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Abstract. In this paper, we introduce the notions of an extended ideal, a

metric ideal, and a stable ideal in a pseudo ring. We prove that every non-
zero maximal ideal M is an extended ideal of some non-empty subset of a

pseudo ring R. Also we prove the set of all metric ideals form a complete

distributive lattice. Further, we obtain the relationship between extended and
metric ideals.

1. Introduction

In [1] Chajda and Länger initiated the study of pseudo rings, which are ring-like
structures with a natural bijective relationship to MV-algebras. A lot of study has
been made on an ideal theory in MV-algebras by many authors. For instance, max-
imal and essential ideals in MV-algebras by Hoo [7], obstinate ideals by Forouzesh
et al [6], n-fold obstinate ideals, nodal and conodal ideals by Forouzesh [3, 5],
contraction and extension of ideals by Saidi and Borzooei [8], extended ideals by
Forouzesh [2], expansion of ideals in MV-algebras by Foruzesh and Bedrood [4] are
a few.
Keeping this in view, we initiate the study of extended and metric ideals in a pseudo
ring. We obtain the basic properties of the ideals of a pseudo ring. Also, we prove
that every non-zero maximal ideal is an extended ideal of some non-empty subset
of a pseudo ring R. Also we prove the set of all metric ideals form a complete dis-
tributive lattice. Further, we obtain the relationship between extended and metric
ideals. Throughout this paper, R stands for a pseudo ring.
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2. Preliminaries

We recall the following from Chajda and Länger in [1]

Definition 2.1. [1] A pseudo ring is an algebra (R,+, ·, 1) of type (2, 2, 0)
satisfying

P1. (xy)z = x(yz),

P2. xy = yx,

P3. x1 = x,

P4. 1 + (1 + x) = x

P5. x0 = 0,

P6. (1 + x(1 + y))(1 + y) = (1 + y(1 + x))(1 + x),

P7. 1 + (1 + x(1 + y))(1 + y(1 + x)) = x+ y,

where 0 denotes the element 1 + 1. Note that the following properties are
consequence of the above definition.

Proposition 2.1. [1] Let R be a pseudo-ring.Then

1. x(x+ 1) = 0, ∀x ∈ R.
2. 1 + y(1 + 0) = 1 + y, ∀y ∈ R
3. x+ 0 = x.

Definition 2.2. [1] Define x ⩽ y for any two elements x, y ∈ R if and only
if x and y satisfy the condition (y + 1)x = 0.

3. Extended Ideals

Definition 3.1. A subset I of R that satisfies the following conditions is an
ideal I of R.

(i) 0 ∈ I

(ii) 1 + (x+ 1)(y + 1) ∈ I for every x, y ∈ I.

(iii) x ⩽ y for every y ∈ I implies that x ∈ I.

Proposition 3.1. Let I ⊆ R. I is an ideal of R if and only if the following
holds:

(i) 0 ∈ I,

(ii) 1 + (x+ 1)(y + 1) ∈ I for every x, y ∈ I,

(iii) (y + 1)x, y ∈ I ⇒ x ∈ I.

Proof. straightforward. □

Remark 3.1. If x, y ∈ I then x+ y ∈ I for an ideal I of R.

Definition 3.2. A proper ideal P of R is called prime ideal if for every x, y ∈
R, either x(y + 1) ∈ P or y(x+ 1) ∈ P.
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Definition 3.3. Let R1 and R2 be two pseudo rings. A pseudo ring homo-
morphism is a mapping φ : R1 −→ R2 that meets the following conditions:

1) φ(1) = 1,

2) φ(x · y) = φ(x) · φ(y),
3) φ(x+ y) = φ(x) + φ(y) for every x, y ∈ R1.

Note that φ(0) = φ(1 + 1) = φ(1) + φ(1) = 1 + 1 = 0.

Theorem 3.1. Let R1 and R2 be two pseudo rings and a mapping φ : R1 −→
R2 be a pseudo ring homomorphism.Then the following properties hold:

(a) ker φ is an ideal of R1;
(b) If φ is a pseudo ring epimorphism, then R1/ker φ ∼= R2;
(c) φ(x) ⩽ φ(y) if and only if x(y + 1) ∈ ker φ;
(d) φ injective if and only if ker φ = {0};
(e) φ(x) ⩽ φ(y) ⇒ x ⩽ y if and only if φ is injective.

