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NOTE ON WEAKLY 1-ABSORBING PRIME FILTERS

Shahabaddin Ebrahimi Atani

Abstract. Let £ be a bounded distributive lattice. Following the concept
of weakly 1-absorbing prime ideals, we define weakly 1-absorbing prime filters

of £. A proper filter p of £ is called weakly 1-absorbing prime filter of £
if whenever non-zero elements a, b, c ∈ £ and 1 ̸= a ∨ b ∨ c ∈ p, then either

a ∨ b ∈ p or c ∈ p. We will make an intensive investigation of the basic

properties and possible structures of these filters.

1. Introduction

All lattices considered in this paper are assumed to have a least element denoted
by 0 and a greatest element denoted by 1, in other words they are bounded. As
algebraic structures, lattices are definitely a natural choice of generalizations of
rings, and it is appropriate to ask which properties of rings can be extended to
lattices. The main aim of this article is that of extending some results obtained for
rings theory to the theory of lattices. Nevertheless, growing interest in developing
the algebraic theory of lattices can be found in several papers and books (see for
example [5, 6, 8, 9]).

Since prime ideals have an important role in the theory of commutative rings,
there are several ways to generalize the concept of prime ideals. Badawi generalized
the concept of prime ideals in [3]. In 2002, Anderson and Smith in [2] defined weakly
prime ideals which is a generalization of prime ideals (also see [10]). A proper ideal
p of a ring R is said to be a weakly prime if 0 ̸= xy ∈ p for each x, y ∈ R implies
either x ∈ p or y ∈ p. Recently, Yassine et. al. defined a new class of ideals, which
is an intermediate class of ideals between prime ideals and 2-absorbing ideals. Recall
from [13] that a proper ideal p of R is said to be a 1-absorbing prime ideal if for
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each nonunits x, y, z ∈ R with xyz ∈ p, then either xy ∈ p or z ∈ p. Afterwards,
Badawi and Celikel in [4] defined and studied weakly 1-absorbing primary ideals, i.e.
a proper ideal I of R is called a weakly 1-absorbing primary ideal of R if whenever
a, b, c ∈ R and 0 ̸= abc ∈ I, then ab ∈ I or c ∈

√
I (also see [1], [12]). Koc et. al.

in [11] investigated weakly 1-absorbing prime ideals. A proper ideal I of R is said
to be a weakly 1-absorbing prime ideal if whenever 0 ̸= abc ∈ I for some nonunits
a, b, c ∈ R, then ab ∈ I or c ∈ I. Our objective in this paper is to extend the
notion of weakly 1-absorbing property in commutative rings to weakly 1-absorbing
property in the lattices, and to investigate the relations between weakly 1-absorbing
prime filters and weakly prime filters. Among many results in this paper, the first,
introduction section contains elementary observations needed later on.

Section 2 is devoted to prove that the Chinese remainder theorem. The Chinese
remainder theorem in number theory is essentially solving the congruence equations.
In the modern number theory, the Chinese remainder theorem theory is of great
importance, and also gains some applications in several different algebras. At
first, we give some properties of decomposable lattices which will be used in the
sequel. Next, quotient lattices are determined by equivalence relations rather than
by ideals as in the ring case. There are many different definition of a quotient
lattice appearing in the literature. Here, quotient filters are studied and some
possible properties of these filters are investigated. It is shown (Theorem 2.1) that
if F and G are two comaximal filters of a lattice £, then £

F∩G
∼= £

F × £
G . Also,

it is proved (Theorem 2.2) that if F1, · · · , Fk are k pairwise comaximal filters of a
lattice £, then £

∩k
i=1Fi

∼= £
F1

× £
F2

,× · · · × £
Fk

.

Section 3 is dedicated to the investigate the basic properties of weakly 1-
absorbing prime filters. At first, we define the definition of weakly 1-absorbing
prime filters (Definition 3.1) and we give an example (Example 3.1) of a weakly 1-
absorbing prime filter of £ that is not a 1-absorbing prime filter (so it is not a prime
filter of £). It is proved (Theorem 3.1) that p is a weakly 1-absorbing prime filter of
£ if and only if for each proper filters F,G,K of £ such that {1} ≠ F ∨G∨K ⊆ p,
either F ∨ G ⊆ p or K ⊆ p. It is shown that (Theorem 3.2) that if p is a
weakly 1-absorbing prime filter of a local lattice £ that is not 1-absorbing prime,
then p = {1}. In the Theorem 3.4, we give a condition under which a weakly
1-absorbing prime filter of £ is not a 1-absorbing prime filter. Theorem 3.5 de-
termines the class of non-local lattices for which their weakly 1-absorbing prime
filters and weakly prime filters are the same. In the Theorem 3.7, we provide an
example of lattices for which their 1-absorbing prime filters and weakly 1-absorbing
prime filters are the same. In the Theorem 3.8, we give a characterization of weakly
1-absorbing prime filters of decomposable lattices. Also, we characterize lattices
with the property that all proper filters are weakly 1-absorbing prime (Theorem
3.10). In particular, we prove that if every proper filter of a lattice £ is a weakly
1-absorbing prime, then |Max(£)| ⩽ 2 (Theorem 3.11).

Let us recall some notions and notations. A lattice £ is called a distributive
lattice if (a∨b)∧c = (a∧c)∨(b∧c) for all a, b, c in £ (equivalently, £ is distributive
if (a∧ b)∨ c = (a∨ c)∧ (b∨ c) for all a, b, c in £). A non-empty subset F of a lattice
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£ is called a filter, if for a ∈ F , b ∈ £, a ⩽ b implies b ∈ F , and x ∧ y ∈ F for all
x, y ∈ F (so if £ is a lattice with 1, then 1 ∈ F and {1} is a filter of £). A proper
filter F of £ is called prime if x ∨ y ∈ F , then x ∈ F or y ∈ F . A proper filter
F of £ is said to be maximal if G is a filter in £ with F ⫋ G, then G = £. The
set of all maximal filters of £ is denoted Max(£). Let A be subset of a lattice £.
Then the filter generated by A, denoted by T (A), is the intersection of all filters
that is containing A. An element x of £ is called an identity join of £, if there
exists 1 ̸= y ∈ £ such that x ∨ y = 1. The set of all identity joins of a lattice £
is denoted Id(£). An element a ∈ £ is called co-regular if a is not an identity join
element and Co − Reg(£) = £ ∖ Id(£). A simple lattice (resp. simple filter) is a
lattice (resp. a filter) that has no filters besides the {1} and itself. We will use £∗

to denote the set of all non-zero elements of £. First we need the following lemma
proved in [5, 6, 8, 9].

