BULLETIN OF THE INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE ISSN (p) 2303-4874, ISSN (o) 2303-4955 www.imvibl.org /JOURNALS / BULLETIN Bull. Int. Math. Virtual Inst., **13**(3)(2023), 529–539 DOI: 10.7251/BIMVI2303529N

> Former BULLETIN OF THE SOCIETY OF MATHEMATICIANS BANJA LUKA ISSN 0354-5792 (o), ISSN 1986-521X (p)

EXTENDED AND METRIC IDEALS OF A PSEUDO RING

Tadesse Nigisa Natei, Dawit Cherinet Kifetaw, and Kolluru Venkateswarlu

ABSTRACT. In this paper, we introduce the notions of an extended ideal, a metric ideal, and a stable ideal in a pseudo ring. We prove that every non-zero maximal ideal M is an extended ideal of some non-empty subset of a pseudo ring R. Also we prove the set of all metric ideals form a complete distributive lattice. Further, we obtain the relationship between extended and metric ideals.

1. Introduction

In [1] Chajda and Länger initiated the study of pseudo rings, which are ring-like structures with a natural bijective relationship to MV-algebras. A lot of study has been made on an ideal theory in MV-algebras by many authors. For instance, maximal and essential ideals in MV-algebras by Hoo [7], obstinate ideals by Forouzesh et al [6], n-fold obstinate ideals, nodal and conodal ideals by Forouzesh [3, 5], contraction and extension of ideals by Saidi and Borzooei [8], extended ideals by Forouzesh [2], expansion of ideals in MV-algebras by Foruzesh and Bedrood [4] are a few.

Keeping this in view, we initiate the study of extended and metric ideals in a pseudo ring. We obtain the basic properties of the ideals of a pseudo ring. Also, we prove that every non-zero maximal ideal is an extended ideal of some non-empty subset of a pseudo ring R. Also we prove the set of all metric ideals form a complete distributive lattice. Further, we obtain the relationship between extended and metric ideals. Throughout this paper, R stands for a pseudo ring.

²⁰¹⁰ Mathematics Subject Classification. Primary 06E75; Secondary 06B10,06F25. Key words and phrases. Extended ideal, stable ideal, metric ideal, nilpotent elements. Communicated by Dusko Bogdanic.

2. Preliminaries

We recall the following from Chajda and Länger in [1]

DEFINITION 2.1. [1] A pseudo ring is an algebra $(R, +, \cdot, 1)$ of type (2, 2, 0) satisfying

$$\begin{split} P_{1.} & (xy)z = x(yz), \\ P_{2.} & xy = yx, \\ P_{3.} & x1 = x, \\ P_{4.} & 1 + (1+x) = x \\ P_{5.} & x0 = 0, \\ P_{6.} & (1+x(1+y))(1+y) = (1+y(1+x))(1+x), \\ P_{7.} & 1 + (1+x(1+y))(1+y(1+x)) = x+y, \end{split}$$

where 0 denotes the element 1 + 1. Note that the following properties are consequence of the above definition.

PROPOSITION 2.1. [1] Let R be a pseudo-ring. Then 1. $x(x+1) = 0, \forall x \in R.$ 2. $1 + y(1+0) = 1 + y, \forall y \in R$ 3. x + 0 = x.

DEFINITION 2.2. [1] Define $x \leq y$ for any two elements $x, y \in R$ if and only if x and y satisfy the condition (y + 1)x = 0.

3. Extended Ideals

DEFINITION 3.1. A subset I of R that satisfies the following conditions is an ideal I of R.

(i) $0 \in I$ (ii) $1 + (x+1)(y+1) \in I$ for every $x, y \in I$. (iii) $x \leq y$ for every $y \in I$ implies that $x \in I$.

PROPOSITION 3.1. Let $I \subseteq R$. I is an ideal of R if and only if the following holds:

$$\begin{array}{l} (i) \ 0 \in I, \\ (ii) \ 1 + (x+1)(y+1) \in I \ for \ every \ x, y \in I, \\ (iii) \ (y+1)x, y \in I \Rightarrow \ x \in I. \end{array}$$

PROOF. straightforward.

REMARK 3.1. If $x, y \in I$ then $x + y \in I$ for an ideal I of R.

DEFINITION 3.2. A proper ideal P of R is called prime ideal if for every $x, y \in R$, either $x(y+1) \in P$ or $y(x+1) \in P$.

DEFINITION 3.3. Let R_1 and R_2 be two pseudo rings. A pseudo ring homomorphism is a mapping $\varphi : R_1 \longrightarrow R_2$ that meets the following conditions:

- 1) $\varphi(1) = 1$,
- 2) $\varphi(x \cdot y) = \varphi(x) \cdot \varphi(y),$
- 3) $\varphi(x+y) = \varphi(x) + \varphi(y)$ for every $x, y \in R_1$.

