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Abstract. The main purpose of this work is to investigate the existence of
pseudo-parallel hypersurfaces in (2n + 1)-dimensional Sasakian space form

M̃2n+1 of constant φ-sectional curvature c.

1. Introduction

Given an isometric immersion f : M −→ M̃ , let σ be the second fundamental

form and ∇̃ the van der Waerden-Bortolloti connection of M̃ . Then Deprez [4,5]

defined the immersion to be semi-parallel if R̃(X,Y ).σ = (∇̃X∇̃Y − ∇̃Y ∇̃X −
∇̃[X,Y ])σ = 0, holds for any vectors X, Y tangent to M .

In [6], authors obtained some results on hypersurfaces in 4-dimension space N4(c)
satisfying the curvature condition

(1.1) R̃ . σ = LQ(g, σ) ,

where L is some smooth function on M and Q(g, σ) is a (0, 4)-tensor on M deter-
mined by Q(g, σ)(Z,W ;X,Y ) = ((X ∧ Y ) . σ)(Z,W ), where X ∧ Y is an endomor-
phism given by (X ∧ Y )Z = g(Y, Z)X − g(X,Z)Y , for all X,Y, Z ∈ TM .
The submanifolds satisfying (1.1) are called pseudo-parallel [1,2].
In [2], authors showed that a pseudo-parallel hypersurface of a space form is either
quasi-umbilical or cyclic of Dupin.
In the present study, we consider pseudo-parallel hypersurfaces in a Sasakian space

form M̃2n+1(c) of constant φ-sectional curvature.
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1.1. Preliminaries. Let M be a submanifold of a Riemannian manifold M̃
with a Riemannian metric g. Then, the Gauss-Weingarten formulas are given by

∇̃XY = ∇XY + σ(X,Y ) , ∇̃XV = −AV X +∇⊥
XV

X, Y ∈ TM , V ∈ T⊥M , where ∇̃ (resp. ∇) is the covariant differentiation in

M̃ (resp. in M) and ∇⊥ is the connection in the normal bundle, σ is the second
fundamental form of M and AV is the Weingarten endomorphism associated with
V . AV and σ are related by

(1.2) g(AV X,Y ) = g(σ(X,Y ), V ) = g(X,AV Y ) .

The mean curvature vector H of M is defined to be H = 1
nTr(σ). A submanifold

M in a Riemannian manifold is called minimal if its mean curvature vector vanishes
identically.

The covariant derivative ∇̃σ of σ is defined by

∇̃Xσ(Y,Z) = ∇⊥
X(σ(Y, Z))− σ(∇XY,Z)− σ(Y,∇XZ),

where, ∇̃σ is a normal bundle valued tensor of type (0, 3) and is called the third

fundamental form of M . If ∇̃σ = 0, then M is called parallel [7].
As a parallel submanifold (in particular, totally geodesic submanifold, i.e. σ = 0)
is semi-parallel it is obvious that also is pseudo-parallel.

We denote by R̃ and R the curvature tensors associated with ∇̃ and ∇ respectively.
Then, the Gauss equation is given by

g(R̃(X,Y )Z,W ) = g(R(X,Y )Z,W ) + g(σ(X,Z), σ(Y,W ))

−g(σ(X,W ), σ(Y, Z)),

For any vector fields Z, W on M , the curvature operator R̃(X,Y ) with respect to

∇̃ and X ∧ Y can be extended as derivations of tensor fields in the usual way, so

(R̃(X,Y ) . σ)(Z,W ) = R⊥(X,Y )(σ(Z,W ))− σ(R(X,Y )Z,W )

−σ(Z,R(X,Y )W ),(1.3)

and

Q(g, σ)(Z,W ;X,Y ) = ((X ∧ Y ) . σ)(Z,W )

= −σ((X ∧ Y )Z,W )− σ(Z, (X ∧ Y )W )

= −g(Y,Z)σ(X,W ) + g(X,Z)σ(Y,W )

