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PADOVAN POLYNOMIALS MATRIX

Orhan Dişkaya and Hamza Menken

Abstract. In this paper, we explore the Padovan numbers and polynomials,

and define the Padovan polynomials matrix. We obtain its Binet-like formula

and a sum formula. Subsequently, we derive the Padovan polynomials matrix
series. Additionally, we establish the generating and exponential generating

functions for the Padovan polynomials matrix.

1. Introduction

Special number sequences play an important role in mathematics and the ap-
plied sciences. Moreover, some special number sequences, such as Fibonacci, Lu-
cas, Pell, Jacobsthal, Padovan and Perrin sequences have many applications in art,
music, photography, architecture, painting, engineering, geometryi, and others. Al-
most all applications are related to the golden and plastic ratios. It is well-known
that the golden ratio is defined as the limit of the ratio of two consecutive Fibonacci
numbers, and equals to

1 +
√
5

2
≈ 1.618034.

It finds applications in engineering, physics, architecture, arts, and more. Similarly,
the ratio of two consecutive Padovan or Perrin numbers approaches

3

√
1

2
+

1

6

√
23

3
+

3

√
1

2
− 1

6

√
23

3
≈ 1.324718,

which is called the plastic ratio. The plastic ratio is discovered by Dom Hans
van der Laan (1904-1991) in 1928 shortly after he had abandoned his architectural
studies, differs from ratios like the golden ratio in several fundamental ways. He
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described applications to architecture and illustrated the use of the plastic number
in many buildings. Furthermore, the plastic number is the unique real root of the
characteristic equation of the Padovan numbers sequence

t3 − t− 1 = 0.

If its roots are denoted by α, β and γ then the following equalities can be derived

α+ β + γ = 0,

αβ + αγ + βγ = −1,

αβγ = 1.

More information for Padovan numbers is available in [2–5,17–19,22], and for the
plastic constant in [6,15,24].
Kılıç and Stanica [11] considered k sequences of generalized order−k linear re-
currences with arbitrary initial conditions and coefficients, and they gave their
generalized Binet formulae and generating functions. They also obtained a new
matrix method to derive explicit formulas for the sums of terms of the k sequences.
We note that the Padovan sequence and its generalizations can be derived with a

generalized k−order linear recurrence sequence Gn −
∑k

j=1 Gn−j = 0. Here, we
only focus on the Padovan numbers.
The Padovan sequence {Pn}n⩾0 is defined by the third order recurrence

Pn+3 = Pn+1 + Pn

with the initial conditions P0 = 1, P1 = 0 and P2 = 1. The first few values of this
sequence are given as follows

n -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 . . .
Pn 0 0 1 0 1 1 1 2 2 3 4 5 7 9 12 16 . . .

Moreover, the Binet-like formula for the Padovan sequence is

(1.1) Pn = aαn + bβn + cγn

where,

a =
βγ + 1

(α− β)(α− γ)
, b =

αγ + 1

(β − α)(β − γ)
, c =

αβ + 1

(γ − α)(γ − β)
.

From [17,22], the following relations are valid

(1.2) P−n−3 = P 2
n − Pn+1Pn−1,

(1.3) Pn = Pm−1Pn−m + Pm+1Pn−m+1 + PmPn−m+2.

In [17], the Padovan numbers have the QP−matrix

QP =

 0 1 0
0 0 1
1 1 0
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such that

Qn
P =

 Pn−3 Pn−1 Pn−2

Pn−2 Pn Pn−1

Pn−1 Pn+1 Pn

 .

By using (1.2) and (1.3), the determinant of the Padovan matrix above gives
an identity as follows

Pn−3P−n−3 + Pn−1P−n−2 + Pn−2P−n−1 = 1.