Note that $\varphi(0) = \varphi(1+1) = \varphi(1) + \varphi(1) = 1 + 1 = 0.$

THEOREM 3.1. Let R_1 and R_2 be two pseudo rings and a mapping $\varphi : R_1 \longrightarrow R_2$ be a pseudo ring homomorphism. Then the following properties hold:

- (a) ker φ is an ideal of R_1 ;
- (b) If φ is a pseudo ring epimorphism, then $R_1/\ker \varphi \cong R_2$;
- (c) $\varphi(x) \leq \varphi(y)$ if and only if $x(y+1) \in ker \varphi$;
- (d) φ injective if and only if ker $\varphi = \{0\}$;
- (e) $\varphi(x) \leq \varphi(y) \Rightarrow x \leq y$ if and only if φ is injective.

PROOF. Let R_1 and R_2 be two pseudo rings and a mapping $\varphi : R_1 \longrightarrow R_2$ be a pseudo ring homomorphism.

(a) $\varphi(0) = 0 \Rightarrow 0 \in \ker \varphi$. Let $x, y \in \ker \varphi$. This implies $\varphi(1 + (x+1)(y+1)) = 0 \Rightarrow 1 + (x+1)(y+1) \in \ker \varphi$.

Let $(y+1)x, y \in \ker \varphi$. It follows that $\varphi(x) = \varphi((0+1)x) = ((0+1)\varphi(x)) = (\varphi(y) + 1)\varphi(x) = \varphi((y+1)x) = 0 \Rightarrow x \in \ker \varphi$. As a result, $\ker \varphi$ is an ideal of R_1 .

(b) Define $\xi : R_1/\ker \varphi \longrightarrow R_2$ by $\xi(\bar{x}) = \varphi(x)$.

Let $y \in R_2$. Since φ is epimorphism there is $a \in R_1$, such that $\varphi(a) = y$. Thus $\xi(\bar{a}) = \varphi(a) = y$.

$$ker \ \xi = \{ \overline{a} \in R_1 / ker \ \varphi : \xi(\overline{a}) = 0 \}$$
$$= \{ a \in R_1 : \varphi(a) = 0 \}$$
$$= \{ a \in R_1 : a \in ker \ \varphi \}$$
$$= ker \ \varphi.$$

Therefor ξ is isomorphism from $R_1/\ker \varphi$ to R_2 .

- (c) Suppose $\varphi(x) \leq \varphi(y)$. By Definition 2.2 and Definition 3.3, $x(1+y) \in ker \varphi$. Conversely, suppose $x(y+1) \in ker \varphi$. This implies $\varphi(x(1+y)) = 0 \Rightarrow \varphi(x)(1+\varphi(y)) = 0$. Thus by Definition 2.2, $\varphi(x) \leq \varphi(y)$.
- (d) Assume $ker \ \varphi \neq \{0\}$. This implies there is $x \in ker \ \varphi$ such that $x \neq 0$. But, $\varphi(x) = 0 \Rightarrow \varphi(x) = \varphi(0)$. Since φ is injective x = 0. This is a contradiction. Therefore $ker \ \varphi = \{0\}$.

Conversely, suppose $ker \ \varphi = \{0\}$. Let $x, y \in R_1$ such that $\varphi(x) = \varphi(y)$. This means $\varphi(x) \leq \varphi(y)$ and $\varphi(y) \leq \varphi(x)$. From Definition 2.2, we have $\varphi(x)(1+\varphi(y)) = 0 \Rightarrow \varphi(x(1+y)) = 0 \Rightarrow x(1+y) \in ker \ \varphi = \{0\} \Rightarrow x(1+y) = 0$.

Therefore, $x \leq y$. Similarly $y \leq x$. Hence x = y

(e) Suppose $\varphi(x) \leq \varphi(y) \Rightarrow x \leq y$. Let $x \in \ker \varphi$ and x = a(1+b) for some $a, b \in R_1$. $\varphi(a)(1+\varphi(b)) = \varphi(x) = 0 \Rightarrow \varphi(a) \leq \varphi(b) \Rightarrow a \leq b \Rightarrow x = a(1+b) = 0$. Hence, $\ker \varphi = \{0\}$.

THEOREM 3.2. Let $\varphi : R_1 \to R_2$ is a pseudo ring epimorphism. If I is an ideal of R_1 and $ker(\varphi) \subseteq I$, then $\varphi(I)$ is an ideal of R_2 .

PROOF. It is noticeable that both the first and second requirements outlined in Definition 3.1 are met. Let $x \in R_2$ and $y \in \varphi(I)$ with $x \leq y$. Since φ is epimorphism,there are $a, b \in R_1$ such that $\varphi(a) = x$, and $\varphi(b) = y$. By Definition 2.2 and Definition 3.3, $a(b+1) \in ker(\varphi) \subseteq I \Rightarrow$ by Proposition 3.1, $a \in I$. Therefore $\varphi(I)$ is an ideal of R_2 .

COROLLARY 3.1. If the map $\varphi : R_1 \to R_2$ is an epimorphism, then for any prime ideal P of R_1 with $ker(\varphi) \subseteq P$, $\varphi(P)$ is the prime ideal of R_2 .

