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F-KENMOTSU MANIFOLDS WITH GENERALIZED
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G. S. Shivaprasanna, and Ganganna Somashekhara

ABSTRACT. The motto of the present paper is to study the generalized sym-
metric metric connection on f-Kenmotsu manifolds. We discuss the proper-
ties of f-Kenmotsu manifolds with generalized symmetric metric connection.
Further, we investigate conservative pseudo-projective curvature tensor and
conservative quasi-conformal curvature tensor on f-Kenmotsu manifolds.

1. Introduction

The concept of almost contact metric manifolds was introduced and studied
by Kenmotsu in 1972 [10]. This concept is conceded as Kenmotsu manifolds. The
concept of f-Kenmotsu manifold (f-KM) (almost contact metric manifold which
is normal and locally conformal almost cosymplectic) was studied by Olszaka and
Rosca [19]. Continuation of their study proposes a geometric representation of
f-KM.

A linear connection on a (semi-)Riemannian manifold M is a generalized sym-
metric connection if its torsion tensor T is presented as follows:

(1.1) T(Y1,Ys) = afu(Y2)Y1 — u(Y1)Y2] + Blu(Y2)pY1 — u(Y1)¢Ya),

for every vector fields Y7, Ys € M, where ¢ is viewed as a tensor of type (1,1), o and
[ are smooth functions on M and w is a 1-form connected with the vector field which
has a non-vanishing smooth non-null unit. Also, the connection is a generalized
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metric when a Riemannian metric ¢ in M is available as Vg = 0; otherwise, it is
non-metric. We say that

(1) B-quarter-symmetric connection if a = 0, 8 # 0;

(2) a-semi-symmetric connection if o # 0, 8 = 0.
The generalized symmetric connection reduces to a semi-symmetric and quarter-
symmetric, respectively, when (o, 8) = (1,0) and (a, 8) = (0, 1). Thus, a generaliz-
ing semi-symmetric and quarter-symmetric connections paves the way for a gener-
alized symmetric metric connection (GSMC). These two connections are of extreme
implication for the research of geometry and applications in physics. For instance,
Pahan et al. [20] have investigated the generalized Robertson-Walker space-time
with respect to a quarter-symmetric connection. Many authors have investigated
the geometrical and physical aspects of different spaces (see [4,6,7,9,11-13,21,
24,41]). Some related developments can be found in [1-3,5,8,16-18,22,25-39|.

2. Preliminaries

Let M be a differentiable manifold of (2n+ 1)-dimension bestowed with a (1,1)
tensor field ¢, a contravariant vector field £, a 1-form n and f-KM with GSMC g,
which satisfies

(2.1) ©*Y1 = =Y + (V)€ n(€) =1,
(2.2) g(Y1, pYa) = g(Y1,Ys) — n(Y1)n(Ya),
(2.3) Vy,§ = Y1 —=n(Y1)€, (Vyi9)(Y1) = fg(eY1,Y2)E — n(Y2)pY,

for every vector fields Y7,Ys € M, where V is the Levi-Civita connection with re-
spect to the GSMC g. Such manifolds (M, ¢, &, 7, g) is called an f-KM with GSMC
(See [14,15]).

The following are provided for an f-KM with GSMC.

(2.4) & =0, n(eYy1)=0,rankp =n—1.

If we take ®(Y7,Ys) = g(pY1,Ys) for every vector fields Y7, Y, € M, then the ® is a
symmetric (0, 2) tensor field [14]. Therefore, if 7 is closed on an f-KM with GSMC
then we compel

(2.5) (Vyin)Yz = @(Y1,Y2), 2(¥1,£) =0,
for all vector fields Y1,Y2 on M (See [14], [40]).