Lemma 1.1. Let £ be a lattice.
(1) A non-empty subset F of £ is a filter of £ if and only if x ∨ z ∈ F and

x ∧ y ∈ F for all x, y ∈ F , z ∈ £. Moreover, since x = x ∨ (x ∧ y), y = y ∨ (x ∧ y)
and F is a filter, x ∧ y ∈ F gives x, y ∈ F for all x, y ∈ £.

(2) If F1, · · · , Fn are filters of £ and a ∈ £, then
∨n

i=1 Fi = {
∨n

i=1 ai : ai ∈ Fi}
and a ∨ Fi = {a ∨ ai : ai ∈ Fi} are filters of £ and

∨n
i=1 Fi =

⋂n
i=1 Fi.

(3) If A is a non-empty subset of £, then T (A) = {x ∈ L : a1 ∧a2 ∧ · · · ∧an ⩽
x for some ai ∈ A (1 ⩽ i ⩽ n)}.

(4) If £ is distributive, F is a filter of £, and y ∈ £, then (F :L y) = {a ∈ L :
a ∨ y ∈ F} and (1 :£ F ) = {x ∈ £ : x ∨ F = {1}} are filters of L.

(5) If £ is distributive and F1, · · · , Fn are filters of £, then
∧n

i=1 Fi = {∧n
i=1ai :

ai ∈ Fi} is a filter of £ and Fi ⊆
∧n

i=1 Fi for each i.

2. The Chinese remainder theorem

Throughout this paper, we shall assume unless otherwise stated, that £ is a
bounded distributive lattice. In this section, we extend the Chinese remainder
theorem in the distributive lattices.

Assume that (£1,⩽1), (£2,⩽2), · · · , (£n,⩽n) are lattices (n ⩾ 2) and let £ =
£1 × £2 × · · · × £n. We set up a partial order ⩽c on £ as follows: for each
x = (x1, x2, · · · , xn), y = (y1, y2, · · · , yn) ∈ £, we write x ⩽c y if and only if
xi ⩽i yi for each i ∈ {1, 2, · · · , n}. The following notation below will be kept in
this paper: It is straightforward to check that (£,⩽c) is a lattice with x ∨c y =
(x1 ∨ y1, x2 ∨ y2, · · · , xn ∨ yn) and x ∧c y = (x1 ∧ y1, · · · , xn ∧ yn). In this case,
we say that £ is a decomposable lattice. We start with the following trivial result,
and hence we omit its proof.

Lemma 2.1. If £1,£2,£3 are three lattices and f : £1 → £2 is a lattice
isomorphism, then there is a lattice isomorphism g : £1×£3 → £2×£3 that sends
each element (a, b) of £1 ×£3 to the pair (f(a), b).

Definition 2.1. Let F,G, F1, F2, · · · , Fn, where n ⩾ 2, be filters of a lattice
£. We say that F and G are comaximal precisely when F ∧ G = £; also, we say
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that the family {Fi}ni=1 is pairwise comaximal if and only if Fi ∧ Fj = £ whenever
1 ⩽ i, j ⩽ n and i ̸= j.

Lemma 2.2. If {Fi}ni=1 (where n ⩾ 2) is a pairwise comaximal family of filters

of the lattice £, then
⋂n−1

i=1 Fi and Fn are comaximal.

Proof. Set F =
⋂n−1

i=1 Fi. On the contrary, assume that F ∧Fn ⫋ £. Suppose
that m is a maximal filter of £ such that F ∧Fn ⊆ m. Then Fn ⊆ m and F ⊆ m;
hence, by [7, Lemma 2.1], there is a j ∈ {1, 2, · · · , n− 1} such that Fj ⊆ m and so
Fj ∧ Fn ⊆ m which is impossible. Thus F and Fn are comaximal. □

Quotient lattices are determined by equivalence relations rather than by ideals
as in the ring case. If F is a filter of a lattice (L,⩽), we define a relation on L,
given by x ∼ y if and only if there exist a, b ∈ F satisfying x ∧ a = y ∧ b. Then
∼ is an equivalence relation on L, and we denote the equivalence class of a by
a ∧ F and these collection of all equivalence classes by L

F . We set up a partial

order ⩽Q on L
F as follows: for each a ∧ F, b ∧ F ∈ L

F , we write a ∧ F ⩽Q b ∧ F if
and only if a ⩽ b. The following notation below will be kept in this paper: It is
straightforward to check that (LF ,⩽Q) is a lattice with (a∧F )∨Q(b∧F ) = (a∨b)∧F
and (a∧F )∧Q (b∧F ) = (a∧ b)∧F for all elements a∧F, b∧F ∈ L

F . We need the
following Lemma proved in [8, Remark 4.2 and Lemma 4.3].

Lemma 2.3. Let G be a a sub filter of a filter F of £.
(1) If a ∈ F , then a ∧ F = F . By the definition of ⩽Q, it is easy to see that

1 ∧ F = F is the greatest element of £
F and 0 ∧ F is a least of element £

F .
(2) If a ∈ F , then a ∧ F = b ∧ F (for every b ∈ £) if and only if b ∈ F . In

particular, c ∧ F = F if and only if c ∈ F . Moreover, if a ∈ F , then a ∧ F = F =
1 ∧ F .

(3) a ∧ F = 0 ∧ F if and only if a ∧ f = 0 for some f ∈ F .
(4) By the definition ⩽Q, we can easily show that if £ is distributive, then £

F
is distributive.

(5) F
G = {a ∧G : a ∈ F} is a filter of £

G .

(6) If K is a filter of £
G , then K = F

G for some filter F of £.

Next, we state the following immediate lemma.

Lemma 2.4. If £ is a lattice, then there is a lattice isomorphism h : £ → £
{1}

that sends each element x of £ to x ∧ {1}.

Theorem 2.1. (The Chinese remainder theorem for two filters) Let F and
G be two comaximal filters of a lattice £. Then there is a lattice isomorphism
ϕ : £

F∩G → £
F × £

G that sends each residue class x∧(F ∩G) to the pair (x∧F, x∧G).

Proof. If x∧ (F ∩G) = y ∧ (F ∩G), then x∧ a = y ∧ b for some a, b ∈ F ∩G;
so x ∧ F = y ∧ F and x ∧G = y ∧G. This shows that ϕ is well defined.