DEFINITION 3.4. Let I be an ideal of R and $X \subseteq R$, we define the extended ideal of I associated with X as follows: $\mathscr{E}_I(X) = \{x \in R : x(1 + (a + 1)x) \in I, \text{ for all } a \in X\}.$

EXAMPLE 3.1. Let $A = \{\alpha, \beta\}$, consider the power set of A, R = P(A) is a pseudo ring with the binary operation $D + C = (D' \cup C)' \cup (D \cup C')'$ and $D \cdot C = D \cap C$ for $C, D \in R$. Clearly $I_1 = \{\phi, \{\alpha\}\}$ and $I_2 = \{\phi, \{\beta\}\}$ are ideals of R. $\mathscr{E}_{I_1}(\{\beta\}) = I_1$ and $\mathscr{E}_{I_1}(\{\alpha\}) = R$. Similarly $\mathscr{E}_{I_2}(\{\beta\}) = R$ and $\mathscr{E}_{I_2}(\{\alpha\}) = I_2$.

THEOREM 3.3. Let I be an ideal of R and $X \subseteq R$, then $\mathscr{E}_I(X)$ is an ideal of R and $I \subseteq \mathscr{E}_I(X)$.

PROOF. Let I be an ideal of R and $X \subseteq R$.

- i. It is clearly that $0 \in \mathscr{E}_I(X)$.
- ii. Since $b(1+(x+1)(y+1)b) \leq 1+(b(1+(x+1)b)+1)(b(1+(y+1)b)+1) \Rightarrow 1+(x+1)(y+1) \in \mathscr{E}_I(X)$, for any $x, y \in \mathscr{E}_I(X)$.
- iii. Let $x \leq y$ and $y \in \mathscr{E}_I(X) \Rightarrow x(1+(b+1)x) \leq y(1+(b+1)y)$, for all $b \in X \Rightarrow x(1+(b+1)x) \in I$

DEFINITION 3.5. An ideal I is called stable with respect to a subset X of R if $I = \mathscr{E}_I(X)$.

EXAMPLE 3.2. In Example 3.1 $I_2 = \{\phi, \{\beta\}\}$ is stable with-respect to $X = \{\{\alpha\}\}$.

PROPOSITION 3.2. Let R_1 and R_2 be pseudo rings and $\varphi : R_1 \longrightarrow R_2$ be epimorphism such that $\varphi(H) = K$ where $H \subseteq R_1$ and $K \subseteq R_2$. Then the following statements hold.

- i. If I is an ideal of R_2 , then $\varphi^{-1}(I)$ is an ideal of R_1 .
- ii. If I is a stable relative to K, then $\varphi^{-1}(I)$ is stable relative to H.

- iii. If I is a stable relative to H and ker $\varphi \subseteq I$, then $\varphi(I)$ is a stable relative to K.
- PROOF. i. Let *I* be an ideal of R_2 and $a, b \in \varphi^{-1}(I)$. Clearly, $0 \in \varphi^{-1}(I)$. There are $x, y \in I$ such that $\varphi(a) = x$ and $\varphi(b) = y$. By Definition 3.3, $\varphi(1 + (a+1)(b+1)) \in I \Rightarrow 1 + (a+1)(b+1) \in \varphi^{-1}(I)$. Let $a \leq b$ and $b \in \varphi^{-1}(I)$. It follows $a(b+1) = 0 \Rightarrow \varphi(a)(\varphi(b)+1) = 0 \Rightarrow \varphi(a) \leq \varphi(b) \in I \Rightarrow a \in \varphi^{-1}(I)$. Thus, $\varphi^{-1}(I)$ is an ideal of R_1 .
 - ii. By (i), $\varphi^{-1}(I)$ is an ideal of R_1 . Suppose I is stable relative to K. Let $x \in \mathscr{E}_{\varphi^{-1}(I)}(H)$. $x \in \mathscr{E}_{\varphi^{-1}(I)}(H) \Leftrightarrow x(1 + (a + 1)x) \in \varphi^{-1}(I)$, for all $a \in H \Leftrightarrow \varphi(x)(1 + (\varphi(a) + 1)\varphi(x)) \in I$, for all $\varphi(a) \in K \Leftrightarrow \varphi(x) \in \mathscr{E}_I(K) \Leftrightarrow x \in \varphi^{-1}(\mathscr{E}_I(K))$. Therefore $\mathscr{E}_{\varphi^{-1}(I)}(H) = \varphi^{-1}(\mathscr{E}_I(K)) = \varphi^{-1}(I)$.
 - iii. Suppose I is stable relative to H and $\ker \varphi \subseteq I$. Since φ is epimorphism, by Theorem 3.2, $\varphi(I)$ is an ideal of R_2 . Let $x \in \varphi(\mathscr{E}_I(H))$. This implies there exists $s \in \mathscr{E}_I(H)$ such that $\varphi(s) = x \Rightarrow s(1+(a+1)s) \in I$, for all $a \in H \Rightarrow x(1+(\varphi(a)+1)x) = \varphi(s)(1+(\varphi(a)+1)\varphi(s)) = \varphi(s(1+(a+1)s)) \in$ $\varphi(I)$ for all $\varphi(a) \in K \Rightarrow x \in \mathscr{E}_{\varphi(I)}(K)$. Thus, $\varphi(\mathscr{E}_I(H) \subseteq \mathscr{E}_{\varphi(I)}(K)$. Conversely, suppose $x \in \mathscr{E}_{\varphi(I)}(K)$. Since φ is epimorphism there exists $p \in R_1$ such that $\varphi(p) = x$. Then $x \in \mathscr{E}_{\varphi(I)}(K) \Rightarrow x(1+(b+1)x) \in \varphi(I)$, for all $b \in K \Rightarrow \varphi(p(1+(a+1)p)) = \varphi(t)$ for some $t \in I$, for all $a \in H \Rightarrow \varphi(p(1+(a+1)p) \cdot (t+1)) = 0$, for all $a \in H \Rightarrow p(1+(a+1)p) \in I$, for all $a \in H \Rightarrow p \in \mathscr{E}_I(H) \Rightarrow x \in \varphi(\mathscr{E}_I(H) \Rightarrow \mathscr{E}_{\varphi(I)}(K) \subseteq \varphi(\mathscr{E}_I(H) = \varphi(I)$. Therefore $\varphi(I)$ is stable relative to K.

