EXTENDED AND METRIC IDEALS OF A PSEUDO RING

Tadesse Nigisa Natei, Dawit Cherinet Kifetaw, and Kolluru Venkateswarlu

Abstract

In this paper, we introduce the notions of an extended ideal, a metric ideal, and a stable ideal in a pseudo ring. We prove that every nonzero maximal ideal M is an extended ideal of some non-empty subset of a pseudo ring R. Also we prove the set of all metric ideals form a complete distributive lattice. Further, we obtain the relationship between extended and metric ideals.

1. Introduction

In [1] Chajda and Länger initiated the study of pseudo rings, which are ring-like structures with a natural bijective relationship to MV-algebras. A lot of study has been made on an ideal theory in MV-algebras by many authors. For instance, maximal and essential ideals in MV-algebras by Hoo [7], obstinate ideals by Forouzesh et al $[\mathbf{6}]$, n-fold obstinate ideals, nodal and conodal ideals by Forouzesh $[\mathbf{3}, \mathbf{5}]$, contraction and extension of ideals by Saidi and Borzooei [8], extended ideals by Forouzesh [2], expansion of ideals in MV-algebras by Foruzesh and Bedrood [4] are a few.
Keeping this in view, we initiate the study of extended and metric ideals in a pseudo ring. We obtain the basic properties of the ideals of a pseudo ring. Also, we prove that every non-zero maximal ideal is an extended ideal of some non-empty subset of a pseudo ring R. Also we prove the set of all metric ideals form a complete distributive lattice. Further, we obtain the relationship between extended and metric ideals. Throughout this paper, R stands for a pseudo ring.

[^0]
2. Preliminaries

We recall the following from Chajda and Länger in [1]
Definition 2.1. [1] A pseudo ring is an algebra $(R,+, \cdot, 1)$ of type $(2,2,0)$ satisfying

$$
\begin{aligned}
& P_{1} \cdot(x y) z=x(y z), \\
& P_{2} \cdot x y=y x, \\
& P_{3} \cdot x 1=x \\
& P_{4} \cdot 1+(1+x)=x \\
& P_{5} \cdot x 0=0, \\
& P_{6} \cdot(1+x(1+y))(1+y)=(1+y(1+x))(1+x), \\
& P_{7} \cdot 1+(1+x(1+y))(1+y(1+x))=x+y,
\end{aligned}
$$

where 0 denotes the element $1+1$. Note that the following properties are consequence of the above definition.

Proposition 2.1. [1] Let R be a pseudo-ring. Then

1. $x(x+1)=0, \forall x \in R$.
2. $1+y(1+0)=1+y, \forall y \in R$
3. $x+0=x$.

Definition 2.2. [1] Define $x \leqslant y$ for any two elements $x, y \in R$ if and only if x and y satisfy the condition $(y+1) x=0$.

3. Extended Ideals

Definition 3.1. A subset I of R that satisfies the following conditions is an ideal I of R.
(i) $0 \in I$
(ii) $1+(x+1)(y+1) \in I$ for every $x, y \in I$.
(iii) $x \leqslant y$ for every $y \in I$ implies that $x \in I$.

Proposition 3.1. Let $I \subseteq R$. I is an ideal of R if and only if the following holds:
(i) $0 \in I$,
(ii) $1+(x+1)(y+1) \in I$ for every $x, y \in I$,
(iii) $(y+1) x, y \in I \Rightarrow x \in I$.

Proof. straightforward.
Remark 3.1. If $x, y \in I$ then $x+y \in I$ for an ideal I of R .
Definition 3.2. A proper ideal P of R is called prime ideal if for every $x, y \in$ R, either $x(y+1) \in P$ or $y(x+1) \in P$.

Definition 3.3. Let R_{1} and R_{2} be two pseudo rings. A pseudo ring homomorphism is a mapping $\varphi: R_{1} \longrightarrow R_{2}$ that meets the following conditions:

1) $\varphi(1)=1$,
2) $\varphi(x \cdot y)=\varphi(x) \cdot \varphi(y)$,
3) $\varphi(x+y)=\varphi(x)+\varphi(y)$ for every $x, y \in R_{1}$.

Note that $\varphi(0)=\varphi(1+1)=\varphi(1)+\varphi(1)=1+1=0$.

Theorem 3.1. Let R_{1} and R_{2} be two pseudo rings and a mapping $\varphi: R_{1} \longrightarrow$ R_{2} be a pseudo ring homomorphism. Then the following properties hold:
(a) $\operatorname{ker} \varphi$ is an ideal of R_{1};
(b) If φ is a pseudo ring epimorphism, then $R_{1} / \operatorname{ker} \varphi \cong R_{2}$;
(c) $\varphi(x) \leqslant \varphi(y)$ if and only if $x(y+1) \in \operatorname{ker} \varphi$;
(d) φ injective if and only if ker $\varphi=\{0\}$;
(e) $\varphi(x) \leqslant \varphi(y) \Rightarrow x \leqslant y$ if and only if φ is injective.

