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COMMON FIXED POINT THEOREMS IN S-METRIC
SPACES INVOLVING CONTROL FUNCTION

Gurucharan Singh Saluja

Abstract. In this paper, we prove some common fixed point theorems in

S-metric spaces for a pair of weakly compatible self-mappings using control
function and give some consequences of the established result. We also fur-

nish some examples to demonstrate the validity of the results. The results

presented in this paper generalize, extend and enrich several results in the
existing literature.

1. Introduction

The Banach contraction principle [3] is the most celebrated fixed point theorem
and has been generalized in various directions. Fixed point problems for contractive
mappings in metric spaces and generalized metric spaces with a partial order have
been studied by many authors (see, for example, Agarwal et al. [2], Ćirić et al. [4],
Van Dung et al. [5]). Fixed point theory has an application in many areas such as
chemistry, physics, biology, computer science and many branches of mathematics.
The famous Banach contraction mapping principle states that every self mapping
T defined on a complete metric space (X, d) satisfying the condition:

d(T (x), T (y)) ⩽ k d(x, y),(1.1)

for all x, y ∈ X, where k ∈ (0, 1) is a constant, has a unique fixed point and for
every x0 ∈ X a sequence {T nx0}n⩾1 is convergent to the fixed point.

Generalizing the Banach contraction principle, Jungck [8] initiated the study
of common fixed point for a pair of commuting mappings satisfying contractive
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type conditions. In 1982, Sessa [31] introduced a weaker concept of commutativ-
ity, which is generally known as weak commutativity and proved some interesting
results on the existence of common fixed points for a pair of self maps. He also
showed that weak commuting mappings are commuting but the converse need not
to be true. Later, Jungck [9] generalized the concept of weak commutativity by
introducing the notion of compatible mappings which is more general than weakly
commuting mappings and showed that weak commuting maps are compatible but
converse need not be true. In 1996, Jungck [10] generalized the concept of com-
patibility by introducing weakly compatible mappings.

In literature, there are many generalizations of the metric space exists. One of
the generalizations of the metric space is the generalized metric space or S-metric
space given by Sedghi et al. [27].

In 2012, Sedghi et al. [27] introduced the concept of a S-metric space which is
different from other spaces and proved fixed point theorems in such spaces. They
also give some examples of a S-metric space which shows that the S-metric space
is different from other spaces. They built up some topological properties in such
spaces and proved some fixed point theorems in the framework of S-metric spaces.
For more details regarding this space we refer [6,11,12,14–16,26–30].

Recently, many number of authors have published many papers on S-metric
spaces in different directions (see, e.g., [13,17–25,32,33] and many others).

In this paper, we prove some common fixed point theorems in S-metric spaces
for a pair of weakly compatible self-mappings using control function and give some
consequences of the established result. We also give some examples to demonstrate
the validity of the results. Our results generalize, extend and enrich several results
from the existing literature.

2. Preliminaries

In this section, we need some auxiliary results, basic definitions and lemmas to
prove our main results.

Definition 2.1. ( [27]) Let X be a nonempty set and let S : X3 → [0,+∞)
be a function satisfying the following conditions for all u, v, w, t ∈ X:

(S1) S(u, v, w) = 0 if and only if u = v = w;
(S2) S(u, v, w) ⩽ S(u, u, t) + S(v, v, t) + S(w,w, t).
Then the function S is called an S-metric on X and the pair (X,S) is called

an S-metric space or simply SMS.

example 2.1. ( [27]) Let X = Rn and ∥ · ∥ a norm on X, then S(u, v, w) =
∥v + w − 2u∥+ ∥v − w∥ is an S-metric on X.

example 2.2. ( [27]) Let X be a nonempty set and d be an ordinary metric
on X. Then S(u, v, w) = d(u,w)+d(v, w) for all u, v, w ∈ X is an S-metric on X.