PROPOSITION 3.3. For any $x, y \in R$, y(1 + (x + 1)y) = x(1 + (y + 1)x).

PROOF. Let x + 1 = a and y + 1 = b. By P_6 of Definition 2.1, we get y(1 + (x+1)y) = (b+1)(1+a(b+1)) = (a+1)(1+b(1+a)) = x(1+(y+1)x). \Box

THEOREM 3.4. Let I and J be the ideals of a pseudo ring R and X be any subset of R. Then each of the following holds:

- 1. $\mathscr{E}_{I}(X) = R$ if and only if $X \subseteq I$; 2. If $I \subseteq J$, then $\mathscr{E}_{I}(X) \subseteq \mathscr{E}_{J}(X)$; 3. $X \subseteq \mathscr{E}_{I}(\mathscr{E}_{I}(X))$; 4. If $I \subseteq J$, then $\mathscr{E}_{I}(J) \cap J = I$; 5. If $X \subseteq Y$, then $\mathscr{E}_{I}(Y) \subseteq \mathscr{E}_{I}(X)$; 6. $\mathscr{E}_{I}(\mathscr{E}_{I}(Y)) \cap \mathscr{E}_{I}(Y) = I$
- 6. $\mathscr{E}_I(\mathscr{E}_I(X)) \cap \mathscr{E}_I(X) = I.$
- PROOF. 1. Suppose $\mathscr{E}_I(X) = R$ and $y \in X$. As $y \in R \Rightarrow y \in \mathscr{E}_I(X) \Rightarrow y(1+(a+1)y) \in I$, for all $a \in X$. In particular $y = y(1+(y+1)y) \in I$ (by Proposition 2.1), implies $X \subseteq I$. Conversely, suppose $X \subseteq I$ and $y \in R$. By Proposition 3.3, we have $x(1+(y+1)x) = y(1+(x+1)y) \leqslant x \in X \subseteq I \Rightarrow y \in \mathscr{E}_I(X) \Rightarrow \mathscr{E}_I(X) = R$.
 - 2. Let $x \in \mathscr{E}_I(X) \Rightarrow x(1+(y+1)x) \in I \subseteq J$, for all $y \in X \Rightarrow x \in \mathscr{E}_J(X)$.

- 3. Let $x \in X$ and $y \in \mathscr{E}_I(X)$. By Proposition 3.3, $x(1 + (y + 1)x) = y(1 + (x + 1)y) \in I$, for all $y \in \mathscr{E}_I(X) \Rightarrow x \in \mathscr{E}_I(\mathscr{E}_I(X))$. Therefore $X \subseteq \mathscr{E}_I(\mathscr{E}_I(X))$.
- 4. Suppose $I \subseteq J$ and let $x \in \mathscr{E}_I(J) \cap J \Rightarrow x \in \mathscr{E}_I(J) \Rightarrow x = x(1 + (x + 1)x) \in I \Rightarrow \mathscr{E}_I(J) \cap J \subseteq I$. Conversely, observe that by Theorem 3.3 and hypothesis, $I \subseteq J$ and $I \subseteq \mathscr{E}_I(J) \Rightarrow I \subseteq \mathscr{E}_I(J) \cap J$. Therefore $I = \mathscr{E}_I(J) \cap J$.
- 5. Suppose $X \subseteq Y$. Let $a \in \mathscr{E}_I(Y) \Rightarrow a(1 + (x+1)a) \in I$, for all $x \in Y \Rightarrow a(1 + (x+1)a) \in I$, for all $x \in X$ as $X \subseteq Y$.
- 6. It follows from Theorem 3.3 and (4).

PROPOSITION 3.4. If P is a prime ideal, then

- i. $\mathscr{E}_P(X) = R$ for $X \subseteq P$ and
- ii. P is stable relative to X for $X \not\subseteq P$.