Proof. Let R_{1} and R_{2} be two pseudo rings and a mapping $\varphi: R_{1} \longrightarrow R_{2}$ be a pseudo ring homomorphism.
(a) $\varphi(0)=0 \Rightarrow 0 \in \operatorname{ker} \varphi$. Let $x, y \in \operatorname{ker} \varphi$. This implies $\varphi(1+(x+1)(y+$ 1)) $=0 \Rightarrow 1+(x+1)(y+1) \in \operatorname{ker} \varphi$.

Let $(y+1) x, y \in \operatorname{ker} \varphi$. It follows that $\varphi(x)=\varphi((0+1) x)=((0+1) \varphi(x))=$ $(\varphi(y)+1) \varphi(x)=\varphi((y+1) x)=0 \Rightarrow x \in \operatorname{ker} \varphi$. As a result, $\operatorname{ker} \varphi$ is an ideal of R_{1}.
(b) Define $\xi: R_{1} / \operatorname{ker} \varphi \longrightarrow R_{2}$ by $\xi(\bar{x})=\varphi(x)$.

Let $y \in R_{2}$. Since φ is epimorphism there is $a \in R_{1}$, such that $\varphi(a)=y$. Thus $\xi(\bar{a})=\varphi(a)=y$.

$$
\begin{aligned}
\operatorname{ker} \xi= & \left\{\bar{a} \in R_{1} / \operatorname{ker} \varphi: \xi(\bar{a})=0\right\} \\
& =\left\{a \in R_{1}: \varphi(a)=0\right\} \\
& =\left\{a \in R_{1}: a \in \operatorname{ker} \varphi\right\} \\
& =\operatorname{ker} \varphi .
\end{aligned}
$$

Therefor ξ is isomorphism from $R_{1} /$ ker φ to R_{2}.
(c) Suppose $\varphi(x) \leqslant \varphi(y)$. By Definition 2.2 and Definition 3.3, $x(1+y) \in$ ker φ. Conversely,suppose $x(y+1) \in \operatorname{ker} \varphi$. This implies $\varphi(x(1+y))=$ $0 \Rightarrow \varphi(x)(1+\varphi(y))=0$. Thus by Definition 2.2, $\varphi(x) \leqslant \varphi(y)$.
(d) Assume ker $\varphi \neq\{0\}$. This implies there is $x \in \operatorname{ker} \varphi$ such that $x \neq 0$. But, $\varphi(x)=0 \Rightarrow \varphi(x)=\varphi(0)$. Since φ is injective $x=0$. This is a contradiction. Therefore ker $\varphi=\{0\}$.

Conversely, suppose ker $\varphi=\{0\}$. Let $x, y \in R_{1}$ such that $\varphi(x)=$ $\varphi(y)$. This means $\varphi(x) \leqslant \varphi(y)$ and $\varphi(y) \leqslant \varphi(x)$. From Definition 2.2, we have $\varphi(x)(1+\varphi(y))=0 \Rightarrow \varphi(x(1+y))=0 \Rightarrow x(1+y) \in \operatorname{ker} \varphi=\{0\} \Rightarrow$ $x(1+y)=0$.
Therefore, $x \leqslant y$. Similarly $y \leqslant x$. Hence $x=y$
(e) Suppose $\varphi(x) \leqslant \varphi(y) \Rightarrow x \leqslant y$. Let $x \in \operatorname{ker} \varphi$ and $x=a(1+b)$ for some $a, b \in R_{1} \cdot \varphi(a)(1+\varphi(b))=\varphi(x)=0 \Rightarrow \varphi(a) \leqslant \varphi(b) \Rightarrow a \leqslant b \Rightarrow x=$ $a(1+b)=0$. Hence, ker $\varphi=\{0\}$.

TheOrem 3.2. Let $\varphi: R_{1} \rightarrow R_{2}$ is a pseudo ring epimorphism. If I is an ideal of R_{1} and $\operatorname{ker}(\varphi) \subseteq I$, then $\varphi(I)$ is an ideal of R_{2}.

Proof. It is noticeable that both the first and second requirements outlined in Definition 3.1 are met. Let $x \in R_{2}$ and $y \in \varphi(I)$ with $x \leqslant y$. Since φ is epimorphism, there are $a, b \in R_{1}$ such that $\varphi(a)=x$, and $\varphi(b)=y$. By Definition 2.2 and Definition 3.3, $a(b+1) \in \operatorname{ker}(\varphi) \subseteq I \Rightarrow$ by Proposition 3.1, $a \in I$. Therefore $\varphi(I)$ is an ideal of R_{2}.

Corollary 3.1. If the map $\varphi: R_{1} \rightarrow R_{2}$ is an epimorphism, then for any prime ideal P of R_{1} with $\operatorname{ker}(\varphi) \subseteq P, \varphi(P)$ is the prime ideal of R_{2}.