If A = x∧(F ∩G), and B = y∧(F ∩G) are elements of £
F∩G , then ϕ(A∨QB) =

ϕ((x ∨ y) ∧ F ∩G) = ((x ∨ y) ∧ F, (x ∨ y) ∧G) = (x ∧ F, x ∧G) ∨c (y ∧ F, y ∧G) =
ϕ(A) ∨c ϕ(B). Similarly, ϕ(A ∧Q B) = ϕ(A) ∧c ϕ(B). Now, we claim that ϕ is
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injective. If ϕ(x∧ (F ∩G)) = ϕ(y∧ (F ∩G)), then x∧F = y∧F and x∧G = y∧G
which implies that x∧s = y∧s′ and x∧t = y∧t′ for some s, s′ ∈ F and t, t′ ∈ G and
so x∧(s∨t) = (x∧s)∨(x∧t) = (y∧s′)∨(y∧t′) = y∧(s′∨t′). Since s∨t, s′∨t′ ∈ F∩G,
we conclude that x ∧ (F ∩ G) = y ∧ (F ∩ G). This shows that ϕ is injective. It
remains to show that ϕ is subjective By assumption, 0 = a ∧ b for some a ∈ F and
b ∈ G which gives 0∧F = b∧G and 0∧G = a∧G by Lemma 2.3 (3). It then follows
from Lemma 2.3 (2) that ϕ(a∧ (F ∩G)) = (a∧F, a∧G) = (1∧F, 0∧G). Similarly,
ϕ(b ∧ (F ∩G)) = (0 ∧ F, 1 ∧G). Now, for every x, y ∈ £, set D = (y ∨ a) ∧ (x ∨ b).
Then we have ϕ(D ∧ (F ∩G)) =

ϕ((y ∨ a) ∧ F ∩G) ∧c ϕ((x ∨ b) ∧ F ∩G) =

(1 ∧ F, y ∧ G) ∧c (x ∧ F, 1 ∧ G) = (x ∧ F, y ∧ G). Thus, every element of the form
(x∧F, y∧G) for some x ∈ £ and y ∈ £ lies in the image of ϕ. Hence ϕ is subjective,
as needed. □

Theorem 2.2. (The Chinese remainder theorem for k filters) Let F1, · · · , Fk

be k pairwise comaximal filters of a lattice £. Then there is a lattice isomorphism
ϕ : £

∩k
i=1Fi

→ £
F1

× £
F2

,× · · · × £
Fk

that sends each residue class x ∧ ∩k
i=1Fi to the

k-tuple (x ∧ F1, x ∧ F2, · · · , x ∧ Fk).

Proof. We use induction on k. We can take k = 1 as a base case. Let n be
a positive integer. We now turn to the inductive step. Assume, inductively, that
k = n − 1, where n ⩾ 3, and that the result has been proved in the case where
k = n − 1. Thus we have £

∩n−1
i=1 Fi

∼= £
F1

× · · · × £
Fn−1

. Since F = ∩n−1
i=1 Fi and Fn

are comaximal by Lemma 2.2, we conclude that £
F∩Fn

∼= £
F × £

Fn
by Theorem 2.1.

Now the assertion follows from the induction hypothesis and Lemma 2.1. □

Corollary 2.1. Let m1, m2 and m3 be three distinct maximal filters of a
lattice £. The following hold:

(1) If m1 ∩m2 = {1}, then £ ∼= £
m1

× £
m2

.

(2) If m1 ∩m2 ∩m3 = {1}, then £ ∼= £
m1

× £
m2

× £
m3

.

Proof. (1) Since m1 ⫋ m1 ∧ m2 ⊆ £, we conclude that m1 ∧ m2 = £; so
m1 and m2 are comaximal filters of £. Now the assertion is a direct consequence
of Theorem 2.1 and Lemma 2.4.

(2) It is easy to see that m1, m2 and m3 are pairwise comaximal filters of £.
Now the claim is a direct consequence of Theorem 2.2 and Lemma 2.4. □

3. Characterization of weakly 1-absorbing prime filters

In this section, the concept of weakly 1-absorbing prime filters is introduced
and investigated. We remind the reader with the following definition.

Definition 3.1. A proper filter p of £ is called weakly 1-absorbing prime if
for all x, y, z ∈ £∗ such that 1 ̸= x ∨ y ∨ z ∈ p, then x ∨ y ∈ p or z ∈ p.

example 3.1. (1) It is easy to see that every 1-absorbing prime filter is a weakly
1-absorbing prime filter.
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(2) Let D = {a, b, c}. Then £(D) = {X : X ⊆ D} forms a distributive
lattice under set inclusion with greatest element D and least element ∅ (note that if
x, y ∈ £(D), then x∨ y = x∪ y and x∧ y = x∩ y). Set p = {1}. Then p is clearly
a weakly 1-absorbing prime filter of £(D). Since {a}∨{b}∨{c} ∈ p, {a}∨{b} /∈ p
and {c} /∈ p, it follows that p is not a 1-absorbing prime filter of £(D). Thus a
weakly 1-absorbing prime filter need not be a 1-absorbing prime filter.

Proposition 3.1. Let p be a weakly 1-absorbing prime filter of £. The fol-
lowing assertions hold:

(1) (p :£ a) is a weakly prime for each a ∈ Co− Reg(£)∖ p;
(2) If {1} is a 1-absorbing prime filter, then p is a 1-absorbing prime filter.

Proof. (1) Assume that a ∈ Co − Reg(£) ∖ p and let 1 ̸= b ∨ c ∈ p for
some b, c ∈ £. We may assume that b, c ∈ £∗. Since a ∈ Co − Reg(£) and
1 ̸= b ∨ c ∈ (p :£ a), we have 1 ̸= a ∨ b ∨ c ∈ p. Then either a ∨ b ∈ p or c ∈ p.
This shows that b ∈ (p :£ a) or c ∈ p ⊆ (p :£ a), i.e. (1) holds.

(2) Let a ∨ b ∨ c ∈ p for some a, b, c ∈ £∗. If a ∨ b ∨ c ̸= 1, then we have either
a∨ b ∈ p or c ∈ p. So assume that a∨ b∨ c ∈ {1}. Since {1} is a 1-absorbing prime
filter, we conclude that either a ∨ b = 1 ∈ p or c = 1 ∈ p, as needed. □

In the following theorem we give five other characterizations of weakly 1-
absorbing prime filters.

Theorem 3.1. Let p be a proper filter of a lattice £. The following statements
are equivalent:

(1) p is a weakly 1-absorbing prime filter of £;
(2) For each x, y ∈ £∗ with x ∨ y /∈ p, (p :£ x ∨ y) = p ∪ (1 :£ x ∨ y);
(3) For each x, y ∈ £∗ with x∨ y /∈ p, either (p :£ x∨ y) = p or (p :£ x∨ y) =

(1 :£ x ∨ y);
(4) For each x, y ∈ £∗ and proper filter F of £ such that {1} ≠ (x∨y)∨F ⊆ p,

either x ∨ y ∈ p or F ⊆ p;
(5) For each x ∈ £∗ and proper filters F,G of £ such that {1} ≠ x∨F ∨G ⊆ p,

either x ∨ F ⊆ p or G ⊆ p;
(6) For each proper filters F,G,K of £ such that {1} ≠ F ∨G∨K ⊆ p, either

F ∨G ⊆ p or K ⊆ p.