PROOF. i. Follows from Theorem 3.4 (1).

ii. Suppose there is $x_0 \in X$ but not in P with $x(1 + (x_0 + 1)x) \in P$ where P is prime ideal of R. Since $x_0, x \in R$, by Definition 3.2 either $x(x_0 + 1) \in P$ or $x_0(x + 1) \in P$. If $x(x_0 + 1) \in P$, then by Proposition 3.1 it follows that $x \in P$. If $x_0(x + 1) \in P$, then by the same proposition $x_0 \in P$. This contradicts the fact that $x_0 \notin P$. Thus, from Theorem 3.3 we conclude that $\mathscr{E}_P(X) = P$.

DEFINITION 3.6. A proper ideal M of R is called a maximal if and only if $x \in I$ or $x + 1 \in I$ but not both for every $x \in R$.

THEOREM 3.5. If I is a maximal ideal and $\mathscr{E}_I(X)$ be a proper ideal of R, then $\mathscr{E}_I(X)$ is a maximal ideal of R and I is stable relative to X.

PROOF. Clearly $I \subseteq \mathscr{E}_I(X)$ (by assumption and by Theorem 3.3). Hence $\mathscr{E}_I(X)$ is maximal. Consequently $I = \mathscr{E}_I(X)$.

PROPOSITION 3.5. Let $X \subseteq Y \subseteq R$ and I be a stable relative to X. Then I is stable ideal relative to Y.

PROOF. Since $X \subseteq Y$, from Theorem 3.4 (6) it follows that $\mathscr{E}_I(Y) \subseteq \mathscr{E}_I(X) = I$. Thus $\mathscr{E}_I(Y) = I$.

THEOREM 3.6. Let $\{J_{\alpha}\}_{\alpha \in \Delta}$ be a family of ideals of R. Then the following hold:

i. if $\{J_{\alpha}\}_{\alpha \in \Delta}$ are totally ordered ideals and X is finite, then $\bigcup_{\alpha \in \Delta} \mathscr{E}_{J_{\alpha}}(X) = \mathscr{E}_{\cup J_{\alpha}}(X)$.

11.
$$[]_{\alpha \in \Delta} \mathscr{E}_{J_{\alpha}}(X) = \mathscr{E}_{\cap J_{\alpha}}(X).$$

PROOF. i. Let $\{J_{\alpha}\}_{\alpha\in\Delta}$ be a totally ordered ideal of R and X be finite subsets of R. It is clear that $\bigcup_{\alpha\in\Delta} J_{\alpha}$ is an ideal of R. Let $x \in \bigcup_{\alpha\in\Delta} \mathscr{E}_{J_{\alpha}}(X)$. Then there exist $\alpha_0 \in \Delta$ such that $x \in \mathscr{E}_{J_{\alpha_0}}(X)$. This implies $x(1 + (a + 1)x) \in J_{\alpha_0} \subseteq \bigcup_{\alpha\in\Delta} I_{\alpha}$, for all $a \in X \Rightarrow x \in \mathscr{E}_{\cup J_{\alpha}}(X)$. Thus, $\bigcup_{\alpha\in\Delta} \mathscr{E}_{J_{\alpha}}(X) \subseteq \mathscr{E}_{\cup J_{\alpha}}(X)$.

Conversely, suppose $x \in \mathscr{E}_{\cup J_{\alpha}}(X) \Rightarrow x(1 + (a + 1)x) \in \bigcup_{\alpha \in \Delta} J_{\alpha}$, for all $a \in X$. Since X is finite, there exist $\alpha_i \in \Delta$ such that $x(1 + (a + 1)x) \in J_{\alpha_i}$, for all $a \in X \Rightarrow x \in \mathscr{E}_{J_{\alpha_i}}(X) \subseteq \bigcup_{\alpha \in \Delta} \mathscr{E}_{J_{\alpha}}(X)$. Therefore, $\bigcup_{\alpha \in \Delta} \mathscr{E}_{J_{\alpha}}(X) = E_{\cup J_{\alpha}}(X)$.

ii. Let $x \in \bigcap_{\alpha \in \Delta} \mathscr{E}_{J_{\alpha}}(X)$. Then $x \in \bigcap_{\alpha \in \Delta} \mathscr{E}_{J_{\alpha}}(X) \Leftrightarrow x \in \mathscr{E}_{J_{\alpha}}$, for all $\alpha \in \Delta \Leftrightarrow x(1 + (a + 1)x) \in J_{\alpha}$, for all $x(1 + (a + 1)x \in \bigcap_{\alpha \in \Delta} J_{\alpha} \Leftrightarrow x \in \mathscr{E}_{\cap J_{\alpha}}(X)$. Therefore, $\bigcap_{\alpha \in \Delta} \mathscr{E}_{J_{\alpha}}(X) = \mathscr{E}_{\cap J_{\alpha}}(X)$.

As a consequence, we get the following corollary.

COROLLARY 3.2. The intersection of stable ideals with respect to a non-empty subset X of R is stable.

