = Q

(√
2
)

of degree D = 2. It is clear that Λ1 ̸= 0. If Λ1 = 0, then we get γk

√
2
= 2n+1. If

computing the second power of both sides of the equation γk

√
2
= 2n+1, we obtain

an integer in the left-hand side, which is impossible. So, Λ1 ̸= 0. From Eqs. (2.3)
and (2.7), we can compute

h (ξ1) =
1

2
log γ, h (ξ2) = log 2, h (ξ3) =

3

2
log 2,

A1 = log γ, A2 = 2 log 2, and A3 = 3 log 2.

Besides, for B = 2n + 2, B ⩾ max {k, |−n| , |−1|}, since k < 2n + 2. As a result,
based on Theorem 2.1, with certain mathematical simplifications, we obtain

(3.7) log(Λ1) > −2.5× 1012 (1 + log (2n+ 2))

and from inequality (3.6),

(3.8) log(Λ1) < log 4− (n−m) log 2.

From inequalities (3.7) and (3.8), we get that

(3.9) −m log 2 < 2.5× 1012 (1 + log (2n+ 2)) + log 4− n log 2.

By the way, if rearranging the Eq. (1.2) as

Pk =Mm +Mn ⇒ γk − δk

2
√
2

= (2n − 1) + (2m − 1)

⇒ γk

2
√
2
− 2n

(
1 + 2m−n) = −2 +

δk

2
√
2
.

Taking absolute values after dividing both sides of the last equation by
2n (1 + 2m−n), we get ∣∣∣∣ γk

2
√
2 · 2n (1 + 2m−n)

− 1

∣∣∣∣ < 4

2m

and

(3.10) |Λ2| <
4

2m
, Λ2 := γk2−n

1

2
√
2 (1 + 2m−n)

− 1.

To apply Matveev’s theorem into Eq. (3.10), we can consider that case where

r = 3, ξ1 = γ, ξ2 = 2, ξ3 = 2
√
2 (1 + 2m−n), s1 = k, s2 = −n, and s3 = −1. Since

ξ1, ξ2, ξ3 ∈ Q
(√

2
)
, we can take L = Q

(√
2
)
of degree D = 2. As can be seen,

since γk

√
2
= 2(2n + 2m) is never satisfied, Λ2 ̸= 0. Besides, if we take B = 2n + 2,
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then B ⩾ max {k, |−n| , |−1|}, since k < 2n+ 2. In this case, we can compute the
followings:

h (ξ1) =
1

2
log γ, h (ξ2) = log 2, A1 = log γ, and A2 = 2 log 2.

From (2.4), (2.5), (2.6), and (2.7) we get

h (ξ3) ⩽
5

2
log 2 + (n−m) log 2

and

A3 = 5 log 2 + 2 (n−m) log 2 = D · (5
2
log 2 + (n−m) log 2) ⩾ D · h (ξ3) .

In this case, according to Matveev’s theorem, we can write

(3.11) log(Λ2) > −1.2× 1012 × (1 + log (2n+ 2))× (5 log 2 + 2 (n−m) log 2) .

From the right-hand side of the inequality (3.10) we get

(3.12) log(Λ2) < log 4−m log 2.

Considering the inequalities (3.9), (3.11), and (3.12), we deduce that

(3.13) n < 4× 1028.

By the same token, after making the same mathematical consideration for Eq.
(1.3), we can attain the following definition and results:

|Λ3| <
8

γn−m
, Λ3 := 2k · γ−n · 2

√
2− 1, k < 3n+ 1,

|Λ4| <
7

γm
, Λ4 := 2kγ−n

2
√
2

1 + γm−n − 1, n < 4× 1028.

Thus, we can summarize the results mentioned above with a lemma as follows:

Lemma 3.1. All the possible solutions of Eqs. (1.2) and (1.3) are over the
ranges k < 3n+ 1, 1 ⩽ m ⩽ n, and n < 4× 1028.

As can be seen, we have determined a finite number of solutions to our prob-
lems, even though it has pretty extensive borders. To limit these wide bounds, we
will utilize the Dujella-Pethö reduction lemma.

We first consider the notation

Γ1 := k log γ − n log 2− log 2
√
2.

Then, we get

|Λ1| = |exp (Γ1)− 1| < 4

2n−m
.