example 2.3. ( [28]) Let X = R be the real line. Then S(u, v, w) = |u−w|+
|v − w| for all u, v, w ∈ R is an S-metric on X. This S-metric on X is called the
usual S-metric on X.
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Definition 2.2. Let (X,S) be an S-metric space. For ε > 0 and u ∈ X we
define the open ball BS(u, ε) and closed ball BS [u, ε] with center u and radius ε as
follows, respectively:

(B1) BS(u, ε) = {v ∈ X : S(v, v, u) < ε},

(B2) BS [u, ε] = {v ∈ X : S(v, v, u) ⩽ ε}.

example 2.4. ( [28]) Let X = R. Denote S(u, v, w) = |v + w − 2u|+ |v − w|
for all u, v, w ∈ R. Then

BS(1, 2) = {v ∈ R : S(v, v, 1) < 2} = {v ∈ R : |v − 1| < 1}
= {v ∈ R : 0 < v < 2} = (0, 2),

and

BS [2, 4] = {v ∈ R : S(v, v, 2) ⩽ 4} = {v ∈ R : |v − 2| ⩽ 2}
= {v ∈ R : 0 ⩽ v ⩽ 4} = [0, 4].

Definition 2.3. ( [27], [28]) Let (X,S) be an S-metric space and A ⊂ X.
(Θ1) The subset A is said to be an open subset of X, if for every x ∈ A there

exists c > 0 such that BS(x, c) ⊂ A.
(Θ2) A sequence {an} in X converges to a ∈ X if S(an, an, a) → 0 as n→ +∞,

that is, for each ε > 0, there exists n0 ∈ N such that for all n ⩾ n0 we have
S(an, an, a) < ε. We denote this by limn→+∞ an = a or an → a as n→ +∞.

(Θ3) A sequence {an} in X is called a Cauchy sequence if S(an, an, am) → 0 as
n,m→ +∞, that is, for each ε > 0, there exists n0 ∈ N such that for all n,m ⩾ n0
we have S(an, an, am) < ε.

(Θ4) The S-metric space (X,S) is called complete if every Cauchy sequence in
X is convergent.

(Θ5) Let τ be the set of all A ⊂ X having the property that for every x ∈ A,
A contains an open ball centered in x. Then τ is a topology on X (induced by the
S-metric space).

(Θ6) A nonempty subset A of X is S-closed if closure of A coincides with A.

Definition 2.4. Let X be a non-empty set and f, g : X → X be two self
mappings of X. Then a point z ∈ X is called a

(Ξ1) fixed point of operator f if f(z) = z;
(Ξ2) common fixed point of f and g if f(z) = g(z) = z.

Definition 2.5. ( [27]) Let (X,S) be an S-metric space. A mapping F : X →
X is said to be a contraction if there exists a constant 0 ⩽ h < 1 such that

S(Fu,Fv,Fw) ⩽ hS(u, v, w),(2.1)

for all u, v, w ∈ X.

Remark 2.1. ( [27]) If the S-metric space (X,S) is complete and F : X → X
is a contraction mapping, then F has a unique fixed point in X.
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Definition 2.6. ( [27]) Let (X,S) and (X ′, S′) be two S-metric spaces. A
function Q : X → X ′ is said to be continuous at a point x0 ∈ X if for every sequence
{an} in X with S(an, an, x0) → 0, S′(Q(an), Q(an), Q(x0)) → 0 as n → +∞. We
say that Q is continuous on X if Q is continuous at every point x0 ∈ X.

Definition 2.7. ( [1]) Let A and B be single valued self-mappings on a set X.
If z = Au = Bu for some u ∈ X, then u is called a coincidence point point of A
and B, and z is called a point of coincidence of A and B.

Definition 2.8. ( [9]) Let A and B be single valued self-mappings on a set X.
Mappings A and B are said to be commuting if ABu = BAu for all u ∈ X.

Definition 2.9. ( [10]) Let A and B be single valued self-mappings on a set
X. Mappings A and B are said to be weakly compatible if they commute at their
coincidence points, i.e., if Au = Bu for some u ∈ X implies ABu = BAu.