Definition 3.4. Let I be an ideal of R and $X \subseteq R$, we define the extended ideal of I associated with X as follows: $\mathscr{E}_{I}(X)=\{x \in R: x(1+(a+1) x) \in I$, for all $a \in X\}$.
example 3.1. Let $A=\{\alpha, \beta\}$, consider the power set of $A, R=P(A)$ is a pseudo ring with the binary operation $D+C=\left(D^{\prime} \cup C\right)^{\prime} \cup\left(D \cup C^{\prime}\right)^{\prime}$ and $D \cdot C=$ $D \cap C$ for $C, D \in R$. Clearly $I_{1}=\{\phi,\{\alpha\}\}$ and $I_{2}=\{\phi,\{\beta\}\}$ are ideals of R. $\mathscr{E}_{I_{1}}(\{\beta\})=I_{1}$ and $\mathscr{E}_{I_{1}}(\{\alpha\})=R$. Similarly $\mathscr{E}_{I_{2}}(\{\beta\})=R$ and $\mathscr{E}_{I_{2}}(\{\alpha\})=I_{2}$.

Theorem 3.3. Let I be an ideal of R and $X \subseteq R$, then $\mathscr{E}_{I}(X)$ is an ideal of R and $I \subseteq \mathscr{E}_{I}(X)$.

Proof. Let I be an ideal of R and $X \subseteq R$.
i. It is clearly that $0 \in \mathscr{E}_{I}(X)$.
ii. Since $b(1+(x+1)(y+1) b) \leqslant 1+(b(1+(x+1) b)+1)(b(1+(y+1) b)+1) \Rightarrow$ $1+(x+1)(y+1) \in \mathscr{E}_{I}(X)$, for any $x, y \in \mathscr{E}_{I}(X)$.
iii. Let $x \leqslant y$ and $y \in \mathscr{E}_{I}(X) \Rightarrow x(1+(b+1) x) \leqslant y(1+(b+1) y)$, for all $b \in X \Rightarrow x(1+(b+1) x) \in I$

Definition 3.5. An ideal I is called stable with respect to a subset X of R if $I=\mathscr{E}_{I}(X)$.

EXAMPLE 3.2. In Example $3.1 I_{2}=\{\phi,\{\beta\}\}$ is stable with-respect to $X=$ $\{\{\alpha\}\}$.

Proposition 3.2. Let R_{1} and R_{2} be pseudo rings and $\varphi: R_{1} \longrightarrow R_{2}$ be epimorphism such that $\varphi(H)=K$ where $H \subseteq R_{1}$ and $K \subseteq R_{2}$. Then the following statements hold.
i. If I is an ideal of R_{2}, then $\varphi^{-1}(I)$ is an ideal of R_{1}.
ii. If I is a stable relative to K, then $\varphi^{-1}(I)$ is stable relative to H.
iii. If I is a stable relative to H and $k e r \varphi \subseteq I$, then $\varphi(I)$ is a stable relative to K.

Proof. i. Let I be an ideal of R_{2} and $a, b \in \varphi^{-1}(I)$. Clearly, $0 \in$ $\varphi^{-1}(I)$. There are $x, y \in I$ such that $\varphi(a)=x$ and $\varphi(b)=y$. By Definition 3.3, $\varphi(1+(a+1)(b+1)) \in I \Rightarrow 1+(a+1)(b+1) \in \varphi^{-1}(I)$. Let $a \leqslant b$ and $b \in \varphi^{-1}(I)$. It follows $a(b+1)=0 \Rightarrow \varphi(a)(\varphi(b)+1)=0 \Rightarrow \varphi(a) \leqslant$ $\varphi(b) \in I \Rightarrow a \in \varphi^{-1}(I)$. Thus, $\varphi^{-1}(I)$ is an ideal of R_{1}.
ii. By (i), $\varphi^{-1}(I)$ is an ideal of R_{1}. Suppose I is stable relative to K. Let $x \in \mathscr{E}_{\varphi^{-1}(I)}(H) . \quad x \in \mathscr{E}_{\varphi^{-1}(I)}(H) \Leftrightarrow x(1+(a+1) x) \in \varphi^{-1}(I)$, for all $a \in$ $H \Leftrightarrow \varphi(x)(1+(\varphi(a)+1) \varphi(x)) \in I$, for all $\varphi(a) \in K \Leftrightarrow \varphi(x) \in \mathscr{E}_{I}(K) \Leftrightarrow$ $x \in \varphi^{-1}\left(\mathscr{E}_{I}(K)\right)$. Therefore $\mathscr{E}_{\varphi^{-1}(I)}(H)=\varphi^{-1}\left(\mathscr{E}_{I}(K)\right)=\varphi^{-1}(I)$.
iii. Suppose I is stable relative to H and $\operatorname{ker} \varphi \subseteq I$. Since φ is epimorphism, by Theorem 3.2, $\varphi(I)$ is an ideal of R_{2}. Let $x \in \varphi\left(\mathscr{E}_{I}(H)\right)$. This implies there exists $s \in \mathscr{E}_{I}(H)$ such that $\varphi(s)=x \Rightarrow s(1+(a+1) s) \in I$, for all $a \in$ $H \Rightarrow x(1+(\varphi(a)+1) x)=\varphi(s)(1+(\varphi(a)+1) \varphi(s))=\varphi(s(1+(a+1) s)) \in$ $\varphi(I)$ for all $\varphi(a) \in K \Rightarrow x \in \mathscr{E}_{\varphi(I)}(K)$. Thus, $\varphi\left(\mathscr{E}_{I}(H) \subseteq \mathscr{E}_{\varphi(I)}(K)\right.$. Conversely, suppose $x \in \mathscr{E}_{\varphi(I)}(K)$. Since φ is epimorphism there exists $p \in R_{1}$ such that $\varphi(p)=x$. Then $x \in \mathscr{E}_{\varphi(I)}(K) \Rightarrow x(1+(b+1) x) \in \varphi(I)$, for all $b \in K \Rightarrow \varphi(p(1+(a+1) p))=\varphi(t)$ for some $t \in I$, for all $a \in H \Rightarrow \varphi(p(1+(a+1) p) \cdot(t+1))=0$, for all $a \in H \Rightarrow p(1+(a+$ 1) $p) \cdot(t+1) \in \operatorname{ker}(\varphi) \subseteq I$, for all $a \in H \Rightarrow p(1+(a+1) p) \in I$, for all $a \in H \Rightarrow p \in \mathscr{E}_{I}(H) \Rightarrow x \in \varphi\left(\mathscr{E}_{I}(H) \Rightarrow \mathscr{E}_{\varphi(I)}(K) \subseteq \varphi\left(\mathscr{E}_{I}(H)=\varphi(I)\right.\right.$. Therefore $\varphi(I)$ is stable relative to K.