−g(Y,W )σ(Z,X) + g(X,W )σ(Z, Y ),(1.4)

2. Submanifolds of Sasakian space forms

Let M̃ be a (2n + 1)-dimensional Sasakian manifold with structure tensors
(φ, ξ, η, g), where φ is a tensor field of type (1, 1), ξ a unit vector field, η a one-form
dual to ξ. Then they satisfy

(2.1) φ2 = −I + η ⊗ ξ, η ◦ φ = 0 , φξ = 0

(2.2) g(φX,φY ) = g(X,Y )− η(X)η(Y ), dη(X,Y ) = g(φX, Y ) ,
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(2.3) g(φX, Y ) = −g(X,φY ), g(X, ξ) = η(X) ,

for all X,Y ∈ TM̃ . We denote by ∇̃ the Levi-Civita connection on M̃ , then we
have [3]

(2.4) (∇̃Xφ)Y = g(X,Y )ξ − η(Y )X ,

(2.5) ∇̃Xξ = −φX ,

for any vector fields X,Y tangent to M̃ .
If moreover the structure is normal, that is if [φX,φY ] + φ2[X,Y ] − φ[X,φY ] −
φ[φX, Y ] = −2dη(X,Y )ξ, then the contact metric structure is called a Sasakian

structure and M̃2n+1 is called a Sasakian manifold.

A plane section in the tangent space TpM̃ at p ∈ M̃ is called a φ-section if it is
spanned by a vector X orthogonal to ξ and φX. The curvature of φ-section is
called φ-sectional curvature.
A Sasakian space form is defined as a Sasakian manifold with constant φ-sectional

curvature c and is denoted by M̃2n+1(c), for more details see [3,12]. The curvature

tensor of a Sasakian space form M̃2n+1(c) is given by [3]

R̃(X,Y )Z =
c+ 3

4
{g(Y,Z)X − g(X,Z)Y }+ c− 1

4
{η(X)η(Z)Y

−η(Y )η(Z)X + g(X,Z)η(Y )ξ − g(Y,Z)η(X)ξ

+g(φY,Z)φX − g(φX,Z)φY − 2g(φX, Y )φZ} ,(2.6)

for all X,Y, Z ∈ TM̃ .

example 2.1. [3] We consider R2n+1 with the coordinates (xi, yi, z), i =
1, ..., n and its usual contact form η = 1

2 (dz−
∑n

i=1 y
idxi). The characteristic field

ξ is given by ξ = 2 ∂
∂z , the tensor field φ is given by the matrix 0 δij 0

−δij 0 0
0 yj 0


and the Riemannian metric g = η ⊗ η + 1

4

∑n
i=1(dx

i)2 + (dyi)2 is an associated

metric for η. In this case R2n+1 is a Sasakian space form with φ-sectional curvature
c = −3 denoted by R2n+1(−3).

Let Mm be an m-dimensional submanifold immersed in M̃2n+1. For any vector
field X tangent to M , we put

(2.7) φX = TX +NX ,

where TX is the tangential part and NX the normal part of φX. Then T is an
endomorphism on the tangent bundle TM and N is a normal bundle valued 1-form
on the tangent bundle.
The submanifold M is said to be invariant if ξ is tangent to M and φX ∈ TM ,
for any X ∈ TM . It is easy to show that an invariant submanifold of a Sasakian
manifold is a Sasakian manifold too. If M is invariant, then NX in (2.7) vanishes
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identically for all X ∈ TM .

Now, let M2n be an immersed hypersurface of a Sasakian manifold M̃2n+1,
then we have the formulas of Gauss and Weingarten:

∇̃XY = ∇XY + g(AV X,Y )V,

∇̃XV = −AV X,

where X and Y are tangent vector fields, V a unit normal vector field to M .

Theorem 2.1. [9] There does not exist an invariant hypersurface of a contact
manifold.

It is known that a Sasakian manifold is a normal contact metric manifold.