That is, the determinant of Qn
P is 1. It is denoted by |Qn

P | = 1.
The Fibonacci polynomials are considered, and some investigations are given by
Hoggatt and Bicknell in [8]. Machenry [14] provided the generalized Fibonacci
and Lucas polynomials and some connections with some multiplicative arithmetic
functions.Various studies on Fibonacci polynomials can be found in [1,9,20,21].
The Padovan polynomials sequence {Pn(x)}n⩾0 is defined (see [7,10,16,23]) by a
third order recurrence

Pn+3(x) = xPn+1(x) + Pn(x)

with the initial conditions P0(x) = 1, P1(x) = 0 and P2(x) = x. To simplify
notation, take Pn(x) = Pn. The first few values of this sequence are given as
follows

n -2 -1 0 1 2 3 4 5 6 7 8 . . .
Pn 0 0 1 0 x 1 x2 2x x3 + 1 3x2 x4 + 3x . . .

The recurrence above involves the characteristic equation

µ3 − xµ− 1 = 0.

If its roots are denoted by αx, βx and γx then the following equalities can be derived

αx + βx + γx = 0,

αxβx + αxγx + βxγx = −x,

αxβxγx = 1.

The Binet-like formula for the Padovan polynomial sequence is

(1.4) Pn = axα
n
x + bxβ

n
x + cxγ

n
x

where,

ax =
βxγx + x

(αx − βx)(αx − γx)
, bx =

αxγx + x

(βx − αx)(βx − γx)
, cx =

αxβx + x

(γx − αx)(γx − βx)
.
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2. Main results

In the present work, we have obtained the following main results.

Proposition 2.1. Let Pn be n-th Padovan polynomial. Then,

(2.1) P−n−3 = P2
n − Pn+1Pn−1.

Proof. We establish this using principle of mathematical induction. Since,

P2
0 − P1P−1 = 1− 0 = P−3

P2
1 − P2P0 = 0− x = P−4

P2
2 − P3P1 = x2 − 0 = P−5

The result is true when n = 0, 1, 2. Suppose it is true for all positive integers n ⩽ k.
Then,

P2
k+1 − Pk+2Pk = x2P2

k−1 + 2xPk−1Pk−2 + P2
k−2 − x2PkPk−2 − xPkPk−3

−xPk−1Pk−2 − Pk−1Pk−3

= x2P−k−2 − xP−k + P−k−1

= x2P−k−2 + xP−k−3 − xP−k−3 − xP−k + P−k−1

= xP−k − xP−k−3 − xP−k + P−k−1

= P−k−4.

Thus, by the strong version of principle of mathematical induction, the formula
holds for all positive integers n ⩾ 3. □

We utilize the following relation, as provided in [17].

(2.2) Pn = Pm−1Pn−m + Pm+1Pn−m+1 + PmPn−m+2

It is well known from [23] that the generating function for the Padovan polynomials
is

∞∑
n=0

Pnt
n =

1

1− xt2 − t3
.

Now, we establish the exponential generating function for the Padovan polynomials
as follows:

Theorem 2.1. The exponential generating function for the Padovan polyno-
mials is

EP =

∞∑
n=1

Pn

n!
tn = axe

αxt + bxe
βxt + cxe

γxt

Proof. We know that

eαxt =

∞∑
n=1

αn
x

n!
tn,

eβxt =

∞∑
n=1

βn
x

n!
tn,
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eγxt =

∞∑
n=1

γn
x

n!
tn.

Let’s multiply each side of the first equation by ax, the second equation by bx and
the third equation by cx . By adding all equalities above side by side, we obtain
the following equality.

axe
αxt + bxe

βxt + cxe
γxt =

∞∑
n=1

axα
n
x + bxβ

n
x + cxγ

n
x

n!
tn =

∞∑
n=1

Pn

n!
tn.

□

Theorem 2.2. The series for the Padovan polynomials is

SP(x) =

∞∑
n=0

Pn

tn+1
=

t2

t3 − xt− 1
.

Proof. Let

SP(x) =

∞∑
n=0

Pn

tn+1
=

P0

t
+

P1

t2
+

P2

t3
+ · · ·+ Pn

tn+1
+ . . .

be series of the Padovan polynomials. Multiply this function every side by t3 such
as

t3SP(x) = P0t
2 + P1t+ P2 + · · ·+ Pn

tn−2
+ . . .

and that is multiplied every side with −xt such as

−xtSP(x) = −P0x− P1x

t
− P2x

t2
− · · · − Pnx

tn
− . . .

and that is multiplied every side with −1 negative such as

−SP(x) = −P0

t
− P1

t2
− P2

t3
− · · · − Pn

tn+1
− . . .