Proposition 3.3. For any $x, y \in R, y(1+(x+1) y)=x(1+(y+1) x)$.
Proof. Let $x+1=a$ and $y+1=b$. By P_{6} of Definition 2.1, we get $y(1+$ $(x+1) y)=(b+1)(1+a(b+1))=(a+1)(1+b(1+a))=x(1+(y+1) x)$.

Theorem 3.4. Let I and J be the ideals of a pseudo ring R and X be any subset of R. Then each of the following holds:

1. $\mathscr{E}_{I}(X)=R$ if and only if $X \subseteq I$;
2. If $I \subseteq J$, then $\mathscr{E}_{I}(X) \subseteq \mathscr{E}_{J}(X)$;
3. $X \subseteq \mathscr{E}_{I}\left(\mathscr{E}_{I}(X)\right)$;
4. If $I \subseteq J$, then $\mathscr{E}_{I}(J) \cap J=I$;
5. If $X \subseteq Y$, then $\mathscr{E}_{I}(Y) \subseteq \mathscr{E}_{I}(X)$;
6. $\mathscr{E}_{I}\left(\mathscr{E}_{I}(X)\right) \cap \mathscr{E}_{I}(X)=I$.

Proof. 1. Suppose $\mathscr{E}_{I}(X)=R$ and $y \in X$. As $y \in R \Rightarrow y \in \mathscr{E}_{I}(X) \Rightarrow$ $y(1+(a+1) y) \in I$, for all $a \in X$. In particular $y=y(1+(y+1) y) \in I$ (by Proposition 2.1), implies $X \subseteq I$. Conversely, suppose $X \subseteq I$ and $y \in R$. By Proposition 3.3, we have $x(1+(y+1) x)=y(1+(x+1) y) \leqslant x \in X \subseteq$ $I \Rightarrow y \in \mathscr{E}_{I}(X) \Rightarrow \mathscr{E}_{I}(X)=R$.
2. Let $x \in \mathscr{E}_{I}(X) \Rightarrow x(1+(y+1) x) \in I \subseteq J$, for all $y \in X \Rightarrow x \in \mathscr{E}_{J}(X)$.
3. Let $x \in X$ and $y \in \mathscr{E}_{I}(X)$. By Proposition 3.3, $\quad x(1+(y+1) x)=$ $y(1+(x+1) y) \in I$, for all $y \in \mathscr{E}_{I}(X) \Rightarrow x \in \mathscr{E}_{I}\left(\mathscr{E}_{I}(X)\right)$. Therefore $X \subseteq \mathscr{E}_{I}\left(\mathscr{E}_{I}(X)\right)$.
4. Suppose $I \subseteq J$ and let $x \in \mathscr{E}_{I}(J) \cap J \Rightarrow x \in \mathscr{E}_{I}(J) \Rightarrow x=x(1+(x+$ 1) $x) \in I \Rightarrow \mathscr{E}_{I}(J) \cap J \subseteq I$. Conversely, observe that by Theorem 3.3 and hypothesis, $I \subseteq J$ and $I \subseteq \mathscr{E}_{I}(J) \Rightarrow I \subseteq \mathscr{E}_{I}(J) \cap J$. Therefore $I=\mathscr{E}_{I}(J) \cap J$.
5. Suppose $X \subseteq Y$. Let $a \in \mathscr{E}_{I}(Y) \Rightarrow a(1+(x+1) a) \in I$, for all $x \in Y \Rightarrow$ $a(1+(x+1) a) \in I$, for all $x \in X$ as $X \subseteq Y$.
6. It follows from Theorem 3.3 and (4).

Proposition 3.4. If P is a prime ideal, then
i. $\mathscr{E}_{P}(X)=R$ for $X \subseteq P$ and
ii. P is stable relative to X for $X \nsubseteq P$.