Lemma 2.1. ( [27], Lemma 2.5) Let (X,S) be an S-metric space. Then, S(u, u, v)
= S(v, v, u) for all u, v ∈ X.

Lemma 2.2. ( [27], Lemma 2.12) Let (X,S) be an S-metric space. If an → a
and bn → b as n→ +∞ then S(an, an, bn) → S(a, a, b) as n→ +∞.

Lemma 2.3. ( [28]) The limit of a convergent sequence in an S-metric space
(X,S) is unique.

Lemma 2.4. ( [27]) In a S-metric space (X,S), any convergent sequence is
Cauchy.

Lemma 2.5. Let (X,S) be an S-metric space and suppose that the sequence
{an} is S-convergent to a. Then we have

lim sup
n→+∞

S(an, an, z) ⩽ S(z, z, a).

Proof. Let limn→+∞ an = a. Then for each ε > 0, there exists n1 ∈ N such
that for all n ⩾ n1, we have

S(an, an, a) <
ε

2
.

Then for every n ⩾ n1 by condition (S2), we have

S(an, an, z) ⩽ 2S(an, an, a) + S(z, z, a)

⩽ ε+ S(z, z, a).

Taking the upper limit as n → +∞ in the above inequality, we obtain the desired
result. □

In the following lemma we see the relationship between a metric and S-metric.

Lemma 2.6. ( [7]) Let (X, d) be a metric space. Then the following properties
are satisfied:

(1) Sd(u, v, z) = d(u, z) + d(v, z) for all u, v, z ∈ X is an S-metric on X.
(2) an → a in (X, d) if and only if an → a in (X,Sd).
(3) {an} is Cauchy in (X, d) if and only if {an} is Cauchy in (X,Sd).
(4) (X, d) is complete if and only if (X,Sd) is complete.
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We call the function Sd defined in Lemma 2.3 (1) as the S-metric generated by
the metric d. It can be found an example of an S-metric which is not generated by
any metric in [7,18].

example 2.5. ( [7]) Let X = R and the function S : X3 → [0,∞) be defined
as

S(u, v, z) = |u− z|+ |u+ z − 2v|,
for all u, v, z ∈ R. Then the function S is an S-metric on X and (X,S) is an
S-metric space. Now, we prove that there does not exists any metric d such that
S = Sd. On the contrary, suppose that there exists a metric d such that

S(u, v, z) = d(u, z) + d(v, z),

for all u, v, z ∈ R. Hence, we obtain

S(u, u, z) = 2d(u, z) = 2|u− z|,
and

d(u, z) = |u− z|.
Similarly, we get

S(v, v, z) = 2d(v, z) = 2|v − z|,
and

d(v, z) = |v − z|,
for all u, v, z ∈ R. Hence, we have

|u− z|+ |u+ z − 2v| = |u− z|+ |v − z|,
which is a contradiction. Therefore, S ̸= Sd and (R, S) is a complete S-metric
space.

3. Main results

In this section, we shall prove some common fixed point theorems in S-metric
spaces using control function. Here we shall use the following concept.

Let Ψ denote the class of all functions ψ : [0,+∞) → [0,+∞) such that ψ is
nondecreasing, continuous and

∑∞
n=1 ψ

n(t) is convergent for each t > 0. It is clear
that ψn(t) → 0 as n → +∞ for each t > 0 and hence, we have ψ(t) < t for each
t > 0.

Theorem 3.1. Let (X,S) be a complete S-metric space and P,Q : X → X be
two self-mappings satisfying the following conditions:

(1)

S(Px, Py, Pz)) ⩽ ψ
(
max

{
S(Qx,Qy,Qz), a1S(Py, Py, Pz),

a2S(Py, Py,Qz),
a3
2
[S(Px, Px,Qz)

+S(Py, Py,Qz)]
})
,(3.1)
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for all x, y, z ∈ X and a1, a2, a3 are nonnegative reals such that 0 < a1, a2, a3 < 1,
where ψ ∈ Ψ;

(2) P (X) ⊆ Q(X) and either P (X) or Q(X) is a closed subset of X;
(3) The pair (P,Q) is weakly compatible.
Then the maps P and Q have a unique common fixed point in X. If Q is

continuous at the fixed point v, then P is also continuous at v.