Proof. Let R1 and R2 be two pseudo rings and a mapping φ : R1 −→ R2 be
a pseudo ring homomorphism.

(a) φ(0) = 0 ⇒ 0 ∈ ker φ. Let x, y ∈ ker φ. This implies φ(1 + (x+ 1)(y +
1)) = 0 ⇒ 1 + (x+ 1)(y + 1) ∈ ker φ.
Let (y+1)x, y ∈ ker φ. It follows that φ(x) = φ((0+1)x) = ((0+1)φ(x)) =
(φ(y) + 1)φ(x) = φ((y + 1)x) = 0 ⇒ x ∈ ker φ. As a result, ker φ is an
ideal of R1.

(b) Define ξ : R1/ker φ −→ R2 by ξ(x̄) = φ(x).
Let y ∈ R2. Since φ is epimorphism there is a ∈ R1, such that φ(a) = y.
Thus ξ(ā) = φ(a) = y.

ker ξ ={ā ∈ R1/ker φ : ξ(ā) = 0}
= {a ∈ R1 : φ(a) = 0}
= {a ∈ R1 : a ∈ ker φ}
= ker φ.

Therefor ξ is isomorphism from R1/ker φ to R2.

(c) Suppose φ(x) ⩽ φ(y). By Definition 2.2 and Definition 3.3, x(1 + y) ∈
ker φ. Conversely,suppose x(y + 1) ∈ ker φ. This implies φ(x(1 + y)) =
0 ⇒ φ(x)(1 + φ(y)) = 0. Thus by Definition 2.2, φ(x) ⩽ φ(y).

(d) Assume ker φ ̸= {0}. This implies there is x ∈ ker φ such that x ̸= 0.
But, φ(x) = 0 ⇒ φ(x) = φ(0). Since φ is injective x = 0. This is a
contradiction. Therefore ker φ = {0}.

Conversely, suppose ker φ = {0}. Let x, y ∈ R1 such that φ(x) =
φ(y). This means φ(x) ⩽ φ(y) and φ(y) ⩽ φ(x). From Definition 2.2, we
have φ(x)(1 + φ(y)) = 0 ⇒ φ(x(1 + y)) = 0 ⇒ x(1 + y) ∈ ker φ = {0} ⇒
x(1 + y) = 0.
Therefore, x ⩽ y. Similarly y ⩽ x. Hence x = y
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(e) Suppose φ(x) ⩽ φ(y) ⇒ x ⩽ y. Let x ∈ ker φ and x = a(1 + b) for some
a, b ∈ R1. φ(a)(1 + φ(b)) = φ(x) = 0 ⇒ φ(a) ⩽ φ(b) ⇒ a ⩽ b ⇒ x =
a(1 + b) = 0. Hence, ker φ = {0}.

□

Theorem 3.2. Let φ : R1 → R2 is a pseudo ring epimorphism. If I is an ideal
of R1 and ker(φ) ⊆ I, then φ(I) is an ideal of R2.

Proof. It is noticeable that both the first and second requirements outlined
in Definition 3.1 are met. Let x ∈ R2 and y ∈ φ(I) with x ⩽ y. Since φ is
epimorphism,there are a, b ∈ R1 such that φ(a) = x, and φ(b) = y. By Definition
2.2 and Definition 3.3, a(b+1) ∈ ker(φ) ⊆ I ⇒ by Proposition 3.1, a ∈ I. Therefore
φ(I) is an ideal of R2. □

Corollary 3.1. If the map φ : R1 → R2 is an epimorphism, then for any
prime ideal P of R1 with ker(φ) ⊆ P , φ(P ) is the prime ideal of R2.

Definition 3.4. Let I be an ideal of R and X ⊆ R, we define the extended
ideal of I associated with X as follows: EI(X) = {x ∈ R : x(1 + (a + 1)x) ∈ I, for
all a ∈ X}.

example 3.1. Let A = {α, β}, consider the power set of A, R = P (A) is a
pseudo ring with the binary operation D + C = (D′ ∪ C)′ ∪ (D ∪ C ′)′ and D · C =
D ∩ C for C,D ∈ R. Clearly I1 = {ϕ, {α}} and I2 = {ϕ, {β}} are ideals of R.
EI1({β}) = I1 and EI1({α}) = R. Similarly EI2({β}) = R and EI2({α}) = I2.

Theorem 3.3. Let I be an ideal of R and X ⊆ R, then EI(X) is an ideal of R
and I ⊆ EI(X).

