BULLETIN OF THE INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE

ISSN (p) 2303-4874, ISSN (o) 2303-4955 www.imvibl.org /JOURNALS / BULLETIN Bull. Int. Math. Virtual Inst., **13**(3)(2023), 511–515 DOI: 10.7251/BIMVI2303511Q

> Former BULLETIN OF THE SOCIETY OF MATHEMATICIANS BANJA LUKA ISSN 0354-5792 (o), ISSN 1986-521X (p)

TEMO-TYPE REGULARITY FOR TOPOLOGICAL INDICES

Fuxian Qi and Zhen Lin

ABSTRACT. TEMO (topological effect on molecular orbitals) problem is an interesting topic in chemical graph theory. In 2022, Gutman studied TEMO-type regularity for the degree-based topological indices. In this paper, we show that the general TEMO-type regularity holds for the (a, b)-KA index, the A_{α} -spectral radius and the third leap Zagreb index.

1. Introduction

Let G be a simple graph with the vertex set V(G) and edge set E(G). For any two vertex-disjoint graphs F and H, we assume that u and v are two distinct vertices of F, and p and q are two distinct vertices of H. Then G_1 is the graph obtained from F and H by connecting u with p and v with q. The graph G_2 is obtained analogously, by connecting u with q and v with p, see Figure 1.

²⁰¹⁰ Mathematics Subject Classification. Primary 05C09; Secondary 05C92. Key words and phrases. TEMO, topological index.

Communicated by Dusko Bogdanic.

Figure 1. The structure of the graphs G_1 and G_2 and the labeling of their vertices.

In 1982, Polansky and Zander [9] studied the property of the graphs G_1 and G_2 , and compared the characteristic polynomials of adjacency matrix of G_1 and G_2 in the special case $F \cong H$, that is $\phi(G_2, \lambda) \ge \phi(G_1, \lambda)$. Meanwhile, they called this a "topological effect on molecular orbitals" and used the acronym TEMO. After that, Gutman, Graovac and Polansky [1, 3, 4, 8] made the research express that the inequality $\phi(G_2, \lambda) \ge \phi(G_1, \lambda)$ implies certain regularities for the distribution of the eigenvalues of G_1 and G_2 and have appropriate (experimentally verifiable) consequences on the distribution of the molecular orbital energy levels. Eventually, TEMO regularity problem was extensively studied, see the references in [2].

In 2022, Gutman [2] studied TEMO-type regularity for the degree based topological index. Let d_u be the degree of the vertex u in G. He showed that a TEMO-type regularity holds for the Sombor index, the second Zagreb index, the Randić index, the reciprocal Randić index, and the Nirmala index under $d_u > d_v$ and $d_p > d_q$ conditions, as indicated in Figure 1. More generally, Wang et al. [10] study TEMO-type regularity for the (a, b)-KA index of a graph G, which is defined as

$$KA_{a,b}(G) = \sum_{uv \in E(G)} (d_u^a + d_v^a)^b.$$

For any real $\alpha \in [0, 1]$, Nikiforov [7] defined a new matrix $A_{\alpha}(G)$ as

$$A_{\alpha}(G) = \alpha D(G) + (1 - \alpha)A(G),$$

where A(G) is the adjacency matrix of G and D(G) is the diagonal matrix of the degrees of G. The largest eigenvalue of $A_{\alpha}(G)$, denoted by $\lambda(A_{\alpha}(G))$, is called the A_{α} -spectral radius of G. Since the A_{α} matrix unifies the adjacency matrix $A_0(G)$ and the signless Laplacian matrix $2A_{1/2}(G)$, the A_{α} -spectral radius is the generalization of $\lambda(A_0(G))$ and $2\lambda(A_{1/2}(G))$. The second degree of a vertex v in a graph G, denoted by τ_v , is the number of vertices of G whose distance to v is equal to 2. In 2017, Naji et al. [6] introduced the concept of the third leap Zagreb index based on the second degrees of vertices, that is,

$$LM_3(G) = \sum_{v \in V(G)} d_v \tau_v = \sum_{uv \in E(G)} (\tau_u + \tau_v).$$

In this paper, we prove that the general TEMO-type regularity holds for the (a, b)-KA index, the A_{α} -spectral radius and the third leap Zagreb index.

2. Main results

Suppose $(x) = (x_1, x_2, ..., x_n)$ and $(y) = (y_1, y_2, ..., y_n)$ are two non-increasing sequences of real numbers, we say (x) is majorized by (y), denoted by $(x) \leq (y)$, if and only if $\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i$, and $\sum_{i=1}^{j} x_i = \sum_{i=1}^{j} y_i$ for all $1 \leq j \leq n$. Furthermore, by $(x) \triangleleft (y)$ we mean that $(x) \leq (y)$ and (x) is not the rearrangement of (y).