Proof. (1) ⇒ (2) As the inclusion p ∪ (1 :£ x ∨ y) ⊆ (p :£ x ∨ y) is clear,
we will prove the reverse inclusion. Let z ∈ (P :£ x ∨ y). Since x ∨ y /∈ p and
x ∨ y ∨ z ∈ p, we conclude that z ̸= 0. If x ∨ y ∨ z = 1, then z ∈ (1 :£ x ∨ y).
So suppose that x ∨ y ∨ z ̸= 1. Since x ∨ y /∈ p, x ∨ y ∨ z ∈ p and p is a weakly
1-absorbing prime filter, we have z ∈ p, and so we have equality.

(2) ⇒ (3) By [9, Remark 2.3 (i)], (p :£ x ∨ y) ⊆ p ∪ (1 :£ x ∨ y) gives either
(p :£ x ∨ y) ⊆ p or (p :£ x ∨ y) ⊆ (1 :£ x ∨ y); hence either (p :£ x ∨ y) = p or
(p :£ x ∨ y) = (1 :£ x ∨ y).

(3) ⇒ (4) Let {1} ̸= x ∨ y ∨ F ⊆ p for some x, y ∈ £∗ and a proper filter F of
£. If x∨y ∈ p, then we are done. So suppose that x∨y /∈ p. Then by (3), we have
either (p :£ x∨ y) = p or (p :£ x∨ y) = (1 :£ x∨ y). If (p :£ x∨ y) = (1 :£ x∨ y),
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then x∨y∨F ⊆ p gives F ⊆ (p :£ x∨y) = (1 :£ x∨y) and so x∨y∨F = {1} which
is impossible. Thus (p :£ x∨ y) = p and this shows that F ⊆ (p :£ x∨ y) = p, i.e.
(4) holds.

(4) ⇒ (5) Let {1} ≠ x ∨ F ∨ G ⊆ p for some x ∈ £∗ and proper filters
F,G of £. On the contrary, assume that x ∨ F ⊈ p and G ⊈ p. Then there
exists z ∈ F (so z ̸= 0, as F is a proper filter) such that z ∨ x /∈ p. Since
x ∨ F ∨ G ̸= {1}, we conclude that x ∨ u ∨ G ̸= {1} for some 0 ̸= u ∈ F . We
claim that x ∨ z ∨G = {1}. Otherwise, by (4), we would have x ∨ z ∈ p or G ⊆ p
which is a contradiction. Thus x ∨ z ∨G = {1}. Since z, u ∈ F , we have u ∧ z ̸= 0
and so {1} ̸= x ∨ u ∨ G ⊆ x ∨ (z ∧ u) ∨ G ⊆ x ∨ F ∨ G ⊆ p. Then by (4), we
have x ∨ (u ∧ z) = (x ∨ u) ∧ (x ∨ z) ∈ p, and so x ∨ z ∈ p by Lemma 1.1 (1), a
contradiction. Therefore, x ∨ F ⊆ p or G ⊆ p.

(5) ⇒ (6) Let {1} ̸= F ∨G ∨K ⊆ p for some proper filters F,G,K of £. On
the contrary, assume that F ∨ G ⊈ p and K ⊈ p. Then there exists y ∈ F such
that y∨G ⊈ p. If y∨G∨K ̸= {1}, then we have either y∨G ⊆ p or K ⊆ p which
is impossible. Thus y ∨G∨K = {1}. Since F ∨G∨K ̸= {1}, x∨G∨K ̸= {1} for
some x ∈ F . As x∨G∨K ⊆ p, we conclude that x∨G ⊆ p. Clearly, 0 ̸= x∧y ∈ F .
Since {1} ≠ x ∨G ∨K ⊆ (x ∧ y) ∨G ∨K ⊆ p, we have (x ∧ y) ∨G ⊆ p. If g ∈ G,
then g ∨ (x ∧ y) = (g ∨ x) ∧ (g ∨ y) ∈ p gives g ∨ y ∈ p by Lemma 1.1 (1); so
y ∨G ⊆ p, a contradiction, i.e. (6) holds.

(6) ⇒ (1) Let 1 ̸= x ∨ y ∨ z ∈ p for some x, y, z ∈ £∗. Now, put F = T ({x}),
G = T ({y}) and K = T ({z}). Then by (6), {1} ̸= F ∨ G ∨ K ⊆ p gives either
x ∨ y ∈ F ∨G ⊆ p or z ∈ K ⊆ p which completes the proof. □

Proposition 3.2. Assume that p is a weakly 1-absorbing prime filter of a local
lattice £ and let there exist non-zero elements a, b, c ∈ £ such that a ∨ b ∨ c = 1,
a ∨ b /∈ p and c /∈ p. The following assertions hold:

(1) (a ∨ b) ∨ p = (a ∨ c) ∨ p = (b ∨ c) ∨ p = {1}.
(2) a ∨ p = c ∨ p = b ∨ p = {1}.

Proof. (1) On the contrary, assume that (a ∨ b) ∨ p ̸= {1}. Then there is an
element p ∈ p such that a∨b∨p ̸= 1 which implies that (a∨b)∨(c∧p) = a∨b∨p ̸= 1.
Since a, b, c∧p ∈ £∗, a∨ b /∈ p and p is a weakly 1-absorbing prime filter, p∧ c ∈ p;
hence c ∈ p by Lemma 1.1 (1), a contradiction. Thus (a ∨ b) ∨ p = {1}. Now
suppose that (a ∨ c) ∨ p ̸= {1}. So a ∨ c ∨ p′ ̸= 1 for some p′ ∈ p. Therefore
a∨ (b∧ p′)∨ c = a∨ c∨ p′ ̸= 1 with a, c, b∧ p′ ∈ £∗. Since c /∈ p and p is a weakly
1-absorbing prime filter, a ∨ (b ∧ p′) = (a ∨ b) ∧ (a ∨ p′) ∈ p, and so a ∨ b ∈ p by
Lemma 1.1 (1), a contradiction. Hence (a∨c)∨p = {1}. Similarly, (b∨c)∨p = {1}.