Proof. Let x0 ∈ X. Define the sequence rn = Pun = Qun+1, n = 0, 1, 2, . . .
and let tn+1 = S(rn, rn, rn+1). It follows from (3.1) and using (S1), we have

tn+1 = S(rn, rn, rn+1)

= S(Pun, Pun, Pun+1)

⩽ ψ
(
max

{
S(Qun, Qun, Qun+1), a1S(Pun, Pun, Pun+1),

a2S(Pun, Pun, Qun+1),
a3
2
[S(Pun, Pun, Qun+1)

+S(Pun, Pun, Qun+1)]
})

= ψ
(
max

{
S(rn−1, rn−1, rn), a1S(rn, rn, rn+1),

a2S(rn, rn, rn),
a3
2
[S(rn, rn, rn) + S(rn, rn, rn)]

})
= ψ

(
max

{
S(rn−1, rn−1, rn), a1S(rn, rn, rn+1), 0, 0

})
⩽ ψ

(
max

{
tn, a1tn+1, 0, 0

})
.(3.2)

If max
{
tn, a1tn+1, a2tn, a3tn

}
= a1tn+1, then from equation (3.2), we obtain

tn+1 ⩽ ψ(a1tn+1) < a1tn+1,

which is a contradiction since a1 < 1. Hence, we conclude that

tn+1 ⩽ ψ(tn), n = 1, 2, . . . .(3.3)

Hence, we have

S(rn, rn, rn+1) ⩽ ψ(S(rn−1, rn−1, rn)) ⩽ ψ2(S(rn−2, rn−2, rn−1)) ⩽

. . . ⩽ ψn(S(r0, r0, r1)).
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Now, we shall show that {rn} is a Cauchy sequence in an S-metric space (X,S).
Hence for every n,m ∈ N with m > n and using Lemma 2.1, then we have

S(rn, rn, rm) ⩽ 2S(rn, rn, rn+1) + S(rm, rm, rn+1)

= 2S(rn, rn, rn+1) + S(rn+1, rn+1, rm)

⩽ 2S(rn, rn, rn+1) + 2S(rn+1, rn+1, r2)

+S(rn+2, rn+2, rm)

...

⩽ 2

m−2∑
j=n

S(rj , rj , rj+1) + S(rm−1, rm−1, rm)

⩽ 2[ψn(S(r0, r0, r1)) + ψn+1(S(r0, r0, r1)) + . . .

+ψm−1(S(r0, r0, r1))]

= 2

m−1∑
j=n

ψj(S(r0, r0, r1)).

Since
∑∞

n=1 ψ
n(t) < +∞ for all t ⩾ 0, hence S(rn, rn, rm) → 0 as n → +∞.

Therefore, for each ε > 0, there exists n0 ∈ N such that for each n,m ⩾ n0, we have
S(rn, rn, rm) < ε. This shows that the sequence {rn} is a Cauchy sequence in X.
By the completeness of the space X, there exists v ∈ X such that limn→+∞ rn = v
and

v = lim
n→+∞

rn = lim
n→+∞

Pun = lim
n→+∞

Qun+1.