Proof. Let I be an ideal of R and X ⊆ R.

i. It is clearly that 0 ∈ EI(X).
ii. Since b(1+(x+1)(y+1)b) ⩽ 1+(b(1+(x+1)b)+1)(b(1+(y+1)b)+1) ⇒

1 + (x+ 1)(y + 1) ∈ EI(X), for any x, y ∈ EI(X).
iii. Let x ⩽ y and y ∈ EI(X) ⇒ x(1 + (b + 1)x) ⩽ y(1 + (b + 1)y), for all

b ∈ X ⇒ x(1 + (b+ 1)x) ∈ I

□

Definition 3.5. An ideal I is called stable with respect to a subset X of R if
I = EI(X).

example 3.2. In Example 3.1 I2 = {ϕ, {β}} is stable with-respect to X =
{{α}}.

Proposition 3.2. Let R1 and R2 be pseudo rings and φ : R1 −→ R2 be
epimorphism such that φ(H) = K where H ⊆ R1 and K ⊆ R2. Then the following
statements hold.

i. If I is an ideal of R2, then φ−1(I) is an ideal of R1.
ii. If I is a stable relative to K, then φ−1(I) is stable relative to H.
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iii. If I is a stable relative to H and ker φ ⊆ I, then φ(I) is a stable relative
to K.

Proof. i. Let I be an ideal of R2 and a, b ∈ φ−1(I). Clearly, 0 ∈
φ−1(I). There are x, y ∈ I such that φ(a) = x and φ(b) = y. By Definition
3.3, φ(1 + (a + 1)(b + 1)) ∈ I ⇒ 1 + (a + 1)(b + 1) ∈ φ−1(I). Let a ⩽ b
and b ∈ φ−1(I). It follows a(b + 1) = 0 ⇒ φ(a)(φ(b) + 1) = 0 ⇒ φ(a) ⩽
φ(b) ∈ I ⇒ a ∈ φ−1(I). Thus, φ−1(I) is an ideal of R1.

ii. By (i), φ−1(I) is an ideal of R1. Suppose I is stable relative to K. Let
x ∈ Eφ−1(I)(H). x ∈ Eφ−1(I)(H) ⇔ x(1 + (a+ 1)x) ∈ φ−1(I), for all a ∈
H ⇔ φ(x)(1 + (φ(a) + 1)φ(x)) ∈ I, for all φ(a) ∈ K ⇔ φ(x) ∈ EI(K) ⇔
x ∈ φ−1(EI(K)). Therefore Eφ−1(I)(H) = φ−1(EI(K)) = φ−1(I).

iii. Suppose I is stable relative to H and ker φ ⊆ I. Since φ is epimorphism,
by Theorem 3.2, φ(I) is an ideal of R2. Let x ∈ φ(EI(H)). This implies
there exists s ∈ EI(H) such that φ(s) = x ⇒ s(1+(a+1)s) ∈ I, for all a ∈
H ⇒ x(1+(φ(a)+1)x) = φ(s)(1+(φ(a)+1)φ(s)) = φ(s(1+(a+1)s)) ∈
φ(I) for all φ(a) ∈ K ⇒ x ∈ Eφ(I)(K). Thus, φ(EI(H) ⊆ Eφ(I)(K).
Conversely, suppose x ∈ Eφ(I)(K). Since φ is epimorphism there exists
p ∈ R1 such that φ(p) = x. Then x ∈ Eφ(I)(K) ⇒ x(1+ (b+1)x) ∈ φ(I),
for all b ∈ K ⇒ φ(p(1 + (a + 1)p)) = φ(t) for some t ∈ I, for all
a ∈ H ⇒ φ(p(1 + (a + 1)p) · (t + 1)) = 0, for all a ∈ H ⇒ p(1 + (a +
1)p) · (t + 1) ∈ ker(φ) ⊆ I, for all a ∈ H ⇒ p(1 + (a + 1)p) ∈ I, for
all a ∈ H ⇒ p ∈ EI(H) ⇒ x ∈ φ(EI(H) ⇒ Eφ(I)(K) ⊆ φ(EI(H) = φ(I).
Therefore φ(I) is stable relative to K.

□

Proposition 3.3. For any x, y ∈ R, y(1 + (x+ 1)y) = x(1 + (y + 1)x).