THEOREM 3.7. Every non-zero maximal ideal M is an extended ideal of some non-empty subset of a pseudo ring R.

PROOF. Let $a \in R$. Suppose that $a \notin M$. Since M maximal ideal, by Definition 3.6, $a+1 \in M$. $y \in \mathscr{E}_M(\{a\}) \Rightarrow y(1+(a+1)y) \in M$. By Proposition 3.1, $y \in M$. Thus M is an extended ideal.

PROPOSITION 3.6. Every ideal I of R is stable with respect to the set $X = \{1\}$.

PROOF. Let $X = \{1\}$ and suppose that I is an ideal of R. Then $\mathscr{E}_I(\{X\}) = \mathscr{E}_I(\{1\})$. Let $y \in \mathscr{E}_I(\{X\})$. Thus $y(1 + (1 + 1)y) = y \in I \Rightarrow I = \mathscr{E}_I(\{X\})$. \Box

4. Metric ideal

We define the distance function on R as $\delta: R \times R \to R$ by $\delta(x, y) = x + y$

PROPOSITION 4.1. The following properties hold for all $x, y, z, t, r \in R$

- i. $\delta(x, y) = \delta(y, x)$.
- ii. $\delta(x, 0) = x$.
- iii. $\delta(x, y) = 0$ implies x = y.

iv. $\delta(x, z) \leq \delta(x, y) + \delta(y, z)$.

v. $\delta(1 + (x+1)(t+1), 1 + (y+1)(r+1)) \leq 1 + (\delta(x,y) + 1)(\delta(t,r) + 1).$

Define binary operation '*' by $x * y = \delta(x, 1) \cdot \delta(y, 1)$. Since '.' is well defined and so is '*'.

DEFINITION 4.1. Let H a non-empty subset of R. If for $x \in H$ with $x \circledast 0 \leq y \circledast 0 \Rightarrow y \in H$, then H is a metric ideal of R.

REMARK 4.1. Every ideal of R is a metric ideal, but the converse is not true in general (see the following example).

EXAMPLE 4.1. Let $R = \{0, a, b, c, d, 1\}$, then the operations '+' and '.' on R is defined as follows:

+	0	a	b	С	d	1		.	0	a	b	c	d	1
0	0	a	b	С	d	1	$\overline{\ell}$	9	0	0	0	0	0	0
a	a	0	a	d	c	d	6	a	0	0	0	0	0	a
b	b	a	θ	1	d	c	ŀ	6	θ	b	b	0	a	b
c	с	d	1	0	a	b	0	c	θ	θ	0	С	c	c
d	d	с	d	a	0	a	6	d	0	0	a	c	c	d
1	1	d	c	b	a	0	1	1	0	a	b	c	d	1

We see that $R = (R, +, \cdot, 1)$ is a pseudo ring. Clearly all the ideals of R are metric ideal and the set $H = \{0, a\}$ is an example of metric ideal but not an ideal of R.

PROPOSITION 4.2. A metric ideal H become an ideal of R, if for every $x, y \in H \Rightarrow (x \circledast y) \circledast 0 \in H$.

PROOF. i. Clearly $0 \in H$ as H is metric ideal.

- ii. Let $x, y \in H$. Consider $1+(x+1)(y+1) = 1+\delta(x,1)\cdot\delta(y,1) = \delta(1,0)(1+\delta(x,1)\delta(y,1)) = (x \circledast y) \circledast 0 \in H$.
- iii. Let $x \in H$ and $y \leq x \Leftrightarrow x+1 \leq y+1 \Leftrightarrow (x+1)(0+1) \leq (y+1)(0+1) \Leftrightarrow x \circledast 0 \leq y \circledast 0$ and $x \in H \Rightarrow y \in H$

PROPOSITION 4.3. Let R_1 and R_2 be pseudo ring, φ is a homomorphism from R_1 to R_2 and H is metric ideal of R_1 and K is metric ideal of R_2 . Then following holds:

i. $\varphi(H)$ is a metric ideal if φ is bi-jective,

ii. $\varphi^{-1}(K)$ is metric ideal of R_1 if φ is onto.

- PROOF. i. Suppose φ is surjective. Let $x \in \varphi(H)$ with $x \circledast 0 \leqslant y \circledast 0$. Since $y \in R_2$ there is t in R_1 such that $\varphi(t) = y$ and $a \in H \Rightarrow \varphi(a) = x \Rightarrow \varphi(a) \circledast 0 \leqslant \varphi(t) \circledast 0 \Rightarrow \varphi(a) + 1 \leqslant \varphi(t) + 1 \Rightarrow (\varphi(a) + 1)\varphi(t) = 0 \Rightarrow \varphi((a+1)t) = 0$. Since φ is bi-jective $(a+1)t = 0 \Rightarrow a+1 \leqslant t+1 \Rightarrow a \circledast 0 \leqslant t \circledast 0 \Rightarrow t \in H \Rightarrow y \in \varphi(H)$.
 - ii. Suppose $a \in \varphi^{-1}(K)$ with $a \circledast 0 \leqslant b \circledast 0 \Rightarrow a + 1 \leqslant b + 1 \Rightarrow b \leqslant a$ and $\varphi(a) \in K \Rightarrow \varphi(b) \leqslant \varphi(a) \Rightarrow \varphi(a) \circledast 0 \leqslant \varphi(b) \circledast 0 \Rightarrow \varphi(b) \in K \Rightarrow b \in \varphi^{-1}(K).$

For any non-empty subset X of R, the intersection of all metric ideal containing X denoted by $|X\rangle$ is called a metric ideal generated by X.