LEMMA 2.1. ([5]) Suppose $(x) = (x_1, x_2, \ldots, x_n)$ and $(y) = (y_1, y_2, \ldots, y_n)$ are non-increasing sequences of real numbers. If $(x) \triangleleft (y)$ and f is a strictly convex function, then $\sum_{i=1}^n f(x_i) < \sum_{i=1}^n f(y_i)$.

Figure 2. The structure of the graphs G_1 and G_2 and the labeling of their vertices.

THEOREM 2.1. Let F and H be arbitrary vertex-disjoint connected graphs with $V(F) = \{u_1, u_2, \ldots, u_n\}$ and $V(H) = \{v_1, v_2, \ldots, v_n\}$, shown in Figure 2. If $d_{u_1} > d_{u_2} > \cdots > d_{u_k}$ and $d_{v_1} > d_{v_2} > \cdots > d_{v_k}$ for even k, then (i) $KA_{a,b}(G_1) > KA_{a,b}(G_2)$ for $a \neq 0$ and $b \in (-\infty, 0) \cup (1, +\infty)$;

(i) $KA_{a,b}(G_1) > KA_{a,b}(G_2)$ for $a \neq 0$ and $b \in (-\infty, 0) \cup (1, +\infty)$; (ii) $KA_{a,b}(G_1) < KA_{a,b}(G_2)$ for $a \neq 0$ and $b \in (0, 1)$.

PROOF. (i) Note that $d_{u_1} > d_{u_2} > \cdots > d_{u_k}$ and $d_{v_1} > d_{v_2} > \cdots > d_{v_k}$ for even k. For a > 0, we assume that $(x) = (d_{u_1}^a + d_{v_1}^a, d_{u_2}^a + d_{v_2}^a, \ldots, d_{u_k}^a + d_{v_k}^a)$ and $(y) = (d_{u_1}^a + d_{v_2}^a, d_{u_2}^a + d_{v_1}^a, \ldots, d_{u_k}^a + d_{v_{k-1}}^a)$, where the terms in y allow for interchangeability between term 1 and term 2, term 3 and term 4, term 5 and term 6, and so on. For a < 0, we assume that $(x) = (d_{u_k}^a + d_{v_k}^a, d_{u_{k-1}}^a + d_{v_{k-1}}^a, \ldots, d_{u_1}^a + d_{v_1}^a)$ and $(y) = (d_{u_k}^a + d_{v_{k-1}}^a, d_{u_{k-1}}^a + d_{v_k}^a, \ldots, d_{u_2}^a + d_{v_1}^a)$, where the terms in y allow for interchangeability between term 1 and term 2, term 3 and term 4, term 5 and term 6, and so on. It is not difficult to find that $(y) \triangleleft (x)$ for $a \neq 0$. Moreover, $f(x) = x^b$ is a strictly convex function for x > 0 and $b \in (-\infty, 0) \cup (1, +\infty)$. By Lemma 2.1, we have

$$KA_{a,b}(G_1) - KA_{a,b}(G_2)$$

= $(d_{u_1}^a + d_{v_1}^a)^b + (d_{u_2}^a + d_{v_2}^a)^b + \dots + (d_{u_k}^a + d_{v_k}^a)^b$
 $- (d_{u_1}^a + d_{v_2}^a)^b - (d_{u_2}^a + d_{v_1}^a)^b - \dots - (d_{u_k}^a + d_{v_{k-1}}^a)^b$
> 0.

for $b \in (-\infty, 0) \cup (1, +\infty)$.

(ii) Observe that for x > 0, and $g(x) = -x^b$ is a strictly convex function if $b \in (0, 1)$. Using similar arguments as in the proof of (i), we may prove (ii). This completes the proof.

THEOREM 2.2. Let F and H be arbitrary vertex-disjoint connected graphs and u, v, p, q their vertices, shown in Figure 1. Suppose |V(F)| + |V(H)| = n, and $X = (x_1, x_2, \ldots, x_n)^T$ is the Perron vector of $A_{\alpha}(G_2)$, where x_i corresponds to the vertex i $(1 \leq i \leq n)$. If $x_u > x_v$ and $x_p > x_q$, then $\lambda(A_{\alpha}(G_1)) > \lambda(A_{\alpha}(G_2))$ for $\alpha \in [0, 1)$.