Proof. Let x + 1 = a and y + 1 = b. By P6 of Definition 2.1, we get y(1 +
(x+ 1)y) = (b+ 1)(1 + a(b+ 1)) = (a+ 1)(1 + b(1 + a)) = x(1 + (y + 1)x). □

Theorem 3.4. Let I and J be the ideals of a pseudo ring R and X be any
subset of R. Then each of the following holds:

1. EI(X) = R if and only if X ⊆ I;
2. If I ⊆ J, then EI(X) ⊆ EJ(X);
3. X ⊆ EI(EI(X));
4. If I ⊆ J, then EI(J) ∩ J = I;
5. If X ⊆ Y ,then EI(Y ) ⊆ EI(X);
6. EI(EI(X)) ∩ EI(X) = I.

Proof. 1. Suppose EI(X) = R and y ∈ X. As y ∈ R ⇒ y ∈ EI(X) ⇒
y(1+(a+1)y) ∈ I, for all a ∈ X. In particular y = y(1+(y+1)y) ∈ I (by
Proposition 2.1), implies X ⊆ I. Conversely, suppose X ⊆ I and y ∈ R.
By Proposition 3.3, we have x(1+ (y+1)x) = y(1+ (x+1)y) ⩽ x ∈ X ⊆
I ⇒ y ∈ EI(X) ⇒ EI(X) = R.

2. Let x ∈ EI(X) ⇒ x(1 + (y + 1)x) ∈ I ⊆ J, for all y ∈ X ⇒ x ∈ EJ(X).
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3. Let x ∈ X and y ∈ EI(X). By Proposition 3.3, x(1 + (y + 1)x) =
y(1 + (x + 1)y) ∈ I, for all y ∈ EI(X) ⇒ x ∈ EI(EI(X)). Therefore
X ⊆ EI(EI(X)).

4. Suppose I ⊆ J and let x ∈ EI(J) ∩ J ⇒ x ∈ EI(J) ⇒ x = x(1 + (x +
1)x) ∈ I ⇒ EI(J) ∩ J ⊆ I. Conversely, observe that by Theorem 3.3 and
hypothesis, I ⊆ J and I ⊆ EI(J) ⇒ I ⊆ EI(J)∩J. Therefore I = EI(J)∩J.

5. Suppose X ⊆ Y. Let a ∈ EI(Y ) ⇒ a(1 + (x + 1)a) ∈ I, for all x ∈ Y ⇒
a(1 + (x+ 1)a) ∈ I, for all x ∈ X as X ⊆ Y.

6. It follows from Theorem 3.3 and (4).
□

Proposition 3.4. If P is a prime ideal, then

i. EP (X) = R for X ⊆ P and
ii. P is stable relative to X for X ⊈ P.

Proof. i. Follows from Theorem 3.4 (1).
ii. Suppose there is x0 ∈ X but not in P with x(1 + (x0 + 1)x) ∈ P where P

is prime ideal of R. Since x0, x ∈ R, by Definition 3.2 either x(x0+1) ∈ P
or x0(x + 1) ∈ P. If x(x0 + 1) ∈ P, then by Proposition 3.1 it follows
that x ∈ P. If x0(x+ 1) ∈ P, then by the same proposition x0 ∈ P. This
contradicts the fact that x0 /∈ P . Thus, from Theorem 3.3 we conclude
that EP (X) = P.

□

Definition 3.6. A proper ideal M of R is called a maximal if and only if x ∈ I
or x+ 1 ∈ I but not both for every x ∈ R.

Theorem 3.5. If I is a maximal ideal and EI(X) be a proper ideal of R, then
EI(X) is a maximal ideal of R and I is stable relative to X.

Proof. Clearly I ⊆ EI(X) (by assumption and by Theorem 3.3). Hence EI(X)
is maximal. Consequently I = EI(X). □

Proposition 3.5. Let X ⊆ Y ⊆ R and I be a stable relative to X.Then I is
stable ideal relative to Y.

Proof. SinceX ⊆ Y, from Theorem 3.4 (6) it follows that EI(Y ) ⊆ EI(X) = I.
Thus EI(Y ) = I. □

Theorem 3.6. Let {Jα}α∈∆ be a family of ideals of R.Then the following hold:

i. if {Jα}α∈∆ are totally ordered ideals and X is finite, then
⋃

α∈∆ EJα
(X) =

E∪Jα(X).
ii.

⋂
α∈∆ EJα

(X) = E∩Jα
(X).