Proof. i. Follows from Theorem 3.4 (1).
ii. Suppose there is $x_{0} \in X$ but not in P with $x\left(1+\left(x_{0}+1\right) x\right) \in P$ where P is prime ideal of R . Since $x_{0}, x \in R$, by Definition 3.2 either $x\left(x_{0}+1\right) \in P$ or $x_{0}(x+1) \in P$. If $x\left(x_{0}+1\right) \in P$, then by Proposition 3.1 it follows that $x \in P$. If $x_{0}(x+1) \in P$, then by the same proposition $x_{0} \in P$. This contradicts the fact that $x_{0} \notin P$. Thus, from Theorem 3.3 we conclude that $\mathscr{E}_{P}(X)=P$.

Definition 3.6. A proper ideal M of R is called a maximal if and only if $x \in I$ or $x+1 \in I$ but not both for every $x \in R$.

Theorem 3.5. If I is a maximal ideal and $\mathscr{E}_{I}(X)$ be a proper ideal of R, then $\mathscr{E}_{I}(X)$ is a maximal ideal of R and I is stable relative to X.

Proof. Clearly $I \subseteq \mathscr{E}_{I}(X)$ (by assumption and by Theorem 3.3). Hence $\mathscr{E}_{I}(X)$ is maximal. Consequently $I=\mathscr{E}_{I}(X)$.

Proposition 3.5. Let $X \subseteq Y \subseteq R$ and I be a stable relative to X.Then I is stable ideal relative to Y.

Proof. Since $X \subseteq Y$, from Theorem 3.4 (6) it follows that $\mathscr{E}_{I}(Y) \subseteq \mathscr{E}_{I}(X)=I$. Thus $\mathscr{E}_{I}(Y)=I$.

Theorem 3.6. Let $\left\{J_{\alpha}\right\}_{\alpha \in \Delta}$ be a family of ideals of R. Then the following hold:
i. if $\left\{J_{\alpha}\right\}_{\alpha \in \Delta}$ are totally ordered ideals and X is finite, then $\bigcup_{\alpha \in \Delta} \mathscr{E}_{J_{\alpha}}(X)=$ $\mathscr{E}_{\mathscr{U} J_{\alpha}}(X)$.
ii. $\bigcap_{\alpha \in \Delta} \mathscr{E}_{J_{\alpha}}(X)=\mathscr{E}_{\cap J_{\alpha}}(X)$.

Proof. i. Let $\left\{J_{\alpha}\right\}_{\alpha \in \Delta}$ be a totally ordered ideal of R and X be finite subsets of R . It is clear that $\bigcup_{\alpha \in \Delta} J_{\alpha}$ is an ideal of R. Let $x \in$ $\bigcup_{\alpha \in \Delta} \mathscr{E}_{J_{\alpha}}(X)$. Then there exist $\alpha_{0} \in \Delta$ such that $x \in \mathscr{E}_{J_{\alpha_{0}}}(X)$. This implies $x(1+(a+1) x) \in J_{\alpha_{0}} \subseteq \bigcup_{\alpha \in \Delta} I_{\alpha}$, for all $a \in X \Rightarrow x \in \mathscr{E} \cup J_{\alpha}(X)$. Thus, $\bigcup_{\alpha \in \Delta} \mathscr{E}_{J_{\alpha}}(X) \subseteq \mathscr{E}_{\cup J_{\alpha}}(X)$.

Conversely, suppose $x \in \mathscr{E}_{\cup J_{\alpha}}(X) \Rightarrow x(1+(a+1) x) \in \bigcup_{\alpha \in \Delta} J_{\alpha}$, for all $a \in X$. Since X is finite, there exist $\alpha_{i} \in \Delta$ such that $x(1+(a+$ 1) $x) \in J_{\alpha_{i}}$, for all $a \in X \Rightarrow x \in \mathscr{E}_{J_{\alpha_{i}}}(X) \subseteq \bigcup_{\alpha \in \Delta} \mathscr{E}_{J_{\alpha}}(X)$. Therefore, $\bigcup_{\alpha \in \Delta} \mathscr{E}_{J_{\alpha}}(X)=E_{\cup J_{\alpha}}(X)$.
ii. Let $x \in \bigcap_{\alpha \in \Delta} \mathscr{E} J_{\alpha}(X)$. Then $x \in \bigcap_{\alpha \in \Delta} \mathscr{E} J_{\alpha}(X) \Leftrightarrow x \in \mathscr{E}_{J_{\alpha}}$, for all $\alpha \in \Delta \Leftrightarrow x(1+(a+1) x) \in J_{\alpha}$, for all $x\left(1+(a+1) x \in \bigcap_{\alpha \in \Delta} J_{\alpha} \Leftrightarrow x \in\right.$ $\mathscr{E}_{\cap J_{\alpha}}(X)$.
Therefore, $\bigcap_{\alpha \in \Delta} \mathscr{E} J_{J_{\alpha}}(X)=\mathscr{E}_{\cap J_{\alpha}}(X)$.

As a consequence, we get the following corollary.
Corollary 3.2. The intersection of stable ideals with respect to a non-empty subset X of R is stable.

Theorem 3.7. Every non-zero maximal ideal M is an extended ideal of some non-empty subset of a pseudo ring R.