PROOF. Let $X = (x_1, x_2, \ldots, x_n)^T$ be a unit eigenvector (Perron vector) of $A_{\alpha}(G_2)$ corresponding to $\lambda(A_{\alpha}(G_2))$. By the Rayleigh's principle, we have

$$\lambda(A_{\alpha}(G_2)) = X^T A_{\alpha}(G_2) X$$

=
$$\max_{Y^T Y = 1} Y^T A_{\alpha}(G_2) Y$$

=
$$\alpha \sum_{i \in V(G_2)} d_i x_i^2 + 2(1 - \alpha) \sum_{i j \in E(G_2)} x_i x_j.$$

Thus,

$$\begin{aligned} \lambda_{\alpha}(G_{1}) - \lambda_{\alpha}(G_{2}) & \geqslant & X^{T}A(G_{1})X - X^{T}A(G_{2})X \\ &= & \alpha \sum_{i \in V(G_{1})} d_{i}x_{i}^{2} + 2(1-\alpha) \sum_{ij \in E(G_{1})} x_{i}x_{j} \\ & -\alpha \sum_{i \in V(G_{2})} d_{i}x_{i}^{2} + 2(1-\alpha) \sum_{ij \in E(G_{2})} x_{i}x_{j} \\ &= & 2(1-\alpha)(x_{1}x_{p} + x_{2}x_{q} - x_{1}x_{q} - x_{2}x_{p}) \\ &= & 2(1-\alpha)(x_{1} - x_{2})(x_{p} - x_{q}) \\ & > & 0 \end{aligned}$$

for $x_u > x_v$ and $x_p > x_q$. This completes the proof.

THEOREM 2.3. Let G_1 and G_2 be arbitrary vertex-disjoint graphs and u, v, p, qtheir vertices as indicated in Figure 1. If $d_u > d_v$ and $d_p > d_q$, then

$$LM_3(G_1) > LM_3(G_2).$$

PROOF. Observe first that

$$\begin{split} LM_3(G_1) &= (\tau_u + d_p) + (\tau_p + d_u) + d_u(\tau_u + d_p) + d_p(\tau_p + d_u) \\ &+ (\tau_v + d_q) + (\tau_q + d_v) + d_v(\tau_v + d_q) + d_q(\tau_q + d_v) + LM_3^{\star}, \\ LM_3(G_2) &= (\tau_u + d_q) + (\tau_q + d_u) + d_u(\tau_u + d_q) + d_q(\tau_q + d_u) \\ &+ (\tau_v + d_p) + (\tau_p + d_v) + d_v(\tau_v + d_p) + d_p(\tau_p + d_v) + LM_3^{\star}, \end{split}$$

where LM_3^{\star} is the sum of the terms $\tau_u + \tau_v$ over other edges of G_1 or G_2 . Thus,

$$\begin{split} & LM_3(G_1) - LM_3(G_2) \\ &= (d_u + 1)[(\tau_u + d_p) - (\tau_u + d_q)] - (d_v + 1)[(\tau_v + d_p) - (\tau_v + d_q)] \\ &+ (d_p + 1)[(\tau_p + d_u) - (\tau_p + d_v)] - (d_q + 1)[(\tau_q + d_u) - (\tau_q + d_v)] \\ &= 2(d_u - d_v)(d_p - d_q) \\ &> 0. \end{split}$$

Thus, we have $LM_3(G_1) > LM_3(G_2)$. This completes the proof.

References

- A. Graovac, I. Gutman, and O. E. Polansky, An interlacing theorem in simple molecular-orbital theory. J. Chem. Soc., Faraday trans., 81 (1985), 1543–1553.
- 2. I. Gutman, TEMO theorem for Sombor index. Open J. Discrete Appl. Math., 5 (2022), 25-28.
- I. Gutman, A. Graovac, and O. E. Polansky, On the theory of S- and T-isomers. Chem. Phys. Lett., 116 (1985), 206–209.
- I. Gutman, A. Graovac, and O. E. Polansky, Spectral properties of some structurally related graphs. *Discrete Appl. Math.*, 19 (1988), 195–203.
- 5. G. H. Hardy and J. E. Littlewood and G. Pólya, *Inequalities*, Cambridge University Press, England, 1952.
- A. M. Naji, N. D. Soner, and I. Gutman, The first leap zagreb index of some graph opertations. Commun. Comb. Optim., 2 (2017), 99–117.
- V. Nikiforov, Merging the A- and Q-spectral theories. Appl. Anal. Discrete Math., 11 (2017), 81–107.
- O. E. Polansky, Topological effects displayed in absorption and photoelectron spectra. J. Mol. Struct., 113 (1984), 281–298.
- O. E. Polansky and M. Zander, Topological effect on MO energies. J. Mol. Struct., 84 (1982), 361–385.
- J. Wang, Z. Lin, and S. Zhang, TEMO-type regularity for two general degree-based topological indices. Bull. Int. Math. Virtual Inst., 12 (2022), 401–407.

Received by editors 22.11.2023; Revised version 23.12.2023; Available online 31.12.2023.

Fuxian Qi and Zhen Lin, School of Mathematics and Statistics, Qinghai Normal University, Xining, 810008, Qinghai, China

Email address: lnlinzhen@163.com