Let Q(X) be a closed subset of X. Then there exists α ∈ X such that Qα = v. We
claim that Pα = v. Since

S(Pα, Pα, Pun) ⩽ ψ
(
max

{
S(Qα,Qα,Qun), a1S(Pα, Pα, Pun),

a2S(Pα, Pα,Qun),
a3
2
[S(Pα, Pα,Qun)

+S(Pα, Pα,Qun)]
})

= ψ
(
max

{
S(Qα,Qα,Qun), a1S(Pα, Pα, Pun),

a2S(Pα, Pα,Qun), a3S(Pα, Pα,Qun)
})

(3.4)

= ψ
(
max

{
S(v, v, rn−1), a1S(Pα, Pα, rn),

a2S(Pα, Pα, rn−1), a3S(Pα, Pα, rn−1)
})
.
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Taking the upper limit as n → +∞ in equation (3.4) and using (S1), Lemma 2.1,
Lemma 2.5 and the property of ψ, we obtain

S(Pα, Pα, v) ⩽ ψ
(
max

{
lim sup
n→∞

S(v, v, rn−1), a1 lim sup
n→∞

S(Pα, Pα, rn),

a2 lim sup
n→∞

S(Pα, Pα, rn−1),

a3 lim sup
n→∞

S(Pα, Pα, rn−1)
})

= ψ
(
max

{
lim sup
n→∞

S(v, v, rn−1), a1 lim sup
n→∞

S(rn, rn, Pα),

a2 lim sup
n→∞

S(rn−1, rn−1, Pα),

a3 lim sup
n→∞

S(rn−1, rn−1, Pα)
})

⩽ ψ
(
max

{
S(v, v, v), a1S(Pα, Pα, v), a2S(Pα, Pα, v),

a3S(Pα, Pα, v)
})

= ψ
(
max

{
0, a1S(Pα, Pα, v), a2S(Pα, Pα, v),

a3S(Pα, Pα, v)
})

⩽ max{a1, a2, a3}S(Pα, Pα, v).(3.5)

This implies that 1 ⩽ max{a1, a2, a3}, which is a contradiction. Hence, from ψ(t) <
t for all t ⩾ 0, we have S(Pα, Pα, v) = 0, that is, Pα = v and hence Pα = Qα = v.

Since by hypothesis the pair (P,Q) is weakly compatible, we have PQα = QPα,
and hence Pv = Qv.

Now, we have to prove that v is a fixed point of P , that is, Pv = v. Suppose
that Pv ̸= v. Then from equation (3.1), we have

S(Pv, Pv, Pun)) ⩽ ψ
(
max

{
S(Qv,Qv,Qun), a1S(Pv, Pv, Pun),

a2S(Pv, Pv,Qun),
a3
2
[S(Pv, Pv,Qun)

+S(Pv, Pv,Qun)]
})

= ψ
(
max

{
S(Pv, Pv, rn−1), a1S(Pv, Pv, rn),

a2S(Pv, Pv, rn−1),
a3
2
[S(Pv, Pv, rn−1)

+S(Pv, Pv, rn−1)]
})

= ψ
(
max

{
S(Pv, Pv, rn−1), a1S(Pv, Pv, rn),

a2S(Pv, Pv, rn−1), a3S(Pv, Pv, rn−1)
})
.(3.6)



COMMON FIXED POINT THEOREMS IN S-METRIC SPACES 493

Taking the upper limit as n→ +∞ in equation (3.6) and using the property of ψ,
we obtain

S(Pv, Pv, v)) ⩽ ψ
(
max

{
lim sup
n→∞

S(Pv, Pv, rn−1), a1 lim sup
n→∞

S(Pv, Pv, rn),

a2 lim sup
n→∞

S(Pv, Pv, rn−1), a3 lim sup
n→∞

S(Pv, Pv, rn−1)
})

⩽ ψ
(
max

{
S(Pv, Pv, v), a1S(Pv, Pv, v), a2S(Pv, Pv, v),

a3S(Pv, Pv, v)
})

⩽ max{a1, a2, a3}S(Pv, Pv, v),(3.7)

which is a contradiction. Since by hypothesis, ψ(t) < t for all t ⩾ 0, we have
S(Pv, Pv, v) = 0, that is, Pv = v and hence Pv = Qv = v. This shows that v is a
common fixed point of P and Q.