An f-KM provides the following relations [19]:
R(Y1,Y2)Y3 = (g +2f%+ 2f/) (Y1 AYs)Y3

(2.6) — (54372 437) In(Y1)(E A V2)Ys + n(Y2) (Vi A €)Y,

(2.7) R(&,Y2)Ys = —(f* + f)g(Ya, Y3)€ — n(Y3)Y2],
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(2.8) R(Y1,Y2)€ = —(f* + f")[n(Y2)Y1 — n(Y1)Ya],

(2.9) S(Y1,€) = —2(f2 + (%),

Since € is a killing vector and S, 7 remain invariant under it, we have
(2.10) LeS=0

and

(2.11) Ler = 0.

By Weingarten and Gauss formulae, we have

(2.12) Vy, Y2 = V3, Y2 + h(Y1,Y2) , VY1,Ys € T(TM'),
and

(2.13) Vy N =—-AxY1+V N, VNe€ D(T+M").

3. Generalized symmetric metric connection on f-Kenmotsu manifolds

In sight of V as a linear connection and V as a Levi-Civita connection of f-KM
with a GSMC in such a way that

(3.1) Vy,Ya = Vy, Ya + H(Y1,Ys),

for all vector fields Y7, Ys. The succeeding is V is generalized symmetric connection
of V and H is noticed as a tensor of type (1, 2):

1
(3.2) H(Y1,Y3) = i[T(Yla Ya) + T/ (Y1, Ys2) + T (Y2, Y1),
where T is noticed as the torsion tensor of V and
(3.3) g(T"(Y1,Ys), W1) = g(T(Wh,Y1),Y2).

Owing to (1.1) and (3.3), it yields
(3.4) T'(Y1,Y2) = a[n(Y1)Ya — (Y1, Y2)&] — B[n(Y1)pYa — g(pY1, Y2)¢].
Employing (1.1), (3.2) and (3.4), we get
(3.5) H(Y1,Y2) = a{n(Y2)Y1 — g(Y1,Y2)€} — Bn(Y1)pYa.
We have the following result:
LEMMA 3.1. For an f-KM with GSMC, ¥ of type (v, B) is specified by
(3.6) Vy, Yo = Vy, Yo + a[n(Ya)Y1 — g(Y1, Y2)€] = Bn(Y1)¢Ya.
If (o, 5) = (1,0) and (e, ) = (0,1) are chosen, the GSMC is diminished to

a semi-symmetric metric and a quarter-symmetric metric one as carried in the
succeeding:

Vy, Ya = Vy, Ya +1(Y2)Y1 — g(Y1,Y2)€
le}/2 = VY1Y2 - U(Yl)SO}/Q
From (2.3), (2.5) and (3.6), we have the following result:
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ProproSITION 3.1. When M is an f-KM with generalized metric connection,
we get following relations:

(Vyip)Ya = (f + a)g(pY1, Y2)€ — n(Ya)pV1],
Vv, = (f + a)[Y1 —n(V1)€],
(Vyin)Yz = (f + a)[g(Y1,Y2) — n(Y1)n(Ya2)],

for every Y1,Yo € T(TM).
4. Curvature tensor

Consider a (2n + 1)-dimensional f-KM M. Then the succeeding can interpret
the curvature tensor R of the generalized metric connection V on M.

(4.1) R(Y1,Y2)Y3 = Vy,Vy,Y3 = Vy, Vy, Y3 — Vi, v, V.
Using Proposition 3.1 through (3.6) and (4.1), we get
R(Y1,Y2)Ys =R(Y1,Y2)Y; + (f + a){a[2g(Y1,Y3)Ys — 2¢(Y2, Y3)Y)
—n(Y1)n(Ys)Yz +n(Ya2)n(Ys)Y1 — n(Y2)g(Y1, Y3)¢
+n(Y1)g(Yz, Y3)€] — Blg(pY1, Ya)n(Y2)E
—n(Y2)n(Ys)pY1 — g(eYa, Ya)n(Y1)€ + n(Y1)n(Y3)pYa]}
(4.2) +a?[g(Y2, Y3)Y1 — g(Y1,Y3)Ya).
Thus, we have the following result:
LEMMA 4.1. For a a (2n + 1)-dimensional f-KM M, we have
(4.3)
R(Y1,Y2)€ = [(f*+ f') + afln(Y1)Yz2 — n(Y2)Y1] — Bn(Y1)eYz — n(Y2)eY),
R(&Y2)Ys = —[(f* + ) + af][g(Y2, Y3)¢

B —n(Y3)Ya] 4 Blg(¢Ya, ¥3)§ — n(Y3)pYa),
R(E,Y2)E = —[(f2+ ') + afln(Y2)é — Yal,

for every Y1,Ys, Y3 € T'(TM).