THEOREM 4.1. Let X is non-empty subset of R, then $[X\rangle = \{y \in R : a \circledast 0 \le y \circledast 0 \text{ for some } a \in X\}$ is the metric ideal generated by X.

PROOF. Let $W = \{y \in R : a \circledast 0 \le y \circledast 0 \text{ for some } a \in X\}$. Let $x \in X \Rightarrow x \le x \Rightarrow x \circledast 0 \le x \circledast 0 \Rightarrow X \subseteq W$.

Let $b \in W$ with $b \circledast 0 \leq y \circledast 0$. This implies that there is $x \in X$ such that $x \circledast 0 \leq b \circledast 0 \leq y \circledast 0 \Rightarrow y \in W$. Hence W is a metric ideal of R. To show that W is the smallest metric ideal containing X. Assume that K is any metric ideal

containing X. Let $x \in W$. This implies there exists $a \in X$ such that $a \circledast 0 \leq x \circledast 0$. Since $X \subseteq K \Rightarrow a \in K$ with $a \circledast 0 \leq x \circledast 0 \Rightarrow x \in K \Rightarrow W \subseteq K$. Therefore W is the smallest metric ideal containing X, so $W = [X\rangle$.

COROLLARY 4.1. Let H be a metric ideal of R and $x \notin H$, then $[H \cup \{x\}\rangle = H \cup \{y \in R : x \circledast 0 \leq y \circledast 0\}$

Observe that $[x\rangle = [\{x\}\rangle = \{y \in R : x \circledast 0 \le y \circledast 0\}$ for any $x \in R$ is a metric ideal of R and if x = 1, then $[1\rangle = \{y \in R : 1 \circledast 0 \le y \circledast 0\} = R$. Note that $\{0\}$ and R are trivial metric ideal of R. The following property represent the relation between an ideal generated by X and metric ideal generated by X.

PROPOSITION 4.4. Let X be any non-empty subset of R. Then $[X\rangle \subseteq \langle X \rangle$ where $[X\rangle$ is metric ideal generated by X and $\langle X \rangle$ is a ideal generated by X.

PROOF. Let $b \in [X]$ implies there exist $a \in X$ such that $a \circledast 0 \le b \circledast 0 \Rightarrow b \le a \in X \subseteq \forall X \succ \Rightarrow b \in \forall X \succ$.

The reverse direction of inclusion is not true in general.

EXAMPLE 4.2. In Example 4.1 H is a metric ideal but not ideal ,the smallest ideal generated by H in R is \prec H $\succ = \{0, a, b\} \Rightarrow b \notin H = \{0, a\} = [H) \Rightarrow \prec H \succ \not\subseteq [H\rangle$.

LEMMA 4.1. If H and K are metric ideals, then so is $H \cup K$.

PROOF. Let $x \in H \cup K$ with $x \circledast 0 \le y \circledast 0$, for some $y \in R$. It follows that $x \in H$ or $x \in K$ implies $y \in H$ or $y \in K$. Thus $y \in H \cup K$.

EXAMPLE 4.3. In Example 4.1 $I = \{0, c\}$ and $H = \{0, a\}$ are metric ideals of R, so $K = I \cup H = \{0, a, c\}$ is a metric ideal.

Observe that K in Example 4.3 is not an ideal of R of Example 4.1. Because $1 + (a+1)(c+1) = 1 + d \cdot b = 1 + a = d \notin K$

THEOREM 4.2. Let $\mathfrak{I}(R)$ be set of all metric ideal of R, then

ii. $(\mathfrak{I}(R), \cup, \cap)$ is a bounded distributive complete lattice.

PROOF. Let $\mathfrak{I}(R)$ be set of all metric ideal of R,

- i. Clearly $\phi, R \in \tau$. Let $x \in \bigcup_{\alpha \in \Delta} A_{\alpha}$ with $x \circledast 0 \leq y \circledast 0$. This implies, there is $A_{\alpha_0} \in \{A_{\alpha}\}_{\alpha \in \Delta}$ such that $x \in A_{\alpha_0} \subseteq \bigcup_{\alpha \in \Delta} A_{\alpha} \Rightarrow \bigcup_{\alpha \in \Delta} A_{\alpha}$ is a metric ideal of R. It is straightforward that the finite intersection of metric ideal of R is a metric ideal.
- ii. Clearly $\mathfrak{I}(R)$ with the specified operations $(\cap \text{ and } \cup)$ is a lattice. From Lemma 4.1, we observe that every subset of $\mathfrak{I}(R)$ has a least upper bound. Let $A, B \in \mathfrak{I}(R)$. If $x \in A \cap B$ with $x \circledast 0 \leq y \circledast 0$ for some $y \in R$, then $x \in A$ and $x \in B$. It follows that $y \in A \cap B$. Hence $A \cap B \in \mathfrak{I}(R)$. Thus every subset of $\mathfrak{I}(R)$ has a greatest lower bound. Thus R is the top and

i. $\mathfrak{I}(R) \cup \{\phi\}$ is a topology on R.