Proof. i. Let {Jα}α∈∆ be a totally ordered ideal of R and X be fi-
nite subsets of R. It is clear that

⋃
α∈∆ Jα is an ideal of R. Let x ∈⋃

α∈∆ EJα
(X). Then there exist α0 ∈ ∆ such that x ∈ EJα0

(X). This

implies x(1 + (a+ 1)x) ∈ Jα0
⊆

⋃
α∈∆ Iα, for all a ∈ X ⇒ x ∈ E∪Jα

(X).
Thus,

⋃
α∈∆ EJα

(X) ⊆ E∪Jα
(X).
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Conversely, suppose x ∈ E∪Jα
(X) ⇒ x(1 + (a + 1)x) ∈

⋃
α∈∆ Jα,

for all a ∈ X. Since X is finite, there exist αi ∈ ∆ such that x(1 + (a +
1)x) ∈ Jαi

, for all a ∈ X ⇒ x ∈ EJαi
(X) ⊆

⋃
α∈∆ EJα

(X). Therefore,⋃
α∈∆ EJα

(X) = E∪Jα
(X).

ii. Let x ∈
⋂

α∈∆ E Jα
(X). Then x ∈

⋂
α∈∆ E Jα

(X) ⇔ x ∈ EJα
, for all

α ∈ ∆ ⇔ x(1 + (a+ 1)x) ∈ Jα, for all x(1 + (a+ 1)x ∈
⋂

α∈∆ Jα ⇔ x ∈
E∩Jα

(X).
Therefore,

⋂
α∈∆ E Jα

(X) = E∩Jα
(X).

□

As a consequence, we get the following corollary.

Corollary 3.2. The intersection of stable ideals with respect to a non-empty
subset X of R is stable.

Theorem 3.7. Every non-zero maximal ideal M is an extended ideal of some
non-empty subset of a pseudo ring R.

Proof. Let a ∈ R. Suppose that a /∈ M. Since M maximal ideal, by Definition
3.6, a+1 ∈ M. y ∈ EM ({a}) ⇒ y(1+ (a+1)y) ∈ M. By Proposition 3.1, y ∈ M.
Thus M is an extended ideal. □

Proposition 3.6. Every ideal I of R is stable with respect to the set X = {1}.

Proof. Let X = {1} and suppose that I is an ideal of R. Then EI({X}) =
EI({1}). Let y ∈ EI({X}). Thus y(1 + (1 + 1)y) = y ∈ I ⇒ I = EI({X}). □

4. Metric ideal

We define the distance function on R as δ : R×R → R by δ(x, y) = x+ y

Proposition 4.1. The following properties hold for all x, y, z, t, r ∈ R

i. δ(x, y) = δ(y, x).
ii. δ(x, 0) = x.
iii. δ(x, y) = 0 implies x = y.
iv. δ(x, z) ⩽ δ(x, y) + δ(y, z).
v. δ(1 + (x+ 1)(t+ 1), 1 + (y + 1)(r + 1)) ⩽ 1 + (δ(x, y) + 1)(δ(t, r) + 1).

Define binary operation ′⊛′ by x⊛ y = δ(x, 1) · δ(y, 1). Since ′·′ is well defined
and so is ′ ⊛′ .

Definition 4.1. Let H a non-empty subset of R. If for x ∈ H with x ⊛ 0 ⩽
y ⊛ 0 ⇒ y ∈ H, then H is a metric ideal of R.

Remark 4.1. Every ideal of R is a metric ideal, but the converse is not true
in general (see the following example).

example 4.1. Let R = {0, a, b, c, d, 1}, then the operations ’+’ and ’·’ on R is
defined as follows:
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+ 0 a b c d 1
0 0 a b c d 1
a a 0 a d c d
b b a 0 1 d c
c c d 1 0 a b
d d c d a 0 a
1 1 d c b a 0

· 0 a b c d 1
0 0 0 0 0 0 0
a 0 0 0 0 0 a
b 0 b b 0 a b
c 0 0 0 c c c
d 0 0 a c c d
1 0 a b c d 1

We see that R = (R,+, ·, 1) is a pseudo ring. Clearly all the ideals of R are metric
ideal and the set H = {0, a} is an example of metric ideal but not an ideal of R.

Proposition 4.2. A metric ideal H become an ideal of R,if for every x, y ∈
H ⇒ (x⊛ y)⊛ 0 ∈ H.

Proof. i. Clearly 0 ∈ H as H is metric ideal.
ii. Let x, y ∈ H.