By succeeding the Ricci tensor S and the scalar curvature 7 of an f-KM is
presented with GSMC as follows:

Yl;}/’Q Zg U’Layl }/Qavz)

r= Z S(’Ui, ’Uz'),
i=1
in which Y3,Ys € T(TM) and {vy,vs,...,v,} is viewed as an orthonormal frame.
Then by using (2.3) and (4.2), we have
S(Ya, Y3) =S(Ya, Ys) + (f + a)[al(1 — 4n)g(Ya, ¥3) + (2n — 1)n(Y2)n(Y3)]
(4.4) + Bg(pY2, Y3)] + a*2ng(Ya, Y3).



f-KENMOTSU MANIFOLDS 521

Owing of specific that Ricci tensor S of the Levi-civita connection is symmetric,
(4.4) is bestowing:

COROLLARY 4.1. If M is an (2n + 1)-dimensional f-KM is presented with
GSMC V, then Ricci tensor S with respect to the GSMC V is symmetric.
Using (2.1), (2.4) and (2.9) in the equation (4.4), we get the following result:

THEOREM 4.1. If M is an (2n + 1)-dimensional f-Kenmotsu manifold is pre-
sented with GSMC V, then

(4.5) S(Ya, &) = =2((f* + f' +naf)n(Ya).
5. f-Kenmotsu manifold with generalized symmetric metric
connection satisfying R(Y1,Y3)-S=0

Let R(Y7,Y3)-S =0 on an (2n + 1)-dimensional f-Kenmotsu manifold with
GSMC M, for any Y7,Ys,Ys, Xy € I'(T'M). Then we have

(5.1) S(R(Y1,Y2)Ys, Xa) + S(Ys, R(Y1,Y2) X4) = 0.
Setting Y3 = ¢ and Y7 = £ in (5.1), we have
(5.2) S(R(&,Y2)€, Xa) + S(€, R(€, Y2)X4) = 0.

Making use of (4.3) and (4.5) in (5.2), it yields
[(f*+ 1) + aflS(Ya, X4) — BS(pY2, Xa)
(5.3) =28[(f* + f') + naflg(eYe, Xa) = [(f* + f') + naf?g(Ya, Xu)
Putting Y = ¢Y in (5.3) and making use of (4.5), we obtain
[(f* + f') + af]S(¢Ya, Xa) = BS(Ya, Xa) + 2B[(f* + f') + nafln(Yz)n(Xa)
= 28[(f* + 1) + nafllg(Ya, Xa) + n(Y2)n(X4)]
(54) = 2((f*+ f) + naflg(eYa, pX4)
From (5.3) and (5.4), we obtain
(5.5) (1= p%)S(Ye, Xa) = 2[(f* + [') +naf][B = (f* + [') + naflg(Yz, Xa)
Consequently, for o # 0,8 =0 and o = 0,3 # 0, 1, we arrive at the following:

(5.6) S(Ya, X4) = =2[(f* + f') + nafg(Yz, Xa),
and
(5.7) (1= B%)8(Ya, Xa) = 2(f* + [)[B = (f* + [)g(Ya, Xa).