(2) Suppose that a ∨ p ̸= {1}. Then a ∨ p ̸= 1 for some p ∈ p. Since a ∨ (b ∧
p)∨ (c∧ p) = (a∨ p)∧ (a∨ b∨ c) = a∨ p ̸= 1, a, b∧ p, c∧ p ∈ £∗ and p is a weakly
1-absorbing prime filter, we conclude that either a ∨ (b ∧ p) = (a ∨ b) ∧ (a ∨ p) ∈ p
or c∧ p ∈ p. Hence either a∨ b ∈ p or c ∈ p by Lemma 1.1 (1) which is impossible.
Thus a ∨ p = {1}. Similarly, b ∨ p = c ∨ p = {1}. □

Theorem 3.2. Let p be a weakly 1-absorbing prime filter of a local lattice £
with unique maximal filter m that is not 1-absorbing prime. Then p = {1}.
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Proof. Since p is a weakly 1-absorbing prime filter of£ that is not 1-absorbing
prime, there exist a, b, c ∈ £∗ such that a ∨ b ∨ c = 1, a ∨ b /∈ p and c /∈ p. On the
contrary, assume that p ̸= {1} and consider 1 ̸= p ∈ p. Since (a∧p)∨(b∧p)∨(c∧p) =
p ∧ (a ∨ b ∨ c) = p ̸= 1, p ∧ a, p ∧ b, p ∧ c ∈ m and p is a weakly 1-absorbing prime
filter, we conclude that either (a∧ p)∨ (b∧ p) = p∧ (a∨ b) ∈ p or c∧ p ∈ p, and so
either a∨b ∈ p or c ∈ p by Lemma 1.1 (1), a contradiction. Therefore p = {1}. □

A lattice £ with 1 is called a £-domain if a∨b = 1 (a, b ∈ £), then either a = 1
or b = 1. Clearly, a lattice £ is a £-domain if and only if {1} is a prime filter.

Proposition 3.3. If p is a proper filter of a £-domain £, then p is a weakly
1-absorbing prime filter of £ if and only if p is a 1-absorbing prime filter.

Proof. One side is clear. To see the other side, assume that p is a weakly
1-absorbing prime filter of £ and a∨ b∨ c ∈ p for some a, b, c ∈ £∗. If a∨ b∨ c ̸= 1,
then either a ∨ b ∈ p or c ∈ p. So we may assume that a ∨ b ∨ c = 1 and c /∈ p.
Since a ∨ b ∨ c ∈ {1} which is a prime filter, we conclude that a ∨ b ∈ {1} ⊆ p. □

Theorem 3.3. Let q ⊆ p be two filter of a lattice £. The following hold:
(1) If p is a weakly 1-absorbing prime filter of £, then p

q is a weakly 1-absorbing

prime filter of £
q ;

(2) If (£q )
∗ = {a ∧ q : a ∈ £∗}, q is a weakly 1-absorbing prime filter and p

q is

a weakly 1-absorbing prime filter of £
q , then p is a weakly 1-absorbing prime filter.

Proof. (1) Let 1£
q
= 1∧q ̸= (a∧q)∨Q (b∧q)∨Q (c∧q) = (a∨ b∨ c)∧q ∈ p

q

for some (a ∧ q), (b ∧ q), (c ∧ q) ∈ (£q )
∗. This shows that 1 ̸= a ∨ b ∨ c ∈ p by

Lemma 2.3. Since a, b, c ∈ £∗ and p is a weakly 1-absorbing prime filter of £, we
conclude that either a ∨ b ∈ p or c ∈ p which implies that (a ∧ q) ∨Q (b ∧ q) ∈ p

q

or c ∧ q ∈ p
q by Lemma 2.3. Thus, p

q is a weakly 1-absorbing prime filter of £
q .

(2) Let 1 ̸= a ∨ b ∨ c ∈ p for some a, b, c of £∗. If a ∨ b ∨ c ∈ q, then by
assumption, either a ∨ b ∈ q ⊆ p or c ∈ q ⊆ p. So assume that a ∨ b ∨ c /∈ q. This
implies that 1 ∧ q ̸= (a ∨ b ∨ c) ∧ q = (a ∧ q) ∨Q (b ∧ q) ∨Q (c ∧ q) ∈ p

q by Lemma

2.3. By the hypothesis, a ∧ q, b ∧ q, c ∧ q ∈ (£q )
∗. Since p

q is a weakly 1-absorbing

prime filter, we obtain either (a ∧ q) ∨Q (b ∧ q) = (a ∨ b) ∧ q ∈ p
q or c ∧ q ∈ p

q and

this gives a ∨ b ∈ p or c ∈ p, as required. □

In the following theorem, we give a condition under which a weakly 1-absorbing
prime filter of £ is not a 1-absorbing prime filter.

Theorem 3.4. Let p be a weakly 1-absorbing prime filter of a local lattice £
and there exist a, b, c ∈ £∗ such that a ∨ b ∨ c = 1, a ∨ b /∈ {1} and c /∈ {1}. Then
p is not a 1-absorbing prime filter if and only if p = {1}.

Proof. If p is not a 1-absorbing prime filter, then p = {1} by Theorem 3.2.
Conversely, assume that p = {1}. By the hypothesis, a ∨ b ∨ c ∈ p and a ∨ b, c /∈ p
gives p is not a 1-absorbing prime filter. □
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The next result determines the class of non-local lattices for which their weakly
1-absorbing prime filters and weakly prime filters are the same.

Theorem 3.5. Suppose that £ is a non-local lattice and p a proper filter of £
having the property that (1 :£ x) is not a maximal filter of £ for every x ∈ p. Then
p is a weakly 1-absorbing prime filter if and only if p is a weakly prime filter.

Proof. One side is clear. To see the other side, assume that p is a weakly
1-absorbing prime filter of £ and let 1 ̸= a ∨ b ∈ p for some a, b ∈ £. We may
assume that a, b ∈ £∗. Since a ∨ b ̸= 1 and 0 /∈ (1 :£ a ∨ b), we conclude that
(1 :£ a ∨ b) is a nontrivial filter of £, and so (1 :£ a ∨ b) ⊆ m for some maximal
filter m of £. But £ is a non-local lattice, so there exists a maximal filter m′ of
£ such that m ̸= m′. Consider m′ ∈ m′ ∖ m. Then m′ /∈ (1 :£ a ∨ b) which
implies that 1 ̸= a ∨ b ∨m′ ∈ p. Since p is a weakly 1-absorbing prime filer of £,
either a ∨ m′ ∈ p or b ∈ p. If b ∈ p, then we are done. So suppose that b /∈ p.
Therefore a ∨ m′ ∈ p. Since m′ /∈ m, T ({m′}) ∧ m = £ by maximality of m; so
0 = m ∧ (m′ ∨ t) for some t ∈ £ and m ∈ m. We split the proof into two cases.

Case 1. m /∈ (1 :£ a ∨ b). Then 1 ̸= a ∨ b ∨ m ∈ p. Since p is a weakly
1-absorbing prime filter of £ and b /∈ p, we conclude that a ∨ m ∈ p. But a =
a ∨ 0 = (a ∨m) ∧ (a ∨m′ ∨ t) ∈ p since a ∨m, a ∨m′ ∈ p and p is a filter, and so
p is a weakly prime filter.