Let M be an hypersurface of a Sasakian space form M̃2n+1(c), tangent to the
structure vector field ξ. We denote by V a unit normal vector field to M and we
put [8]

ζ = −φV.

Since V is orthogonal to M , then by using (2.2) and (2.3), we have

g(ζ, ζ) = 1, g(ζ, V ) = 0.

Hence ζ is a unit vector field tangent to M .
For any vector field X tangent to M , we set [11]

(2.8) φX = TX + u(X)V,

where u and T are tensor fields on M of type (0, 1) and (1, 1) respectively, also
TX represents the tangent part of φX, and it is easily shown that T is a skew-
symmetric operator.
Thus, from (2.7) we get

NX = u(X)V,

for any vector field X tangent to M .
Moreover, it is easy to verify that

(2.9) u(X) = g(X, ζ), φζ = V.

Since the structure vector field ξ is tangent to M , (2.8) implies that

(2.10) Tξ = 0, T ζ = 0.

(2.11) u(ξ) = 0 = η(ζ), u(ζ) = 1, u(TX) = 0.

(2.12) T 2X = −X + η(X)ξ + u(X)ζ.

Lemma 2.1. Let M be an hypersurface of a Sasakian space form M̃2n+1(c)
tangent to the structure vector field ξ. We have

(2.13) Aξ = −ζ,

where A is the shape operator of M .
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Proof. By using the Gauss formula, (2.5) and (2.8) we obtain

∇Xξ = ∇Xξ + g(AX, ξ)V

= −φX = −TX − u(X)V.

Considering the tangential and normal parts of the above relation and since u(X) =
g(X, ζ), we get

∇Xξ = −TX, g(AX, ξ)V = −u(X)V = g(X,Aξ)V = −g(X, ζ)V.

Which implies Aξ = −ζ. □

On the other hand, the Gauss formula implies that

−φξ = ∇ξξ = ∇ξξ + g(Aξ, ξ)V.

Since φξ = 0, we have

(2.14) ∇ξξ = 0, g(Aξ, ξ) = 0

3. Main results

Theorem 3.1. There are no pseudo-parallel hypersurfaces in a Sasakian space

form M̃2n+1(c) tangent to the structure vector field ξ, with c ̸= 1.

Proof. Assume thatM2n is a pseudo-parallel hypersurface in a Sasakian space

form M̃2n+1(c), tangent to the structure vector field ξ.

Since M is an hypersurface, and from (1.3) the (0, 4)-tensor field R̃ . σ is defined by

(R̃ . σ)(X,Y, Z,W ) = −σ(R(X,Y )Z,W )− σ(Z,R(X,Y )W ),

for any vector fields X, Y , Z and W tangent to M . Then (1.1) becomes

(3.1) σ(R(X,Y )Z,W ) + σ(Z,R(X,Y )W ) + LQ(g, σ)(Z,W ;X,Y ) = 0 .

The curvature tensor R of M is given by the Gauss equation

(3.2) R(X,Y )Z = R̃(X,Y )Z + g(AY,Z)AX − g(AX,Z)AY .

From (3.2), (2.6) and (2.8) , we obtain

R(X,Y )Z =
c+ 3

4
{g(Y,Z)X − g(X,Z)Y }

+
c− 1

4
{η(X)η(Z)Y − η(Y )η(Z)X + g(X,Z)η(Y )ξ

−g(Y, Z)η(X)ξ + g(TY, Z)TX − g(TX,Z)TY − 2g(TX, Y )TZ}
+g(AY,Z)AX − g(AX,Z)AY .(3.3)
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Using (3.3) and (1.4), the condition (3.1) may be written in the form:

0 =
c+ 3

4
{g(Y,Z)g(AX,W )V − g(X,Z)g(AY,W )V + g(Y,W )g(AX,Z)V

−g(X,W )g(AY,Z)V }+ c− 1

4
{η(X)η(Z)g(AY,W )V − η(Y )η(Z)g(AX,W )V

+g(X,Z)η(Y )g(Aξ,W )V − g(Y, Z)η(X)g(Aξ,W )V + g(TY, Z)g(ATX,W )V

−g(TX,Z)g(ATY,W )V − 2g(TX, Y )g(ATZ,W )V + η(X)η(W )g(AY,Z)V

−η(Y )η(W )g(AX,Z)V + g(X,W )η(Y )g(Aξ,Z)V − g(Y,W )η(X)g(Aξ,Z)V

+g(TY,W )g(ATX,Z)V − g(TX,W )g(ATY,Z)V − 2g(TX, Y )g(ATW,Z)V }
+g(AY,Z)g(A2X,W )V − g(AX,Z)g(A2Y,W )V

+g(AY,W )g(A2X,Z)V − g(AX,W )g(A2Y, Z)V + L{−g(Y, Z)g(AX,W )V

+g(X,Z)g(AY,W )V − g(Y,W )g(AX,Z)V + g(X,W )g(AY,Z)V } ,(3.4)

as σ(X,Y ) = g(AY,X)V = g(AX,Y )V , for all X,Y, Z,W in TM and V ∈ T⊥M .
Since T is a skew-symmetric operator, then g(ATW,Z) = −g(W,TAZ) and the
equation (3.4) becomes

0 = (
c+ 3

4
− L){g(Y,Z)AX − g(X,Z)AY + g(AX,Z)Y − g(AY,Z)X}

+
c− 1

4
{η(X)η(Z)AY − η(Y )η(Z)AX + g(X,Z)η(Y )Aξ

−g(Y,Z)η(X)Aξ + g(TY, Z)ATX − g(TX,Z)ATY

−2g(TX, Y )ATZ + η(X)g(AY,Z)ξ − η(Y )g(AX,Z)ξ

+η(Y )g(Aξ,Z)X − η(X)g(Aξ,Z)Y + g(ATX,Z)TY

−g(ATY,Z)TX + 2g(TX, Y )TAZ}
+g(AY,Z)A2X − g(AX,Z)A2Y + g(A2X,Z)AY − g(A2Y, Z)AX .(3.5)

If we set Y = Z in (3.5), we obtain

0 = (
c+ 3

4
− L){g(Z,Z)AX − g(X,Z)AZ + g(AX,Z)Z − g(AZ,Z)X}

+
c− 1

4
{η(X)η(Z)AZ − η(Z)η(Z)AX + g(X,Z)η(Z)Aξ − g(Z,Z)η(X)Aξ

−3g(TX,Z)ATZ + η(X)g(AZ,Z)ξ − η(Z)g(AX,Z)ξ + η(Z)g(Aξ,Z)X

−η(X)g(Aξ,Z)Z + g(ATX,Z)TZ − g(ATZ,Z)TX + 2g(TX,Z)TAZ}
+g(AZ,Z)A2X − g(AX,Z)A2Z + g(A2X,Z)AZ − g(A2Z,Z)AX ,(3.6)
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since T is skew-symmetric we have g(TZ,Z) = 0.
If Z and ξ are orthogonal in (3.6), we have

0 = (
c+ 3

4
− L){g(Z,Z)AX − g(X,Z)AZ + g(AX,Z)Z − g(AZ,Z)X}

+
c− 1

4
{−g(Z,Z)η(X)Aξ − 3g(TX,Z)ATZ + η(X)g(AZ,Z)ξ

−η(X)g(Aξ,Z)Z + g(ATX,Z)TZ − g(ATZ,Z)TX + 2g(TX,Z)TAZ}
+g(AZ,Z)A2X − g(AX,Z)A2Z + g(A2X,Z)AZ − g(A2Z,Z)AX .(3.7)

We consider {e1, ..., e2n} a local orthonormal frame of TM . We insert Z = ek
in (3.7) and taking summation over k = 1, ..., 2n, we get