Also, from Lemma 2.3, we can write

|Γ1| =
∣∣∣k log γ − n log 2− log 2

√
2
∣∣∣ < 8

2n−m

for n−m > 3. So we get

0 <

∣∣∣∣∣k log γlog 2
− n+

log
(
1/2

√
2
)

log 2

∣∣∣∣∣ ⩽ 8

2n−m log 2
<

12

2n−m
.
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Then, accordingly Lemma 2.4, forM = 1.3×1029 (M > 3n+ 1 > k) and τ = log γ
log 2 ,

60th convergent of the continued fraction expansion of τ is

p60
q60

=
143901431815323899257844117213518

113169799061744850180040631725663

and so 6M < q60 = 113169799061744850180040631725663. Therefore we have

ε = ∥µq60∥ −M ∥τq60∥ , ε > 0.49, µ =
log
(
1/2

√
2
)

log 2
.

We calculated the above process of finding ϵ with the help of Maple© and we
present the Maple Codes 1 below.

Maple Codes 1.
>DNI:= proc( x ) # DNI: denote the distance from x to the nearest integer
if abs(frac(x))=0.5 then evalf[1](abs(frac(x))) else
if abs(frac(x))<0.5 then evalf[30](abs(frac(x))) else
if abs(frac(x))>0.5 then evalf[30](1- abs(frac(x))) else 0
end if; end if; end if; end proc:

>M := 1.3*10ˆ29;
MU := ln(1/(2*sqrt(2)))/ln(2);
TAU := ln(1+sqrt(2))/ln(2);
q := 113169799061744850180040631725663

>Epsilon(M, MU, TAU, q)

So, taking A := 12, B := 2, and ψ := n −m into account, since from Lemma
2.4 the inequality

n−m > 111 >
log (Aq60/ε)

logB

has no solution, we deduce that n−m ⩽ 111.
Now we consider the notation

Γ2 := k log γ − n log 2 + log

(
1

2
√
2 (1 + 2m−n)

)
and

|Λ2| = |exp (Γ2)− 1| < 4

2m
.

Accordingly, in the above result of Lemma 2.3, we get

0 <

∣∣∣∣∣k log γlog 2
− n+

log
(
1/2

√
2 (1 + 2m−n)

)
log 2

∣∣∣∣∣ < 8

2m log 2
<

12

2m
,

for m > 3. Based on the Lemma 2.4 for M = 1.3 × 1029 (M > 3n+ 1 > k) and

τ = log γ
log 2 , 72th convergent of the continued fraction expansion of τ is

p72
q72

=
10665170356451774992859497485389768387

8387513390053674675986511291121092498
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and 6M < q72 = 8387513390053674675986511291121092498. As a result, with the
help of Maple, as shown above, for m > 3, we have

ε = ∥µq72∥ −M ∥τq72∥ , ε > 0.009, µ =
log
(
1/2

√
2 (1 + 2m−n)

)
log 2

.

Finally, taking A := 12, B := 2, and ψ := m into account, we obtain that m ⩽ 133.
so, n ⩽ 244 and k < 733.

Applying the same methodologies to Λ3 and Λ4, we get that m ⩽ 95, n ⩽ 177
and k < 532. Structuring an iterative algorithm in Maple© for Eqs. (1.2) and
(1.3) over the range m ⩽ 133 and n ⩽ 244 shall prove the validity of Theorem 3.1.

We calculated the process of finding all solutions of Eqs. (1.2) and (1.3) with
the help of Maple© and we present the Maple Codes 2 below only Equation (1.2).

Maple Codes 2.
>M := proc (a) 2ˆa-1 end proc
>P := proc (n) option remember;
if n <= 1 then n else 2*procname(n-1)+procname(n-2)
end if end proc

>for a to 10ˆ3 do
for b to 10ˆ3 do
for c to 10ˆ3 do
if P(a) = M(b)+M(c) then print(P[a] = P(a), M[b] = M(b), M[c] = M(c))
else end if end do end do end do

□

It is possible to reach the following conclusion from Theorem 3.1 .

Corollary 3.1. No Pell number can be twice the Mersenne number, and no
Mersenne number can be twice the Pell number.

Proof. We know that if Pk = 2m − 1, then there are no positive integer
solutions for k > 1, see in [2]. For this and the case where m = n in Eqs. (1.2) and
(1.3), the result follows. □
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