Case 2. m ∈ (1 :£ a ∨ b). Then a ∨ b ∨ m = 1. Since (1 :£ a ∨ b) is not a
maximal filter of £ and (1 :£ a∨b) ⫋ m, there exists an element s ∈ m∖(1 :£ a∨b).
Therefor 1 ̸= a ∨ b ∨ s ∈ p and b /∈ p gives a ∨ s ∈ p, as p is a weakly 1-absorbing
prime filter. Since m, s ∈ m, we have s∧m ̸= 0. It follows that (m∧ s)∨ (a∨ b) =
(a∨b∨m)∧(a∨b∨s) = a∨b∨s ̸= 1 and (a∨b)∨(m∧s) ∈ p

¯
. Now, since p is a weakly

1-absorbing prime filter of £ and b /∈ p, we have a∨ (m∧s) = (a∨m)∧ (a∨s) ∈ p;
so a ∨m, a ∨ s ∈ p by Lemma 1.1 (1). But a = a ∨ 0 = (a ∨m) ∧ (a ∨m′ ∨ t) ∈ p,
as p is a filter and therefore p is a weakly prime filter of £. □

Let £1 and £2 be two lattices and f : £1 → £2 be a lattice homomorphism
such that f(1) = 1. Then it is easy to see that Ker(f) = {x ∈ £1 : f(x) = 1} is a
filter of £1.

Theorem 3.6. Let £1 and £2 be two lattices and f : £1 → £2 be a lattice
homomorphism such that f(1) = 1 and f(a) is non-zero in £2 for every non-zero
element a of £1. The following statements hold:

(1) If f is monomorphism and p is a weakly 1-absorbing prime filter of £2,
then f−1(p)) is a weakly 1-absorbing prime filter of £1.

(2) If £1 is a complemented lattice, f is onto and p′ is a weakly 1-absorbing
prime filter of £1 with Ker(f) ⊆ p′, then f(p′) is a weakly 1-absorbing prime filter.

Proof. (1) Let x, y ∈ f−1(p) and t ∈ £1. Then f(x ∧ y) = f(x) ∧ f(y),
f(x∨ t) = f(x)∨ f(t) ∈ p gives x∧ y, x∨ t ∈ f−1(p), as p is a filter. Thus f−1(p)
is a filter of £1. Suppose that 1 ̸= a ∨ b ∨ c ∈ f−1(p) for some a, b, c ∈ £∗

1. Then
by assumption, f(a∨ b∨ c) = f(a)∨ f(b)∨ f(c) ∈ p for some f(a), f(b), f(c) ∈ £∗

2.
As f is monomorphism, we have f(a ∨ b ∨ c) ̸= 1. Since p is a weakly 1-absorbing
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prime filter of £2, we conclude that f(a)∨ f(b) = f(a∨ b) ∈ p or f(c) ∈ p and this
implies that a ∨ b ∈ f−1(p) or c ∈ f−1(p).

(2) Clearly, f(p′) is a filter of £2. Suppose that 1 ̸= x ∨ y ∨ z ∈ f(p′) for
some x, y, z ∈ £∗

2. Then there are a, b, c ∈ £∗
1 such that x = f(a), y = f(b) and

z = f(c). Therefore 1 ̸= f(a ∨ b ∨ c) = f(a) ∨ f(b) ∨ f(c) = x ∨ y ∨ z ∈ f(p′);
so f(a ∨ b ∨ c) = f(d) for some d ∈ p′. By the hypothesis, there exists e ∈ £1

such that e ∨ d = 1 and d ∧ e = 0. Set u = a ∨ b ∨ c (so u ∨ d ∈ p′). Then
f(u ∨ e) = f(u) ∨ f(e) = f(d) ∨ f(e) = f(1) = 1; hence u ∨ e ∈ Ker(f) ⊆ p′. Now
p′ is a filter gives (u ∨ d) ∧ (u ∨ e) = u ∈ p′. Therefore a ∨ b ∈ p′ or c ∈ p′, and so
x ∨ y ∈ f(p′) or z ∈ f(p′). Hence f(p′) is a 1-absorbing prime filter of £2. □

Lemma 3.1. If £ = £1 × £2 × £3 is a decomposable lattice, then every filter
of £ is of the form F1 × F2 × F3, where for each i ∈ {1, 2, 3}, Fi is a filter of £i.

Proof. Let F be a filter of £, F1 = {x1 ∈ £1 : (x1, x2, x3) ∈ F for some x2 ∈
£2, x3 ∈ £3}, F2 = {x2 ∈ £2 : (x1, x2, x3) ∈ F for some x1 ∈ £1, x3 ∈ £3} and
F3 = {x3 ∈ £3 : (x1, x2, x3) ∈ F for some x1 ∈ £1, x2 ∈ £2}. It is easy to see
that for each i ∈ {1, 2, 3}, Fi is a filter of £i. We claim that F = F1 × F2 × F3.
Since the inclusion F ⊆ F1 × F2 × F3 is clear, we will prove the reverse inclusion.
Let (x1, x2, x3) ∈ F1 × F2 × F3. Then there exist u2, y2 ∈ £2, u1, z1 ∈ £1 and
z3, y3 ∈ £3 such that (x1, y2, y3)), (z1, x2, z3), (u1, u2, x3) ∈ F . Since F is a filter,
(0, 1, 1)∨c(x1, y2, y3) = (x1, 1, 1) ∈ F . Similarly, (1, x2, 1), (1, 1, x3) ∈ F which gives
(x1, 1, 1) ∧c (1, x2, 1) ∧c (1, 1, x3) = (x1, x2, x3) ∈ F , and so we have equality. □

In the following results we show that weakly 1-absorbing prime filters are really
of interest in indecomposable lattices.

Proposition 3.4. Suppose that £ = £1 ×£2 is a decomposable lattice and p
is a proper filter of £1. Then the following statements are equivalent.

(1) p×£2 is a weakly 1-absorbing prime filter of £;
(2) p is a 1-absorbing prime filter of £1;
(3) p×£2 is a 1-absorbing prime filter of £.

Proof. (1) ⇒ (2) Suppose that x ∨ y ∨ z ∈ p for some x, y, z ∈ £∗
1. If

1 ̸= s ∈ £2, then (1, 1) ̸= (x, 0) ∨c (y, 0) ∨c (z, s) = (x ∨ y ∨ z, s) ∈ p × £2, and
so either (x, 0) ∨c (y, 0) = (x ∨ y, 0) ∈ p × £2 or (z, s) ∈ p × £2. Hence, either
x ∨ y ∈ p or z ∈ p. The implications (2) ⇒ (3) and (3) ⇒ (1) are clear. □

In the next theorem, we provide an example of lattices for which their 1-
absorbing prime filters and weakly 1-absorbing prime filters are the same.