Consider 1+(x+1)(y+1) = 1+δ(x, 1)·δ(y, 1) = δ(1, 0)(1+δ(x, 1)δ(y, 1)) =
(x⊛ y)⊛ 0 ∈ H.

iii. Let x ∈ H and y ⩽ x ⇔ x+1 ⩽ y+1 ⇔ (x+1)(0+1) ⩽ (y+1)(0+1) ⇔
x⊛ 0 ⩽ y ⊛ 0 and x ∈ H ⇒ y ∈ H

□

Proposition 4.3. Let R1 and R2 be pseudo ring , φ is a homomorphism from
R1 to R2 and H is metric ideal of R1 and K is metric ideal of R2. Then following
holds:

i. φ(H) is a metric ideal if φ is bi-jective,
ii. φ−1(K) is metric ideal of R1 if φ is onto.

Proof. i. Suppose φ is surjective. Let x ∈ φ(H) with x ⊛ 0 ⩽ y ⊛ 0.
Since y ∈ R2 there is t in R1 such that φ(t) = y and a ∈ H ⇒ φ(a) =
x ⇒ φ(a)⊛ 0 ⩽ φ(t)⊛ 0 ⇒ φ(a) + 1 ⩽ φ(t) + 1 ⇒ (φ(a) + 1)φ(t) = 0 ⇒
φ((a + 1)t) = 0. Since φ is bi-jective (a + 1)t = 0 ⇒ a + 1 ⩽ t + 1 ⇒
a⊛ 0 ⩽ t⊛ 0 ⇒ t ∈ H ⇒ y ∈ φ(H).

ii. Suppose a ∈ φ−1(K) with a ⊛ 0 ⩽ b ⊛ 0 ⇒ a + 1 ⩽ b + 1 ⇒ b ⩽ a and
φ(a) ∈ K ⇒ φ(b) ⩽ φ(a) ⇒ φ(a) ⊛ 0 ⩽ φ(b) ⊛ 0 ⇒ φ(b) ∈ K ⇒ b ∈
φ−1(K).

□

For any non-empty subset X of R, the intersection of all metric ideal containing
X denoted by [X⟩ is called a metric ideal generated by X.

Theorem 4.1. Let X is non-empty subset of R, then [X⟩ = {y ∈ R : a ⊛ 0 ⩽
y ⊛ 0 for some a ∈ X} is the metric ideal generated by X.

Proof. Let W = {y ∈ R : a⊛ 0 ⩽ y ⊛ 0 for some a ∈ X}. Let x ∈ X ⇒ x ⩽
x ⇒ x⊛ 0 ⩽ x⊛ 0 ⇒ X ⊆ W.

Let b ∈ W with b ⊛ 0 ⩽ y ⊛ 0. This implies that there is x ∈ X such that
x ⊛ 0 ⩽ b ⊛ 0 ⩽ y ⊛ 0 ⇒ y ∈ W. Hence W is a metric ideal of R. To show that
W is the smallest metric ideal containing X. Assume that K is any metric ideal
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containing X. Let x ∈ W. This implies there exists a ∈ X such that a⊛ 0 ⩽ x⊛ 0.
Since X ⊆ K ⇒ a ∈ K with a ⊛ 0 ⩽ x ⊛ 0 ⇒ x ∈ K ⇒ W ⊆ K. Therefore W is
the smallest metric ideal containing X, so W = [X⟩. □

Corollary 4.1. Let H be a metric ideal of R and x /∈ H, then [H ∪ {x}⟩ =
H ∪ {y ∈ R : x⊛ 0 ⩽ y ⊛ 0}

Observe that [x⟩ = [{x}⟩ = {y ∈ R : x⊛ 0 ⩽ y ⊛ 0} for any x ∈ R is a metric
ideal of R and if x = 1, then [1⟩ = {y ∈ R : 1 ⊛ 0 ⩽ y ⊛ 0} = R . Note that {0}
and R are trivial metric ideal of R.The following property represent the relation
between an ideal generated by X and metric ideal generated by X.

Proposition 4.4. Let X be any non-empty subset of R.Then [X⟩ ⊆ ≺ X ≻
where [X⟩ is metric ideal generated by X and ≺ X ≻ is a ideal generated by X.