Now, we shall show the uniqueness of the common fixed point. Suppose v′ is
another common fixed point of P and Q such that Pv′ = Qv′ = v′ with v′ ̸= v.
Then, from the given inequality (3.1), we have

S(v, v, v′) = S(Pv, Pv, Pv′))

⩽ ψ
(
max

{
S(Qv,Qv,Qv′), a1S(Pv, Pv, Pv

′),

a2S(Pv, Pv,Qv
′),
a3
2
[S(Pv, Pv,Qv′)

+S(Pv, Pv,Qv′)]
})

= ψ
(
max

{
S(Qv,Qv,Qv′), a1S(Pv, Pv, Pv

′),

a2S(Pv, Pv,Qv
′), a3S(Pv, Pv,Qv

′)
})

= ψ
(
max

{
S(v, v, v′), a1S(v, v, v

′), a2S(v, v, v
′),

a3S(v, v, v
′)
})
.

If S(v, v, v′) ⩽ ψ(S(v, v, v′)), then S(v, v, v′) ⩽ ψ(S(v, v, v′)) < S(v, v, v′), which is
a contradiction. Hence, S(v, v, v′) = 0, that is, v = v′. If S(v, v, v′) ⩽ aψ(S(v, v, v′)),
where a = max{a1, a2, a3}, then S(v, v, v′) ⩽ aψ(S(v, v, v′)) < aS(v, v, v′), which
is also a contradiction, since 0 < a < 1. Hence, we have S(v, v, v′) = 0, that is,
v = v′. Thus, v is the unique common fixed point of P and Q.

Next, we shall show the continuity of the mapping in S-metric spaces.
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Let {sn} be any sequence in X such that {sn} is convergent to v. Then, we
have

S(Pv, Pv, Psn)) ⩽ ψ
(
max

{
S(Qv,Qv,Qsn), a1S(Pv, Pv, Psn),

a2S(Pv, Pv,Qsn),
a3
2
[S(Pv, Pv,Qsn)

+S(Pv, Pv,Qsn)]
})

= ψ
(
max

{
S(Qv,Qv,Qsn), a1S(Pv, Pv, Psn),

a2S(Pv, Pv,Qsn), a3S(Pv, Pv,Qsn)
})
.

Taking the upper limit as n→ +∞ in the above inequality and from the continuity
of Q at a point v, using (S1) and the property of ψ, we obtain

lim sup
n→+∞

S(v, v, Psn) = lim sup
n→+∞

S(Pv, Pv, Psn)

⩽ ψ
(
max

{
lim sup
n→+∞

S(Qv,Qv,Qsn), a1 lim sup
n→+∞

S(Pv, Pv, Psn),

a2 lim sup
n→+∞

S(Pv, Pv,Qsn), a3 lim sup
n→+∞

S(Pv, Pv,Qsn)
})

⩽ ψ
(
max

{
0, a1 lim sup

n→+∞
S(v, v, Psn), a2S(Pv, Pv,Qv),

a3S(Pv, Pv,Qv)
})

= ψ
(
max

{
0, a1 lim sup

n→+∞
S(v, v, Psn), a2S(Pv, Pv, Pv),

a3S(Pv, Pv, Pv)
})

= ψ
(
max

{
0, a1 lim sup

n→+∞
S(v, v, Psn), 0, 0

})
⩽ a1 lim sup

n→+∞
S(v, v, Psn),

we have

lim sup
n→+∞

S(v, v, Psn) ⩽ a1 lim sup
n→+∞

S(v, v, Psn).

This implies that lim supn→+∞ S(v, v, Psn) = 0. Thus, we deduce that P is con-
tinuous at v. This completes the proof. □

Setting Q = I (the identity map on X) in Theorem 3.1, then we have the
following result.
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Corollary 3.1. Let (X,S) be a complete S-metric space and P : X → X be
a self-mapping satisfying the following inequality:

S(Px, Py, Pz)) ⩽ ψ
(
max

{
S(x, y, z), a1S(Py, Py, Pz),

a2S(Py, Py, z),
a3
2
[S(Px, Px, z)

+S(Py, Py, z)]
})
,(3.8)

for all x, y, z ∈ X and a1, a2, a3 are nonnegative reals such that 0 < a1, a2, a3 < 1,
where ψ ∈ Ψ. Then the mapping P has a unique fixed point v ∈ X. And the
mapping P is continuous at v.