Thus, we have the following result:

~ THEOREM 5.1. Let M be an (2n+1)-dimensional f-KM endowed with a GSMC
V. If M is Ricci semi-symmetric with respect to V. Then we have the following:
(1) M is generalized FEinstein manifold with respect to the GSMC of type

(a, B).
(2) M is an FEinstein manifold with respect to the GSMC of type («,0).
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(3) M is an FEinstein manifold with respect to the GSMC of type (0, 5),
(B#1),
6. Conservative pseudo-projective curvature tensor on f-Kenmotsu
manifold with generalized symmetric metric connection

The pseudo-projective curvature tensor on an f-KM with GSMC P on a man-
ifold of dimension (2n + 1) is defined by [23]

P(Y1,Y2)Ys =aR(Y1,Y2)Ys + b[S(Ya, Y3)Y1 — S(Y7, Y3)Yo]

7 a
T ot (% +0)[g(Ya,Y3)Y1 — g(Y1,Y3)Ys].

Taking covariant derivative of (6.1), we get

(6.1)

(V{/V1 P) (Yl, YQ)Y3 :CL(VWI R) (Yl, YQ)Y3 + b[(VWl S) (}/27 Y3)Y1

- (les)(yla }%)Yé]

- C;ZZ—Vll) (% * b) [9(Y2,Y3)Y1 — g(Y1,Y3)Ya].

(6.2)

Contraction of (6.2), we have
(divP) (Y3, Y2)Ys =a(divR)(Vi, Y2)Ys + bl(Vy, §)(¥a, ¥s) — (V3,3)(¥3, ¥3)]
a+ 2nb _ _
~ (et ) v Yayar(ri) — g1, Yur (2]

If the pseudo-projective curvature tensor is conservative f-Kenmotsu manifold with
GSMC i.e., divP = 0, then (6.3) becomes

(a+0)[(Vy,5) (Y2, Y3) — (Vy,5) (Y1, Y3)]

B a+ 2nb
~\(2n+1)2n

(6.3)

(6.4) ) l9(Ya, Y3)dr(Y2) — g(Ya, Ya)dr(Ya).

From (2.10) and (2.11), we get, respectively
(6.5) (Vgg)(YQ,Yg) = —8(Vy,&,Ys) — S(Ya, Vy,€) and di(€) = 0.
Putting Y7 = £ in (6.4) and using (6.5), we get

(66) (¥ V&) + Vi S(E,Ya) - S(6 V1) = (ot 3 ) nva)ar(ra)l

(2n+1)2n
which by virtue of (2.1), (2.4), (2.3) and (4.5) reduces to
(a+b){fIS(Y2,Y3) +2[(f* + f') + nafln(Ya)n(Ys)]
=2[(f* + ) + nafln(Vy,Ys) = Vy,1(Y3)]

(67) — (e ) ntrdr()

Putting Y3 = ¢Y3 in (6.7) and using (2.1), we get
(6-8) Fla+b){S(Ya,0Ys) = 2[(f* + [) + naflg(pYa, Ys)} = 0.
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Setting Y3 = ¢Y3 in (6.8) and using (2.1), we have

(6.9) S(Ya,Ys) = =2[(f* + f') + naflg(Ya,Ys), fla+Db)#0.

From contraction of (6.9), we get

(6.10) F=-22n+ D[(f* + f) +nafl.

By using (6.9) and (6.10) in (6.1), we get

(6.11) P(Y1,Y2)Y = aR(¥:, Ya)Ys + 2(77 4 )+ nafllg(¥a, Yi)¥i — g(Y1, Vo) Yal.

Taking covariant derivative and contraction yields

(6.12) (divP)(V1,Y2)Ys = a(divR) (Y1, Y2) Vs,
But (divP) = 0 and so the above equation takes the form
(6.13) (divR)(Y1,Y2)Ys =0 if a#0.

Hence we have the following theorem:

THEOREM 6.1. Suppose that pseudo-projective curvature tensor in f-KM M
with GSMC'is conservative. Then

(1) M is Einstein space and hence of constant Selr.curvtr if a +b # 0,
(2) M is (divR) =0 if a # 0. ie., curvature tensor is conservative.