0 = (
c+ 3

4
− L){2nAX − tr(A)X}+ c− 1

4
{−(2n+ 1)η(X)Aξ − 3AT 2X

+tr(A)η(X)ξ + 3TATX − tr(AT )TX}+ tr(A)A2X − tr(A2)AX ,

for any vector field X tangent to M .
From (2.12), it follows that AT 2X = −AX + η(X)Aξ + u(X)Aζ and the above
equation becomes

0 = (
c+ 3

4
− L){2nAX − tr(A)X}+ c− 1

4
{−2(n+ 2)η(X)Aξ

+3AX − 3u(X)Aζ + tr(A)η(X)ξ + 3TATX − tr(AT )TX}
+tr(A)A2X − tr(A2)AX .(3.8)

For any W ∈ TM , Equation (3.8) turns into

0 = (
c+ 3

4
− L){2n g(AX,W )− tr(A)g(X,W )}

+
c− 1

4
{−2(n+ 2)η(X)g(Aξ,W ) + 3g(AX,W )− 3u(X)g(Aζ,W )

+tr(A)η(X)η(W ) + 3g(TATX,W )− tr(AT )g(TX,W )}
+tr(A)g(A2X,W )− tr(A2)g(AX,W ) .(3.9)

Exchanging X and W in (3.9), we get

0 = (
c+ 3

4
− L){2n g(AW,X)− tr(A)g(W,X)}

+
c− 1

4
{−2(n+ 2)η(W )g(Aξ,X) + 3g(AW,X)− 3u(W )g(Aζ,X)

+tr(A)η(W )η(X) + 3g(TATW,X)− tr(AT )g(TW,X)}
+tr(A)g(A2W,X)− tr(A2)g(AW,X) .(3.10)

Subtracting (3.9) to (3.10) and using (1.2), (2.13) and (2.9) , we have

0 =
c− 1

4
{2(n+ 2)η(W )u(X)− 2(n+ 2)η(X)u(W )− 3u(W )g(Aζ,X)

+3u(X)g(Aζ,W )− tr(AT )g(TW,X) + tr(AT )g(TX,W )} .(3.11)
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If we insert W = ξ in (3.11) and using (2.10), (2.11), (2.13) and (2.14) , we get

(2n+ 1)
c− 1

4
u(X) = 0,

for any X ∈ TM . Since c ̸= 1, then u(X) = 0. Hence, from (2.8) we deduce
that φX is tangent, and as ξ is tangent to M , this shows that M is an invariant

hypersurface in a Sasakian space form M̃2n+1(c). According to Theorem 2.1 this
leads to a contradiction. □

Corollary 3.1. There are no pseudo-parallel hypersurfaces in R2n+1(−3).

Remark 3.1. Let S2n+1 be a (2n + 1)-dimensional unit sphere, i.e., S2n+1 =
{z ∈ Cn+1 :| z |= 1}. For any point z ∈ S2n+1, put ξ = Jz, where J is the almost
complex structure of Cn+1. We consider the orthogonal projection

π : Tx(Cn+1) −→ Tx(S
2n+1).

Putting φ = π ◦ J , we have a Sasakian structure (φ, ξ, η, g) on S2n+1, where η
is a 1-form dual to ξ and g the standard metric tensor field on S2n+1. We see
that S2n+1 is of constant φ-sectional curvature 1, that is, of constant curvature 1
(cf. [10]).
Now we consider the Clifford hypersurface Mp,q defined by

Mp,q = S2p+1(

√
p

2n
)× S2q+1(

√
q

2n
), p+ q = n− 1

Then Mp,q is a minimal hypersurface of S2n+1 tangent to the structure vector field
ξ of S2n+1 and Mp,q has the parallel second fundamental form, so it is pseudo-
parallel. Therefore the assumption in Theorem 3.1 on the φ-sectional curvature

c ̸= 1 of the ambient space M̃2n+1(c) is essential.
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