 $\{0\}$ is the bottom element of $\mathfrak{I}(R)$. It is straightforward that for every $A, B, C \in \mathfrak{I}(R)$,

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C).$$

Therefore $\Im(R)$ is a complete distributive lattice.

THEOREM 4.3. Let H be a metric ideal of R, then for any $x \in H$, $\Rightarrow x^n \in H$ for all $n \in \mathbb{Z}^+$.

PROOF. Let H be a metric ideal of R and suppose $x \in H$. We know that $x^n \leq x \Rightarrow x + 1 \leq x^n + 1 \Rightarrow x \circledast 0 \leq x^n \circledast 0$ for all $n \in \mathbb{Z}^+$.

The converse of Theorem 4.3 does not hold in general but the following proposition will give when the converse becomes true.

PROPOSITION 4.5. Let $H \subseteq R$ with $0 \in H$. Then H is metric ideal of R if the following conditions are satisfied

- i. Every element of H is of finite order.
- ii. For $x \in H$ with $x \circledast 0 \leq y \circledast 0$, there is $z \in H$ such that $x \circledast 0 \leq y \circledast 0 \leq z \circledast 0 \Rightarrow y \in H$.

PROOF. suppose $H \subseteq R$ with $x, 0 \in H \Rightarrow x^n = 0$ for some $n \in \mathbb{Z}^+$. Let $x \circledast 0 \leqslant y \circledast 0 \Rightarrow y \leqslant x \Rightarrow y^n \leqslant x^n \Rightarrow y^n = 0 \in H \Rightarrow x \circledast 0 \leqslant y \circledast 0 \leqslant y^n \circledast 0 \Rightarrow y \in H$. \Box

THEOREM 4.4. If N is set of all nilpotent elements of R, then N is a metric ideal.

PROOF. Let N be set of all nilpotent elements of R. Let $x \in N$ with $x \circledast 0 \leq y \circledast 0 \Rightarrow y \leq x \Rightarrow y^n \leq x^n$ for all $n \in \mathbb{Z}^+ \Rightarrow y^n = 0 \Rightarrow y \in N$.

From Remark 4.1 and Theorem 3.7 we conclude that every stable ideal is a metric ideal and every extended ideal is metric ideal, but the converse is not true in general. We can note that the ideal $\{0\}$ is neither stable nor extended ideal but it is a metric ideal.

Acknowledgements

The authors would like to thank the unknown reviewers for their valuable comments in improving this paper.

References

- I. Chajda and H. Länger, Ring-like structures corresponding to MV algebras via symmetric difference. Sitz Abt II, 213 (2004) 33—41.
- F. Forouzesh, Extended ideals in MV-algebras, New Mathematics and Natural Computation 18, 03 (2022) 559—571.
- F. Forouzesh, On nodal and conodal ideals in MV-algebras Le Matematiche , Vol. 71, No. 2, (2016) 63-79.
- F. Foruzesh and M. Bedrood, On some classes of expansions of ideals in MV-algebras, Algebraic Structures and Their Applications, 3,2 (2016)31–47.

- F. Forouzesh, n-fold obstinate ideals in MV-algebras, New Mathematics and Natural Computation, Vol. 12, No. 03 (2016) 265-275.
- F. Forouzesh, E. Eslami, A. Saeid, and A. Borumand, On obstinate ideals in MV-algebras, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys , Vol. 76, No. 2 (2014) 53-62.
- Cheong Seng Hoo, Maximal and essential ideas of MV-algebras, Mathware & soft computing, 2, 3 (2020) 181-196.
- G. S. Saidi and R. Borzooei, New results on Ideals in MV-algebras, Int.J.Industrial mathematics Vol.12, No. 3 (2020) 205-213.

Received by editors 9.8.2023; Revised version 24.12.2023; Available online 31.12.2023.

TADESSE NIGISA NATEI, DEPARTMENT OF MATHEMATICS, ARBA MINCH UNIVERSITY, ARBA MINCH, ETHIOPIA

Email address: prns-012-12@amu.edu.et

DAWIT CHERINET KIFETAW, DEPARTMENT OF MATHEMATICS, ARBA MINCH UNIVERSITY, ARBA MINCH, ETHIOPIA

 $Email \ address: \ \tt cherudawit@gmail.com$

Kolluru Venkateswarlu, Department of Computer Science and Systems Engineering, Andhra University, Visakhapatnam, India

 $Email \ address: \ \tt drkvenkateswarlu@gmail.com$