Then, we write

(t3 − xt− 1)SP(x) = P0t
2 + P1t+ P2 − P0x+ (P3 − P1x− P0)

1
t

− · · ·+ (Pn+2 − Pnx− Pn−1)
1
tn + . . .

Now using values of the Padovan polynomials and Pn+2 −Pnx−Pn−1 = 0. So, we
obtain

SP(x) =
t2

t3 − xt− 1
.

Thus, the proof is completed. □

By employing analogous methods outlined in [3], we can demonstrate the fol-
lowing result.

Theorem 2.3. The partial sum of the Padovan Polynomials sequence is
n∑

i=0

Pi =
Pn+2 + Pn+1 + Pn − 1

x
, n ⩾ 0.
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Proof. We know that

Pn = xPn−2 + Pn−3

So, applying to the identity above, we deduce that

P3 = xP1 + P0,

P4 = xP2 + P1,

P5 = xP3 + P2,

. . .

Pn−2 = xPn−4 + Pn−5,

Pn−1 = xPn−3 + Pn−4,

Pn = xPn−2 + Pn−3.

Summing the both of sides of the identities above, we obtain

Pn−2+Pn−1+Pn = x (P1 + P2 + P3 +. . .+ Pn−4 + Pn−3 + Pn−2) + P0 + P1 + P2.

□

3. Padovan polynomials matrix

We explore the properties of the Padovan polynomials in connection with the
Padovan polynomials matrix formula. Thus, we aim to derive new relations for
the Padovan polynomials matrices. The Padovan polynomials matrix, denoted as
QP (x), is generated by a 3rd-order matrix.

QP (x) =

 0 1 0
0 0 1
1 x 0


and the n-th powers of QP (x) polynomials matrix is given

Qn
P (x) =

 Pn−3 Pn−1 Pn−2

Pn−2 Pn Pn−1

Pn−1 Pn+1 Pn

 .(3.1)

In the books by Koshy [12,13], various properties of the Fibonacci numbers are
presented. In this work, we extend similar properties to the Padovan polynomials.

Proposition 3.1. The relations are valid:
1. |Q3

P (x) + xQP (x) + I| = 8.
2. If |QP (x)− µI| = 0, then µ = αx, βx, γx
3. |Qn

P (x)| = 1.

Proof.
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1.

Q3
P (x) + xQP (x) + I =

 1 x 0
0 1 x
x x2 1

+

 0 x 0
0 0 x
x x2 0

+

 1 0 0
0 1 0
0 0 1


=

 2 2x 0
0 2 2x
2x 2x2 2

 = 2

 1 x 0
0 1 x
x x2 1

 .

So,

|Q3
P (x) + xQP (x) + I| = 8

2.

|QP (x)− µI| =

∣∣∣∣∣∣
−µ 1 0
0 −µ 1
1 x −µ

∣∣∣∣∣∣ = µ3 − xµ− 1 = 0.

3. By using (2.1) and (2.2). We have∣∣∣∣∣∣
Pn−3 Pn−1 Pn−2

Pn−2 Pn Pn−1

Pn−1 Pn+1 Pn

∣∣∣∣∣∣ = Pn−3P−n−3 + Pn−1P−n−2 + Pn−2P−n−1 = 1.

□

Theorem 3.1. The Binet-like formula for the sequence Qn
P (x) is

Qn
P (x) = axαxα

n
x + bxβxβ

n
x + cxγxγ

n
x , n ⩾ 0(3.2)

where

αx =

 α−3
x α−1

x α−2
x

α−2
x 1 α−3

x

α−1
x αx 1

, βx =

 β−3
x β−1

x β−2
x

β−2
x 1 β−3

x

β−1
x βx 1

 and γx =

 γ−3
x γ−1

x γ−2
x

γ−2
x 1 γ−3

x

γ−1
x γx 1

.
Proof. From the definition of n-th Padovan polynomials matrix Qn

P (x) in
(3.1) and Binet-like formula for the n-th Padovan polynomials Pn in (1.4), we
write