Theorem 3.7. Suppose that £ = £1 × £2 × £3 is a decomposable lattice and
p is a nontrivial filter of £. Then p is a weakly 1-absorbing prime filter if and only
if p is a 1-absorbing prime filter.

Proof. One side is clear. To see the other side, assume that p ̸= {1} is a
weakly 1-absorbing prime filter of £. By Lemma 3.1, p = p1 × p2 × p3, where
pi is a filter of £i for each i ∈ {1, 2, 3}. Then there exists an element (1, 1, 1) ̸=
(x, y, z) ∈ p. Since (x, 0, 0) ∨c (0, y, 0) ∨c (0, 0, z) = (x, y, z) ∈ p and p is a weakly
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1-absorbing prime filter, we conclude that either (x, 0, 0) ∨c (0, y, 0) = (x, y, 0) ∈ p
or (0, 0, z) ∈ p. Therefore either p3 = £3 or p1 = £1 and p2 = £2, and so
p = p1 × p2 × £3 or p = £1 × £2 × p3. Hence, by Proposition 3.4, p is a
1-absorbing prime filter of £. □

Theorem 3.8. Assume that £ = £1 × £2 is a decomposable lattice such that
£1,£2 are not simples and let p be a nontrivial filter of £. The following statements
are equivalent.

(1) p is a weakly 1-absorbing prime filter of £;
(2) p = p1×£2 for some prime filter p1 of £1 or p = £1×p2 for some prime

filter p2 of £2;
(3) p is a prime filter of £;
(4) p is a weakly prime filter of £;
(5) p is a 1-absorbing prime filter of £.

Proof. (1) ⇒ (2) Let p be a nontrivial filter of £. Set p1 = {x1 ∈ £1 :
(x1, y2) ∈ p for some y2 ∈ £2} and p2 = {y2 ∈ £2 : (x1, y2) ∈ p for some x1 ∈
£1}. Then p1 and p2 are filters of £1 and £2, respectively with p = p1 × p2

by Lemma 3.1. Since p ̸= {1}, either p1 ̸= {1} or p2 ̸= {1}. Without loss of
generality, we may assume that p1 ̸= {1}. So there is an element x ∈ p1 such
that x ̸= 1. Since p is a weakly 1-absorbing prime filter and (1, 1) ̸= (0, 1) ∨c

(0, 1) ∨c (x, 0) = (x, 1) ∈ p, we conclude that either (0, 1) ∈ p or (x, 0) ∈ p which
implies that p1 = £1 or p2 = £2. Suppose that p1 = £1. Now we will show
that p2 is a prime filter of £2. Let a ∨ b ∈ p2 for some a, b ∈ £2. If a = 0 or
b = 0, then we are done. So suppose that a, b ∈ £∗

2. Since £1 is not a simple
lattice, there exists a non-zero element s ∈ £1 such that s ̸= 1. This implies that
(1, 1) ̸= (s, 0)∨c(0, a)∨c(0, b) = (s, a∨b) ∈ p. Since p is a weakly 1-absorbing prime
filter, we conclude that either (s, 0) ∨c (0, a) = (s, a) ∈ p or (0, b) ∈ p. Therefore
we obtain that a ∈ p2 or b ∈ p2 and so p2 is a prime filter of £2. Similarly, we can
show that p = p1 ×£2 and p1 is a prime filter of £1.

(2) ⇒ (3) Without loss of generality, we may assume that p = p1 × £2. Let
(x, y)∨c (x

′, y′) = (x∨ x′, y ∨ y′) ∈ p for some (x, y), (x′, y′) ∈ £. Then x∨ x′ ∈ p1

gives either x ∈ p1 or x′ ∈ p1 which implies that either (x, y) ∈ p or (x′, y′) ∈ p.
(3) ⇔ (4) Clearly, every prime filter is a weakly prime filter. Conversely,

suppose that {1} ≠ p = p1 × p2 is a weakly prime filter of £. Consider (1, 1) ̸=
(a, b) ∈ p. Then (a, 0) ∨c (0, b) = (a, b) ∈ p gives (a, 0) ∈ p or (0, b) ∈ P. Suppose
that (a, 0) ∈ p. Since 0 ∈ p2, we conclude that p2 = £2 and so p = p1 ×£2. We
show that p1 is a prime filter of £1; hence p is a prime filter of £. Let x∨ y ∈ p1,
where x, y ∈ £1. If x = 1 or y = 1, then we are done. So assume that x ̸= 1 and
y ̸= 1. Then (1, 1) ̸= (x, 0) ∨c (y, 0) = (x ∨ y, 0) ∈ p, so (x, 0) ∈ p or (y, 0) ∈ p
and hence x ∈ p1 or y ∈ p1. The case where (0, b) ∈ p is similar. The implication
(3) ⇒ (5) is clear by definition of a 1-absorbing prime filter. The implication
(5) ⇒ (1) is clear by definition of a weakly 1-absorbing prime filter. □

Theorem 3.9. Let £ = £1 × £2 be a decomposable lattice, p1 is a nontrivial
filter of £1 and p2 is a proper filter of £2. If p1×p2 is a weakly 1-absorbing prime
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filter of £ that is not a 1-absorbing prime filter, then p1 is a weakly prime filer of
£1 that is not a prime filter and p2 = {1} is a prime filter of £2.

Proof. Suppose that p1 × p2 has the stated property and p2 ̸= {1}. There-
fore, by Theorem 3.8, p1×p2 is a 1-absorbing prime filter of £ which is impossible,
and so p2 = {1}. Suppose that a∨ b ∈ p2 for some a, b ∈ £2. Consider 1 ̸= c ∈ p1.
Then (1, 1) ̸= (c, 0)∨c (0, a)∨c (0, b) = (c, a∨ b) ∈ p1×p2. But p1 is a proper filter
gives (0, a), (0, b) /∈ p1 × p2. We may assume that a, b ∈ £∗

2 and c ∈ £∗
1. Since

p1 × p2 is a weakly 1-absorbing prime filter, we conclude that (c, 0) ∨c (0, a) =
(c, a) ∈ p1 × p2; hence p2 = {1} is a prime filter of £2. Now, we show that p1 is
a weakly prime filter of £1. Let 1 ̸= a ∨ b ∈ p1 for some a, b ∈ £1. We can assume
that a, b ∈ £∗

1. Since (1, 1) ̸= (b, 0) ∨c (0, 1) ∨c (a ∨ b, 0) = (a ∨ b, 1) ∈ p1 × p2,
(a∨ b, 0) /∈ p1×p2 = p1×{1} and p1×p2 is a weakly 1-absorbing prime filter, we
conclude that (b, 1) ∈ p1×{1}, and so b ∈ p1. Hence p1 is a weakly prime filter of
£1. It remains to show that p1 is not a prime filter. On the contrary, assume that
p1 is a prime filter. Since p1 is a nontrivial filter, there is an element x ∈ p1 such
that x ̸= 1. Then (1, 1) ̸= (x, 0) ∨c (x, 0) ∨c (0, 1) = (x, 1) ∈ p1 × p2 gives either
(x, 0) ∨c (x, 0) = (x, 0) ∈ p1 × p2 or (0, 1) ∈ p1 × p2 which is impossible. □

The following remark shows that the converse of Theorem 3.9 need not be true.