Proof. Let $a \in R$. Suppose that $a \notin M$. Since M maximal ideal, by Definition 3.6, $a+1 \in M . y \in \mathscr{E}_{M}(\{a\}) \Rightarrow y(1+(a+1) y) \in M$. By Proposition 3.1, $y \in M$. Thus M is an extended ideal.

Proposition 3.6. Every ideal I of R is stable with respect to the set $X=\{1\}$.
Proof. Let $X=\{1\}$ and suppose that I is an ideal of R. Then $\mathscr{E}_{I}(\{X\})=$ $\mathscr{E}_{I}(\{1\})$. Let $y \in \mathscr{E}_{I}(\{X\})$. Thus $y(1+(1+1) y)=y \in I \Rightarrow I=\mathscr{E}_{I}(\{X\})$.

4. Metric ideal

We define the distance function on R as $\delta: R \times R \rightarrow R$ by $\delta(x, y)=x+y$
Proposition 4.1. The following properties hold for all $x, y, z, t, r \in R$
i. $\delta(x, y)=\delta(y, x)$.
ii. $\delta(x, 0)=x$.
iii. $\delta(x, y)=0$ implies $x=y$.
iv. $\delta(x, z) \leqslant \delta(x, y)+\delta(y, z)$.
v. $\delta(1+(x+1)(t+1), 1+(y+1)(r+1)) \leqslant 1+(\delta(x, y)+1)(\delta(t, r)+1)$.

Define binary operation ${ }^{\prime} \not{ }^{\prime}$ by $x \circledast y=\delta(x, 1) \cdot \delta(y, 1)$. Since ${ }^{\prime} .^{\prime}$ is well defined and so is ${ }^{\prime} \circledast^{\prime}$.

Definition 4.1. Let H a non-empty subset of R. If for $x \in H$ with $x \circledast 0 \leqslant$ $y \circledast 0 \Rightarrow y \in H$, then H is a metric ideal of R.

REmARK 4.1. Every ideal of R is a metric ideal, but the converse is not true in general (see the following example).

EXAMPLE 4.1. Let $R=\{0, a, b, c, d, 1\}$, then the operations ' + ' and '.' on R is defined as follows:

+	0	a	b	c	d	1
0	0	a	b	c	d	1
a	a	0	a	d	c	d
b	b	a	0	1	d	c
c	c	d	1	0	a	b
d	d	c	d	a	0	a
1	1	d	c	b	a	0

\cdot	0	a	b	c	d	1
0	0	0	0	0	0	0
a	0	0	0	0	0	a
b	0	b	b	0	a	b
c	0	0	0	c	c	c
d	0	0	a	c	c	d
1	0	a	b	c	d	1

We see that $R=(R,+, \cdot, 1)$ is a pseudo ring. Clearly all the ideals of R are metric ideal and the set $H=\{0, a\}$ is an example of metric ideal but not an ideal of R.

Proposition 4.2. A metric ideal H become an ideal of R, if for every $x, y \in$ $H \Rightarrow(x \circledast y) \circledast 0 \in H$.

Proof. i. Clearly $0 \in H$ as H is metric ideal.
ii. Let $x, y \in H$.

Consider $1+(x+1)(y+1)=1+\delta(x, 1) \cdot \delta(y, 1)=\delta(1,0)(1+\delta(x, 1) \delta(y, 1))=$ $(x \circledast y) \circledast 0 \in H$.
iii. Let $x \in H$ and $y \leqslant x \Leftrightarrow x+1 \leqslant y+1 \Leftrightarrow(x+1)(0+1) \leqslant(y+1)(0+1) \Leftrightarrow$ $x \circledast 0 \leqslant y \circledast 0$ and $x \in H \Rightarrow y \in H$

Proposition 4.3. Let R_{1} and R_{2} be pseudo ring, φ is a homomorphism from R_{1} to R_{2} and H is metric ideal of R_{1} and K is metric ideal of R_{2}. Then following holds:
i. $\varphi(H)$ is a metric ideal if φ is bi-jective,
ii. $\varphi^{-1}(K)$ is metric ideal of R_{1} if φ is onto.

Proof. i. Suppose φ is surjective. Let $x \in \varphi(H)$ with $x \circledast 0 \leqslant y \circledast 0$. Since $y \in R_{2}$ there is t in R_{1} such that $\varphi(t)=y$ and $a \in H \Rightarrow \varphi(a)=$ $x \Rightarrow \varphi(a) \circledast 0 \leqslant \varphi(t) \circledast 0 \Rightarrow \varphi(a)+1 \leqslant \varphi(t)+1 \Rightarrow(\varphi(a)+1) \varphi(t)=0 \Rightarrow$ $\varphi((a+1) t)=0$. Since φ is bi-jective $(a+1) t=0 \Rightarrow a+1 \leqslant t+1 \Rightarrow$ $a \circledast 0 \leqslant t \circledast 0 \Rightarrow t \in H \Rightarrow y \in \varphi(H)$.
ii. Suppose $a \in \varphi^{-1}(K)$ with $a \circledast 0 \leqslant b \circledast 0 \Rightarrow a+1 \leqslant b+1 \Rightarrow b \leqslant a$ and $\varphi(a) \in K \Rightarrow \varphi(b) \leqslant \varphi(a) \Rightarrow \varphi(a) \circledast 0 \leqslant \varphi(b) \circledast 0 \Rightarrow \varphi(b) \in K \Rightarrow b \in$ $\varphi^{-1}(K)$.