By setting

max
{
S(x, y, z), a1S(Py, Py, Pz), a2S(Py, Py, z),

a3
2
[S(Px, Px, z) + S(Py, Py, z)]

}
= S(x, y, z)

and ψ(t) = kt for all t ⩾ 0, where k ∈ [0, 1) in Corollary 3.1, then we have the
following result.

Corollary 3.2. ( [27]) Let (X,S) be a complete S-metric space and P : X →
X be a self-mapping satisfying the following inequality:

S(Px, Py, Pz)) ⩽ k S(x, y, z),(3.9)

for all x, y, z ∈ X, where k ∈ [0, 1). Then the mapping P has a unique fixed point
v ∈ X.

Corollary 3.3. Let (X,S) be a complete S-metric space such that for some
positive integer n, Pn satisfies the contraction condition (3.9) for all x, y, z ∈ X,
where k is as in Corollary 3.2. Then P has a unique fixed point in X.

Proof. From Corollary 3.2, let v0 be the unique fixed point of Pn, that is,
Pn(v0) = v0. Then

P (Pnv0) = Pv0 or Pn(Pv0) = Pv0.

This gives Pv0 = v0. This shows that v0 is a unique fixed point of P . This
completes the proof. □

Remark 3.1. Corollary 3.2 extends the well-known Banach fixed point theorem
[3] from complete metric space to the setting of complete S-metric space.

Remark 3.2. Corollary 3.2 is a special case of Corollary 3.3 for n = 1.

Theorem 3.2. Let (X,S) be a complete S-metric space and P,Q : X → X
be continuous and Q be commutative with P . If for every n ∈ N, the following
conditions are satisfied:
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(1)

S(Pnx, Pny, Pnz)) ⩽ ψ
(
max

{
S(Qnx,Qny,Qnz), a1S(P

ny, Pny, Pnz),

a2S(P
ny, Pny,Qnz),

a3
2
[S(Pnx, Pnx,Qnz)

+S(Pny, Pny,Qnz)]
})
,(3.10)

for all x, y, z ∈ X and a1, a2, a3 are nonnegative reals such that 0 < a1, a2, a3 < 1,
where ψ ∈ Ψ;

(2) Pn(X) ⊆ Qn(X) and either Pn(X) or Qn(X) is a closed subset of X;
(3) the pair (Pn, Qn) is weakly compatible.
Then the mappings P and Q have a unique common fixed point v ∈ X. Further,

if Q is continuous at the point v, then P is also continuous at v.

Proof. Follows from Theorem 3.1. □

Now, we furnish some examples to demonstrate the validity of the hypothesis
of Theorem 3.1 and Corollary 3.2.

example 3.1. Let X = R and (X,S) be a complete S-metric space. For any
x, y, z ∈ X, define the function S : X3 → [0,∞) by S(x, y, z) = |x− z|+ |y− z| and
mappings P, Q : X → X by P (x) = 1 and

Q(x) =

{
1, if x ∈ Q,
0, if x /∈ Q.

(i) Now, if x ∈ Q, then we have

S(Px, Py, Pz) = 0, S(Qx,Qy,Qz) = 0, S(Py, Py, Pz) = 0,

S(Py, Py,Qz) = 0, S(Px, Px,Qz) = 0.

(ii) Now, if x /∈ Q, then we have

S(Px, Py, Pz) = 0, S(Qx,Qy,Qz) = 0, S(Py, Py, Pz) = 0,

S(Py, Py,Qz) = 2, S(Px, Px,Qz) = 2.