Remark 3.1. Let £,£1,£2 and p1,p2 be as in Theorem 3.9. Suppose that
p1 is a weakly prime filter of £1 that is not a prime filter and p2 = {1} is a
prime filter of £2. We claim that p1 × p2 need not be a weakly 1-absorbing
prime filter of £. Since p1 is a nontrivial filter, there is an element x ∈ p1 such
that a ̸= 1, and so (1, 1) ̸= (a, 0) ∨c (a, 0) ∨c (0, 1) = (a, 1) ∈ p1 × p2. Since
(a, 0) ∨c (a, 0) = (a, 0) /∈ p1 × {1} and (0, 1) /∈ p1 × {1} (as p1 is nontrivial), we
conclude that p1 × p2 is not a weakly 1-absorbing prime filter of £.

Theorem 3.10. Let £ = £1 ×£2 × · · · ×£n be a decomposable filter (n ⩾ 2).
The following statements are equivalent.

(1) Every proper filter of £ is a weakly 1-absorbing prime filter;
(2) n = 2 and for each i ∈ {1, 2}, £i is a simple £i-domain.

Proof. (1) ⇒ (2) On the contrary, assume that n ⩾ 3. Set

p = {1} × {1} × ×£3 × · · · ×£n.

Consider 1 ̸= a ∈ £3. Since (1, 1, · · · , 1) ̸= (0, 1, 0, 0, · · · , 0) ∨c (0, 1, 0, 0, · · · , 0) ∨c

(1, 0, a, 0, 0, · · · 0) = (1, 1, a, 0, 0, · · · , 0) ∈ p and p is a weakly 1-absorbing prime
filter by (1), we conclude either (0, 1, 0, 0, · · · , 0) ∈ p or (1, 0, a, 0, 0, · · · , 0) ∈ p
which both of them are contradictions. Hence n = 2 and £ = £1 × £2. Now,
we will show that for each i ∈ {1, 2}, £i is a simple £i-domain. Now, put q′ =
{1} ×£2. Since q′ is a weakly 1-absorbing prime filter of £, by Theorem 3.8, {1}
is a prime filter of £1, i.e. £1 is a £1-domain. Similarly, £2 is a £2-domain. Let
{1} ⫋ S ⫋ £1 for some filter S of £1. Choose an element s of S with s ̸= 1.
Suppose that q = S × {1}. Since q is a weakly 1-absorbing prime filter by (1),
(1, 1) ̸= (s, 0)∨c (s, 0)∨c (0, 1) = (s, 1) ∈ q and both (s, 0)∨c (s, 0) = (s, 0) /∈ q and
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(0, 1) /∈ q, we have a contradiction. Hence £1 is a simple lattice. Likewise, £2 is a
simple lattice.

(2) ⇒ (1) Suppose that n = 2 and for each i ∈ {1, 2}, £i is a simple £i-domain.
Let p be a proper filter of £. Then £ has exactly three proper filters, i.e., {1}×{1},
{1} × £2 and £1 × {1}. If p = {1} × £2 or p = £1 × {1}, then p is a weakly
1-absorbing prime filter by Theorem 3.8. If p = {1} × {1}, then p is trivially a
weakly 1-absorbing prime filter of £. □

Lemma 3.2. If m is a maximal filter of £, then £
m is a simple £-domain.

Proof. Let H ̸= 1 ∧m = {1̄} be a filter of £
m . Then H = K

m for some filter

m ⫋ K of £ by Lemma 2.3 (6); hence K = £ and so £
m is a simple lattice. Let

(a ∧m) ∨Q (b ∧m) = (a ∨ b) ∧m = 1 ∧m for some a, b ∈ £. Since m is a prime
filter, we conclude that a ∈ m or b ∈ m by Lemma 2.3 (2); so either a∧m = 1∧m
or b ∧m = 1 ∧m. Thus £

m is a £-domain. □

We close this section with the following theorem:

Theorem 3.11. If every proper filter of a lattice £ is a weakly 1-absorbing
prime, then |Max(£)| ⩽ 2.

Proof. Let £ be a lattice such that every proper filter is weakly 1-absorbing
prime. On the contrary, assume that |Max(£)| ⩾ 3. We suppose that m1,m2 and
m3 are distinct maximal filters of £, and look for a contradiction. We split the
proof into two cases.

Case 1: Suppose that m1 ∨m2 ∨m3 ̸= {1}. Since m1 ∨m2 ∨m3 ⊆ m1 ∨
m2 ∨m3 and m1 ∨m2 ∨m3 is weakly 1-absorbing prime filter, we conclude that
either m1∨m2 ⊆ m1∨m2∨m3 ⊆ m3 or m3 ⊆ m1∨m2∨m3 ⊆ m1 by Theorem
3.1 (6). This shows that either m1 = m3 or m2 = m3 which is impossible.

Case 2: Suppose that m1 ∨ m2 ∨ m3 = m1 ∩ m2 ∩ m3 = {1}. Then by
Corollary 2.1, £ is isomorphic to £

m1
× £

m2
× £

m3
. Take £ = £1 ×£2 ×£3, where

for each i ∈ {1, 2, 3}, £i is a simple £i-domain by Lemma 3.2. Then by Theorem
3.10, we conclude that £1 = {1} or £2 = {1} or £3 = {1} which is impossible.
Hence, |Max(£)| ⩽ 2. □

References

[1] F. A. A. Almahdi, M. Tamekkante, and A. N. A. Koam, Note on weakly 1-absorbing primary

ideals, Filomat 36 (1) (2022), 165-173.
[2] D. D. Anderson and E. Smith, Weakly prime ideals, Houston J. Math. 29 (4) (2003), 831-840.

[3] A. Badawi, On 2-absorbing ideals of commutative rings, Bull. Austral. Math. Soc. 75 (3)

(2007), 417-429.
[4] A. Badawi and E. Y. Celikel, On weakly 1-absorbing primary ideals of commutative rings,

Algebra Colloq. 29 (2) (2022), 189-202.

[5] G. Birkhoff, Lattice theory, Amer. Math. Soc., (1973).
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