For any non-empty subset X of R , the intersection of all metric ideal containing X denoted by $[X\rangle$ is called a metric ideal generated by X .

Theorem 4.1. Let X is non-empty subset of R, then $[X\rangle=\{y \in R: a \circledast 0 \leqslant$ $y \circledast 0$ for some $a \in X\}$ is the metric ideal generated by X.

Proof. Let $W=\{y \in R: a \circledast 0 \leqslant y \circledast 0$ for some $a \in X\}$. Let $x \in X \Rightarrow x \leqslant$ $x \Rightarrow x \circledast 0 \leqslant x \circledast 0 \Rightarrow X \subseteq W$.

Let $b \in W$ with $b \circledast 0 \leqslant y \circledast 0$. This implies that there is $x \in X$ such that $x \circledast 0 \leqslant b \circledast 0 \leqslant y \circledast 0 \Rightarrow y \in W$. Hence W is a metric ideal of R. To show that W is the smallest metric ideal containing X . Assume that K is any metric ideal
containing X. Let $x \in W$. This implies there exists $a \in X$ such that $a \circledast 0 \leqslant x \circledast 0$. Since $X \subseteq K \Rightarrow a \in K$ with $a \circledast 0 \leqslant x \circledast 0 \Rightarrow x \in K \Rightarrow W \subseteq K$. Therefore W is the smallest metric ideal containing X , so $W=[X\rangle$.

Corollary 4.1. Let H be a metric ideal of R and $x \notin H$, then $[H \cup\{x\}\rangle=$ $H \cup\{y \in R: x \circledast 0 \leqslant y \circledast 0\}$

Observe that $[x\rangle=[\{x\}\rangle=\{y \in R: x \circledast 0 \leqslant y \circledast 0\}$ for any $x \in R$ is a metric ideal of R and if $x=1$, then $[1\rangle=\{y \in R: 1 \circledast 0 \leqslant y \circledast 0\}=R$. Note that $\{0\}$ and R are trivial metric ideal of R . The following property represent the relation between an ideal generated by X and metric ideal generated by X .

Proposition 4.4. Let X be any non-empty subset of R. Then $[X\rangle \subseteq \prec X \succ$ where $[X\rangle$ is metric ideal generated by X and $\prec X \succ$ is a ideal generated by X.

Proof. Let $b \in[X\rangle$ implies there exist $a \in X$ such that $a \circledast 0 \leqslant b \circledast 0 \Rightarrow b \leqslant$ $a \in X \subseteq \prec X \succ \Rightarrow b \in \prec X \succ$.

The reverse direction of inclusion is not true in general.
EXAMPLE 4.2. In Example 4.1 H is a metric ideal but not ideal , the smallest ideal generated by H in R is $\prec H \succ=\{0, a, b\} \Rightarrow b \notin H=\{0, a\}=[H\rangle \Rightarrow \prec H \succ \nsubseteq$ [$H\rangle$.

Lemma 4.1. If H and K are metric ideals, then so is $H \cup K$.
Proof. Let $x \in H \cup K$ with $x \circledast 0 \leqslant y \circledast 0$, for some $y \in R$. It follows that $x \in H$ or $x \in K$ implies $y \in H$ or $y \in K$. Thus $y \in H \cup K$.

EXAMPLE 4.3. In Example 4.1 $I=\{0, c\}$ and $H=\{0, a\}$ are metric ideals of R, so $K=I \cup H=\{0, a, c\}$ is a metric ideal.

Observe that K in Example 4.3 is not an ideal of R of Example 4.1. Because $1+(a+1)(c+1)=1+d \cdot b=1+a=d \notin K$

Theorem 4.2. Let $\Im(R)$ be set of all metric ideal of R, then
i. $\mathfrak{I}(R) \cup\{\phi\}$ is a topology on R.
ii. $(\mathfrak{I}(R), \cup \cap)$ is a bounded distributive complete lattice.

Proof. Let $\mathfrak{I}(R)$ be set of all metric ideal of R ,
i. Clearly $\phi, R \in \tau$. Let $x \in \bigcup_{\alpha \in \Delta} A_{\alpha}$ with $x \circledast 0 \leqslant y \circledast 0$.This implies, there is $A_{\alpha_{0}} \in\left\{A_{\alpha}\right\}_{\alpha \in \Delta}$ such that $x \in A_{\alpha_{0}} \subseteq \bigcup_{\alpha \in \Delta} A_{\alpha} \Rightarrow \bigcup_{\alpha \in \Delta} A_{\alpha}$ is a metric ideal of R . It is straightforward that the finite intersection of metric ideal of R is a metric ideal.
ii. Clearly $\mathfrak{I}(R)$ with the specified operations $(\cap$ and $\cup)$ is a lattice. From Lemma 4.1, we observe that every subset of $\mathfrak{I}(R)$ has a least upper bound. Let $A, B \in \mathfrak{I}(R)$. If $x \in A \cap B$ with $x \circledast 0 \leqslant y \circledast 0$ for some $y \in R$, then $x \in A$ and $x \in B$. It follows that $y \in A \cap B$. Hence $A \cap B \in \mathfrak{I}(R)$. Thus every subset of $\mathfrak{I}(R)$ has a greatest lower bound.Thus R is the top and
$\{0\}$ is the bottom element of $\mathfrak{I}(R)$. It is straightforward that for every $A, B, C \in \mathfrak{I}(R)$,

$$
A \cap(B \cup C)=(A \cap B) \cup(A \cap C) .
$$

Therefore $\mathfrak{I}(R)$ is a complete distributive lattice.