7. Conservative quasi-conformal curvature tensor on f-Kenmotsu
manifold with generalized symmetric metric connection

The Quasi-Conformal Curvature tensor on f-KM with GSMC C' on a manifold
of (2n + 1)-dimension (see [23]) is defined by

C(Y1,Y2)Ys = aR(Y1,Y2)Ys + b[S (Y2, Y3)Y; — S(Y1,Y3)Ys
+ 9(5/2’ }@))QYI - g<Y17 Y3)Q}/2]

(7.1) - 2n:— 1 (% + Qb) l9(Y2,Y3)Y1 — g(Y1,Y3)Ys].

Taking covariant derivative of (7.1), we get

[(Vw, C) (Y1, Y2) Y3, Xu] = a[(Vw, R)(Y1,Y2)Y3, Xa] + b[(Vw, S)(Yz, Y3)g(Y1, X4)
— (Vw, 8) (Y1, Y3)g(Ya, Xa)] + g(Y2, Y3)(Vw, S) (Y1, Xu)

—9(Y1,Y3)(Vw, 5)(Ya, X4)

- ZZ(VH (55 +20) 9002, Ya)g (i, Xa)

(7.2) —g(Y1,Y3)g(Ya, X4)].
Contraction of (7.2), we obtain
(divP)(Y1,Y2)Ys =a(divR)(Y1,Y2)Ys + b[(Vy, §)(Ya, Y3) — (Vy, ) (Y1, Y3)
+ g(Y2, Y3)dr(Y1) — g(Y1, Ys)dr(Y2)]
a + 4nb
a ((2n +1)2n

(7.3) ) (9(Ya, Ya)dr(Yh) — g(Yi, Ya)dr(¥2).
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If the quasi-conformal curvature tensor is conservative i.e., divC' = 0, then (7.3)
becomes

(a+b)[(Vy,9)(Ys, Y3) — (Vy,9) (Y1, Y3)]

(7.4 = (- ) (v () — g3, YY)

From (2.10) and (2.11), we get respectively
(7.5)  (VeS)(Y2,Y3) = =S(Vy€,Y3) — S(Y2, Vys€) and dri(§) =0.
Putting Y7 = ¢ in (7.4) and using (7.5), we get

a+ 2nb

(7.6)  S(Ya2, Vy,&) 4+ Vy, 5(&,Ys) — S(E, Vy, Y3) = <(2n+1)2n

) bva)ar(va),
which by virtue of (2.1),(2.3) and (4.5) reduces to

(a+b){fIS(Y2,Y3) +2[(f* + f') + nafln(Ya)n(Ys)]
= 2[(f* + f) + naf]ln(Vy,Ys) = Vy,n(Y3)]

(77) — (1 ) nraar ()
Putting Y5 = ¢Y3 in (7.7) and using (2.1), we have

(7.8) fla+b){S(Ya,Y3) +2[(f* + f') + naflg(Ya, 0¥3)} = 0.
Setting Y3 = ¢Y3 in (7.8) and using (2.1), we get

(7.9) S(Ya,Ys) = =2[(f* + f') + naflg(Ya,Y3), fla+Db)#0.
From contraction of (7.9), we get

(7.10) = —-22n+ D[(f* + ') + naf).

7
By using (7.9) and (7.10) in (7.1), we get

P(Y1,Y2)Ys = aR(Y1,Y2)Ys + [a + 4b(n — DI[(f* + f')
(7.11) + naf]lg(Ye, Y3)Y: — g(Y3, Ya)Yal.
Taking the covariant derivative and contracting, we have
(7.12) (divC)(Y1,Y2)Ys = a(divR) (Y1, Ys)Ys3.
But (divC) = 0 and so the above equation takes the form
(7.13) (divR)(Y1,Y2)Y3 =0, if a#0.
Hence we can state the following

THEOREM 7.1. Suppose that the quasi-conformal curvature tensor in f-KM
with GSMC M is conservative. Then

(1) M is an Einstein space and of constant scalar curvature, if a +b # 0;
(2) M with (divR) = 0 i.e., curvature tensor is conservative, if a # 0.
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