Qn
P (x) =

 Pn−3 Pn−1 Pn−2

Pn−2 Pn Pn−1

Pn−1 Pn+1 Pn


or

Qn
P (x) = ax

 α−3
x α−1

x α−2
x

α−2
x 1 α−1

x

α−1
x αx 1

αn
x+bx

 β−3
x β−1

x β−2
x

β−2
x 1 β−3

x

β−1
x βx 1

βn
x+cx

 γ−3
x γ−1

x γ−2
x

γ−2
x 1 γ−3

x

γ−1
x γx 1

γn
x

Hence, we have

Qn
P (x) = axαxα

n
x + bxβxβ

n
x + cxγxγ

n
x

Thus, the proof is completed. □
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Theorem 3.2. The generating function for the sequence Qn
P (x) is

GQP
(x) =

∞∑
n=1

Qn
P (x)t

n =
t

1− xt2 − t3

 t2 1 t
t xt+ t2 1
1 x+ t xt+ t2

 .

Proof. Let

GQP
(x) =

∞∑
n=1

Qn
P (x)t

n = QP (x)t+Q2
P (x)t

2 +Q3
P (x)t

3 + · · ·+Qn
P (x)t

n + . . .

be generating function of the Padovan polynomials matrix. Multiply this function
every side by −xt2 such as

−xt2GQP
(x) = −xQP (x)t

3 − xQ2
P (x)t

4 − xQ3
P (x)t

5 − · · · − xQn
P (x)t

n+2 − . . .

and that is multiplied every side by −t3 such as

−t3GQP
(x) = −QP (x)t

4 −Q2
P (x)t

5 −Q3
P (x)t

6 − · · · −Qn
P (x)t

n+3 − . . .

Then, we write

(1− xt2 − t3)GQP
(x) = QP (x)t+Q2

P (x)t
2 + (Q3

P (x)− xQP (x))t
3

(Q4
P (x)− xQ2

P (x)−QP (x))t
4 + . . .

+(Qn+3
P (x)− xQn+1

P (x)−Qn
P (x))t

n+3 + . . .

Now using (3.1), we obtain Qn+3
P (x)− xQn+1

P (x)−Qn
P (x) = 0. So

GQP
(x) =

t

1− xt2 − t3

 t2 1 t
t xt+ t2 1
1 x+ t xt+ t2

 .

Thus, the proof is completed. □

Theorem 3.3. The exponential generating function for the sequence Qn
P (x) is

EQP
(x) =

∞∑
n=1

Qn
P (x)

n!
tn = axαxe

αxt + bxβxe
βxt + cxγxe

γxt.

Proof. We know that

eαxt =

∞∑
n=1

αn
x

n!
tn, eβxt =

∞∑
n=1

βn
x

n!
tn, eγxt =

∞∑
n=1

γn
x

n!
tn

Let’s multiply each side of the first equality by axαx, the second equality by bxβx

and the third equality by cxγx . Then, we added all equalities. So, the following
equality is obtained.

axαxe
αxt + bxβxe

βxt + cxγxe
γxt =

∞∑
n=1

axαxα
n
x + bxβxβ

n
x + cxγxγ

n
x

n!
tn=

∞∑
n=1

Qn
P (x)

n!
tn

□
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Theorem 3.4. The series for the sequence Qn
P (x) is

SQP
(x) =

∞∑
n=1

Qn
P (x)

tn+1
=

1

t3 − xt− 1

 1
t t 1
1 x+ 1

t t
t 1 + xt x+ 1

t

 .

Proof. Let

SQP
(x) =

∞∑
n=1

Qn
P (x)

tn+1
=

QP (x)

t2
+

Q2
P (x)

t3
+

Q3
P (x)

t4
+ · · ·+ Qn

P (x)

tn+1
+ . . .

be series of the Padovan polynomials matrix. Multiply this function every side by
t3, −xt and −1, respectively, such as

t3SQP
(x) = QP (x)t+Q2

P (x) +
Q3

P (x)

t
+ · · ·+ Qn

P (x)

tn−2
+ . . .

−xtSQP
(x) = −x

QP (x)

t
− x

Q2
P (x)

t2
− x

Q3
P (x)

t3
− · · · − x

Qn
P (x)

tn
− . . .