Theorem 4.3. Let H be a metric ideal of R, then for any $x \in H, \Rightarrow x^{n} \in H$ for all $n \in \mathbb{Z}^{+}$.

Proof. Let H be a metric ideal of R and suppose $x \in H$. We know that $x^{n} \leqslant x \Rightarrow x+1 \leqslant x^{n}+1 \Rightarrow x \circledast 0 \leqslant x^{n} \circledast 0$ for all $n \in \mathbb{Z}^{+}$.

The converse of Theorem 4.3 does not hold in general but the following proposition will give when the converse becomes true.

Proposition 4.5. Let $H \subseteq R$ with $0 \in H$. Then H is metric ideal of R if the following conditions are satisfied
i. Every element of H is of finite order.
ii. For $x \in H$ with $x \circledast 0 \leqslant y \circledast 0$, there is $z \in H$ such that $x \circledast 0 \leqslant y \circledast 0 \leqslant$ $z \circledast 0 \Rightarrow y \in H$.
Proof. suppose $H \subseteq R$ with $x, 0 \in H \Rightarrow x^{n}=0$ for some $n \in \mathbb{Z}^{+}$. Let $x \circledast 0 \leqslant$ $y \circledast 0 \Rightarrow y \leqslant x \Rightarrow y^{n} \leqslant x^{n} \Rightarrow y^{n}=0 \in H \Rightarrow x \circledast 0 \leqslant y \circledast 0 \leqslant y^{n} \circledast 0 \Rightarrow y \in H$.

Theorem 4.4. If N is set of all nilpotent elements of R, then N is a metric ideal.

Proof. Let N be set of all nilpotent elements of R. Let $x \in N$ with $x \circledast 0 \leqslant$ $y \circledast 0 \Rightarrow y \leqslant x \Rightarrow y^{n} \leqslant x^{n}$ for all $n \in \mathbb{Z}^{+} \Rightarrow y^{n}=0 \Rightarrow y \in N$.

From Remark 4.1 and Theorem 3.7 we conclude that every stable ideal is a metric ideal and every extended ideal is metric ideal, but the converse is not true in general. We can note that the ideal $\{0\}$ is neither stable nor extended ideal but it is a metric ideal.

Acknowledgements

The authors would like to thank the unknown reviewers for their valuable comments in improving this paper.

References

1. I. Chajda and H. Länger, Ring-like structures corresponding to MV algebras via symmetric difference. Sitz Abt II, 213 (2004) 33-41.
2. F. Forouzesh, Extended ideals in MV-algebras,New Mathematics and Natural Computation 18, 03 (2022) 559-571.
3. F. Forouzesh, On nodal and conodal ideals in MV-algebras Le Matematiche , Vol. 71, No. 2, (2016) 63-79.
4. F. Foruzesh and M. Bedrood, On some classes of expansions of ideals in MV-algebras, Algebraic Structures and Their Applications, 3,2 (2016)31-47.
5. F. Forouzesh, n-fold obstinate ideals in MV-algebras, New Mathematics and Natural Computation, Vol. 12, No. 03 (2016) 265-275.
6. F. Forouzesh, E. Eslami, A. Saeid, and A. Borumand, On obstinate ideals in MV-algebras, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys , Vol. 76, No. 2 (2014) 53-62.
7. Cheong Seng Hoo, Maximal and essential ideas of MV-algebras, Mathware \& soft computing, 2, 3 (2020) 181-196.
8. G. S. Saidi and R. Borzooei, New results on Ideals in MV-algebras, Int.J.Industrial mathematics Vol.12, No. 3 (2020) 205-213.

Received by editors 9.8.2023; Revised version 24.12.2023; Available online 31.12.2023.
Tadesse Nigisa Natei, Department of Mathematics, Arba Minch University, Arba Minch, Ethiopia

Email address: prns-012-12@amu.edu.et
Dawit Cherinet Kifetaw, Department of Mathematics, Arba Minch University, Arba Minch, Ethiopia

Email address: cherudawit@gmail.com
Kolluru Venkateswarlu, Department of Computer Science and Systems Engineering, Andhra University, Visakhapatnam, India

Email address: drkvenkateswarlu@gmail.com

[^0]: 2010 Mathematics Subject Classification. Primary 06E75; Secondary 06B10 ,06F25.
 Key words and phrases. Extended ideal, stable ideal, metric ideal, nilpotent elements.
 Communicated by Dusko Bogdanic.