For both the cases, it is easy to see that

S(Px, Py, Pz)) ⩽ ψ
(
max

{
S(Qx,Qy,Qz), a1S(Py, Py, Pz),

a2S(Py, Py,Qz),
a3
2
[S(Px, Px,Qz)

+S(Py, Py,Qz)]
})
,

for all x, y, z ∈ X and a1, a2, a3 are nonnegative reals such that 0 < a1, a2, a3 < 1.
Thus, all the conditions of Theorem 3.1 hold and P1 = Q1 = 1, that is, 1 is the
unique common fixed point of P and Q.
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example 3.2. Let X = {1, 2, 3, 4} and S : X ×X ×X → R be defined by

S(x, y, z) =

 |x− z|+ |y − z|, if x ̸= y ̸= z,
x, if x = y = z ̸= 1,
0, if x = y = z = 1,

for all x, y, z ∈ X. Then (X,S) is a complete S-metric space.
Define the mapping P : X → X by

P (1) = 1, P (2) = 1, P (3) = 2, P (4) = 2.

Now, we have

S(P (1), P (2), P (3)) = S(1, 1, 2) = 2 ⩽
2

3
.3 =

2

3
S(1, 2, 3),

S(P (1), P (2), P (4)) = S(1, 1, 2) = 2 ⩽
2

3
.5 =

2

3
S(1, 2, 4),

S(P (1), P (3), P (4)) = S(1, 2, 2) = 1 ⩽
2

3
.4 =

2

3
S(1, 3, 4),

S(P (2), P (3), P (4)) = S(1, 2, 2) = 1 ⩽
2

3
.3 =

2

3
S(2, 3, 4).

Thus, P satisfies all the conditions of Corollary 3.2 with k = 2
3 < 1. Now by

applying Corollary 3.2, P has a unique fixed point. Indeed 1 is the required unique
fixed point in this case.
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14. N. Mlaiki, N. Y. Özgür, and N. Tas, New fixed point theorems on an S-metric space via
simulation functions, Mathematics, 7 (2019), 583; doi:10.3390/math7070583.

15. H. K. Nashine, G. S. Saluja, and R. W. Ibrahim, Some fixed point theorems for (ψ − ϕ)-

almost weak contractions in S-metric spaces solving conformable differential equations, J.
Inequalities Appl., (2020), 2020:139.
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19. N. Y. Özgür and N. Tas, The Picard theorem on S-metric spaces, Acta Mathematica Scientia,

38(4) (2018), 1245–1258.

20. N. Y. Özgür and N. Tas, Some fixed-circle theorems on metric spaces, Bull. Malays. Math.

Sci. Soc., 42 (2019), 1433–1449.

21. G. S. Saluja, Some fixed point results on S-metric spaces satisfying implicit relation, J. Adv.
Math. Stud., 12(3) (2019), 256–267.

22. G. S. Saluja, Common fixed point for generalized (ψ − ϕ)-weak contractions in S-metric
spaces, The Aligarh Bull. Math., 38, No. 1-2, (2019), 41–62.

23. G. S. Saluja, S. Dinu, and L. Petrescu, Fixed points for (ψ−ϕ)-weak contractions in S-metric

spaces, U.P.B. Sci. Bull., Series A, 82(2) (2020), 119–132.
24. G. S. Saluja, Fixed point results under implicit relation in S-metric spaces, The Mathematics

Student, 89, Nos. 3-4, (2020), 111–126.

25. G. S. Saluja, Fixed point theorems on cone S-metric spaces using implicit relation, Cubo, A
Mathematical Journal, 22(2) (2020), 273–288.

26. G. S. Saluja, Some fixed point theorems under implicit relation on S-metric spaces, Bull. Int.

Math. Virtual Institute, 11(2) (2021), 327–340.
27. S. Sedghi, N. Shobe, and A. Aliouche, A generalization of fixed point theorems in S-metric

spaces, Mat. Vesnik, 64(3) (2012), 258–266.

28. S. Sedghi and N. V. Dung, Fixed point theorems on S-metric spaces, Mat. Vesnik, 66(1)
(2014), 113–124.
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