Proof. Let b ∈ [X⟩ implies there exist a ∈ X such that a⊛ 0 ⩽ b⊛ 0 ⇒ b ⩽
a ∈ X ⊆≺ X ≻⇒ b ∈≺ X ≻ . □

The reverse direction of inclusion is not true in general.

example 4.2. In Example 4.1 H is a metric ideal but not ideal ,the smallest
ideal generated by H in R is ≺ H ≻= {0, a, b} ⇒ b /∈ H = {0, a} = [H⟩ ⇒≺ H ≻⊈
[H⟩.

Lemma 4.1. If H and K are metric ideals, then so is H ∪K.

Proof. Let x ∈ H ∪ K with x ⊛ 0 ⩽ y ⊛ 0, for some y ∈ R. It follows that
x ∈ H or x ∈ K implies y ∈ H or y ∈ K. Thus y ∈ H ∪K. □

example 4.3. In Example 4.1 I = {0, c} and H = {0, a} are metric ideals of
R, so K = I ∪H = {0, a, c} is a metric ideal.

Observe that K in Example 4.3 is not an ideal of R of Example 4.1. Because
1 + (a+ 1)(c+ 1) = 1 + d · b = 1 + a = d /∈ K

Theorem 4.2. Let I(R) be set of all metric ideal of R, then

i. I(R) ∪ {ϕ} is a topology on R.
ii. (I(R),∪,∩) is a bounded distributive complete lattice.

Proof. Let I(R) be set of all metric ideal of R,

i. Clearly ϕ,R ∈ τ. Let x ∈
⋃

α∈∆ Aα with x⊛ 0 ⩽ y⊛ 0.This implies, there
is Aα0

∈ {Aα}α∈∆ such that x ∈ Aα0
⊆

⋃
α∈∆ Aα ⇒

⋃
α∈∆ Aα is a metric

ideal of R. It is straightforward that the finite intersection of metric ideal
of R is a metric ideal.

ii. Clearly I(R) with the specified operations (∩ and ∪) is a lattice. From
Lemma 4.1, we observe that every subset of I(R) has a least upper bound.
Let A,B ∈ I(R). If x ∈ A ∩ B with x ⊛ 0 ⩽ y ⊛ 0 for some y ∈ R, then
x ∈ A and x ∈ B. It follows that y ∈ A ∩ B. Hence A ∩ B ∈ I(R). Thus
every subset of I(R) has a greatest lower bound.Thus R is the top and
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{0} is the bottom element of I(R). It is straightforward that for every
A, B, C ∈ I(R),

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C).

Therefore I(R) is a complete distributive lattice.

□

Theorem 4.3. Let H be a metric ideal of R,then for any x ∈ H,⇒ xn ∈ H for
all n ∈ Z+.

Proof. Let H be a metric ideal of R and suppose x ∈ H. We know that
xn ⩽ x ⇒ x+ 1 ⩽ xn + 1 ⇒ x⊛ 0 ⩽ xn ⊛ 0 for all n ∈ Z+. □

The converse of Theorem 4.3 does not hold in general but the following propo-
sition will give when the converse becomes true.

Proposition 4.5. Let H ⊆ R with 0 ∈ H. Then H is metric ideal of R if the
following conditions are satisfied

i. Every element of H is of finite order.
ii. For x ∈ H with x⊛ 0 ⩽ y ⊛ 0, there is z ∈ H such that x⊛ 0 ⩽ y ⊛ 0 ⩽

z ⊛ 0 ⇒ y ∈ H.

Proof. suppose H ⊆ R with x, 0 ∈ H ⇒ xn = 0 for some n ∈ Z+. Let x⊛0 ⩽
y ⊛ 0 ⇒ y ⩽ x ⇒ yn ⩽ xn ⇒ yn = 0 ∈ H ⇒ x⊛ 0 ⩽ y ⊛ 0 ⩽ yn ⊛ 0 ⇒ y ∈ H. □

Theorem 4.4. If N is set of all nilpotent elements of R, then N is a metric
ideal.

Proof. Let N be set of all nilpotent elements of R. Let x ∈ N with x ⊛ 0 ⩽
y ⊛ 0 ⇒ y ⩽ x ⇒ yn ⩽ xn for all n ∈ Z+ ⇒ yn = 0 ⇒ y ∈ N. □

From Remark 4.1 and Theorem 3.7 we conclude that every stable ideal is a
metric ideal and every extended ideal is metric ideal, but the converse is not true
in general. We can note that the ideal {0} is neither stable nor extended ideal but
it is a metric ideal.
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