−SQP
(x) = −QP (x)

t2
− Q2

P (x)

t3
− Q3

P (x)

t4
− · · · − Qn

P (x)

tn+1
− . . .

Then, we write

(t3 − xt− 1)SQP
(x) = QP (x)t+Q2

P (x) +
(
Q3

P (x)− xQP (x)
)

1
t

+
(
Q4

P (x)− xQ2
P (x)−QP (x)

)
1
t2 + . . .

+
(
Qn+2

P (x)− xQn
P (x)−Qn−1

P (x)
)

1
tn + . . .

Now using (3.1), we obtain Qn+2
P (x)− xQn

P (x)−Qn−1
P (x) = 0. So

SQP
(x) =

1

t3 − xt− 1

 1
t t 1
1 x+ 1

t t
t 1 + xt x+ 1

t

 .

Thus, the proof is completed. □

Theorem 3.5. The partial sum for the sequence Qn
P (x) is

n∑
i=1

Qi
P (x) =

1

x

Qn+2
P (x) +Qn+1

P (x) +Qn
P (x)−

 1 1 1
1 1 + x 1
1 1 + x 1 + x

 .

Proof. We know that

Qn
P (x) = xQn−2

P (x) +Qn−3
P (x)
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So, applying to the identity above, we deduce that

Q3
P (x) = xQ1

P (x) +Q0
P (x),

Q4
P (x) = xQ2

P (x) +Q1
P (x),

Q5
P (x) = xQ3

P (x) +Q2
P (x),

. . . ,

Qn−2
P (x) = xQn−4

P (x) +Qn−5
P (x),

Qn−1
P (x) = xQn−3

P (x) +Qn−4
P (x),

Qn
P (x) = xQn−2

P (x) +Qn−3
P (x).

By summing the identities above side by side, we obtain

Qn−2
P (x) +Qn−1

P (x) +Qn
P (x) = x(Q1

P (x) +Q2
P (x) + · · ·+Qn−3

P (x) +Qn−2
P (x))

+Q0
P (x) +Q1

P (x) +Q2
P (x).

Hence, we get the desired result. □

References

1. J. Cigler, q−Fibonacci polynomials. Fibonacci Q., 41 (1) (2003), 31–40.
2. O. Deveci and E. Karaduman, On the Padovan p−numbers. Hacettepe Journal of Mathematics

and Statistics, 46 (4) (2017), 579–592.

3. O. Diskaya and H. Menken, On the Quadra Fibona-Pell and Hexa Fibona-Pell-Jacobsthal
Sequences. Math. Sci. Appl. E-Notes., 7 (2) (2019), 149–160.

4. O. Diskaya and H. Menken, On the (s, t)−Padovan and (s, t)−Perrin Quaternions. Journal of

Advanced Mathematical Studies, 12 (2019), 186–192.
5. O. Diskaya and H. Menken, On the Split (s, t)−Padovan and (s, t)−Perrin Quaternions. Inter-

national Journal of Applied Mathematics and Informatics, 13 (2019) 25–28.

6. V. W. de Spinadel and A. R. Buitrago, Towards van der Laan’s Plastic Number in the Plane.
Journal for Geometry and Graphics, 13 (2) (2009), 163–175.
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15. L. Marohnić and T. Strmečki, Plastic number: Construction and applications. In: Interna-

tional Virtual Conference ARSA (Advanced Researsch in Scientific Area). December, 3(7)
(2012), 1523–1528.

16. R. Sivaraman, Generalized Padovan and polynomial sequences. J. Math. Comput. Sci., 11

(1), (2020), 219–226.



PADOVAN POLYNOMIALS MATRIX 509

17. K. Sokhuma, Matrices formula for Padovan and Perrin sequence. Appl. Math. Sci., (Ruse)

7(142) (2013), 7093–7096.

18. Y. Soykan, On generalized Padovan numbers. Preprints.org. (2021, October 5). Available at
https://www.preprints.org/manuscript/202110.0101/v1

19. Y. Soykan, study on generalized Jacobsthal-Padovan numbers. Earthline Journal of Mathe-
matical Sciences, 4(2) (2020), 227–251.
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