BULLETIN OF THE INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE

ISSN (p) 2303-4874, ISSN (0) 2303-4955
www.imvibl.org /JOURNALS / BULLETIN
Bull. Int. Math. Virtual Inst., 13(3)(2023), 455-463

DOI: 10.7251/BIMVI2303455M

Former
BULLETIN OF THE SOCIETY OF MATHEMATICIANS BANJA LUKA
ISSN 0354-5792 (o), ISSN 1986-521X (p)

PSEUDO-PARALLEL HYPERSURFACES IN SASAKIAN
SPACE FORMS

Fatiha Mahi and Mohamed Belkhelfa

ABSTRACT. The main purpose of this work is to investigate the existence of
pseudo-parallel hypersurfaces in (2n + 1)-dimensional Sasakian space form
M?7+1 of constant p-sectional curvature c.

1. Introduction

Given an isometric immersion f: M — M , let o be the second fundamental
form and V the van der Waerden-Bortolloti connection of M. Then Deprez [4, 5]
defined the immersion to be semi-parallel if E(X,Y).O’ = (%Xﬁy — 6)/%)( —
%[X,y])d = 0, holds for any vectors X, Y tangent to M.

In [6], authors obtained some results on hypersurfaces in 4-dimension space N*(c)
satisfying the curvature condition

(1.1) R.o=LQ(g,0),

where L is some smooth function on M and Q(g,0) is a (0, 4)-tensor on M deter-
mined by Q(g,0)(Z,W; X,Y) = (X AY).0)(Z, W), where X AY is an endomor-
phism given by (X AY)Z = g(Y,2)X —g(X,Z)Y, for all X,Y,Z € TM.

The submanifolds satisfying (1.1) are called pseudo-parallel [1,2].

In [2], authors showed that a pseudo-parallel hypersurface of a space form is either
quasi-umbilical or cyclic of Dupin.

In the present study, we consider pseudo-parallel hypersurfaces in a Sasakian space
form M?"*1(c) of constant @-sectional curvature.

2010 Mathematics Subject Classification. Primary 53C40; Secondary 53C25, 53B25.
Key words and phrases. Sasakian space forms, hypersurface, pseudo-parallel.
Communicated by Dusko Bogdanic.

455



456 F. MAHI AND M. BELKHELFA

1.1. Preliminaries. Let M be a submanifold of a Riemannian manifold M
with a Riemannian metric g. Then, the Gauss-Weingarten formulas are given by

VxY =VxY +0(X,Y), VxV = —AyX + V§V

X,Y € TM, V € T*M, where v (resp. V) is the covariant differentiation in
M (resp. in M) and V1 is the connection in the normal bundle, o is the second
fundamental form of M and Ay is the Weingarten endomorphism associated with
V. Ay and o are related by

(1.2) 9(AvX,Y) = g(o(X,Y),V) = g(X, AvY).
The mean curvature vector H of M is defined to be H = %Tr(a). A submanifold
M in a Riemannian manifold is called minimal if its mean curvature vector vanishes

identically.
The covariant derivative Vo of ¢ is defined by

Vxo(Y,2) = Vx(0(Y,2)) = o(VxY, Z) - o(Y,Vx Z),

where, Vo is a normal bundle valued tensor of type (0,3) and is called the third
fundamental form of M. If Vo = 0, then M is called parallel [7].

As a parallel submanifold (in particular, totally geodesic submanifold, i.e. o = 0)
is semi-parallel it is obvious that also is pseudo-parallel.

We denote by R and R the curvature tensors associated with V and V respectively.
Then, the Gauss equation is given by

g(R(X, Y)Z’ W) = g(R(X,Y)Z, W) —l—g(O'(X, Z),O’(Y, W))
—g(o(X,W),0(Y, 2)),

For any vector fields Z, W on M, the curvature operator R(X,Y) with respect to
V and X AY can be extended as derivations of tensor fields in the usual way, so

(R(X,Y).0)(Z,W) = RYX,Y)(0(Z,W))-0o(R(X,Y)Z W)
(1.3) —o(Z, R(X, )W),
and
Qg,0)(Z,W; X,Y) = ((XAY).0)(Z,W)
= —o((XAY)Z,W)—-0(Z,(X ANY)W)
= —9(Y,2)o(X, W) + g(X, Z)o (Y, W)
(1.4) —g(Y,W)o(Z,X) 4+ g(X,W)o(Z,Y),

2. Submanifolds of Sasakian space forms

Let M be a (2n + 1)-dimensional Sasakian manifold with structure tensors
(p,&,m, g), where ¢ is a tensor field of type (1, 1), £ a unit vector field,  a one-form
dual to £&. Then they satisfy

(2.1) P?=-I+n®E nop=0, =0

(2.2) g(eX, oY) = g(X,Y) —n(X)n(Y), dn(X,Y)=g(pX,Y),
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(2.3) g(eX,Y) = —g(X,9Y), g(X,§) =n(X),

for all XY € TM. We denote by V the Levi-Civita connection on M. , then we
have [3]

(2.4) (Vxo)Y =g(X,Y)E—n(Y)X,

for any vector fields X, Y tangent to M.

If moreover the structure is normal, that is if [pX, Y] + ©?[X,Y] — ¢[X, 9Y] —
0lpX,Y] = —2dn(X,Y)E, then the contact metric structure is called a Sasakian
structure and M?"+1 is called a Sasakian manifold.

A plane section in the tangent space T,M at p € M is called a @-section if it is
spanned by a vector X orthogonal to £ and ¢X. The curvature of p-section is
called p-sectional curvature.

A Sasakian space form is defined as a Sasakian manifold with constant ¢-sectional
curvature ¢ and is denoted by M?"*1(c), for more details see [3,12]. The curvature
tensor of a Sasakian space form M’ ntl(c) is given by [3]

RXZ = 200 )X (X, 27y + S (Xm(2)Y
—n(Y)n(2)X + g(X, Z)n(Y)E — g(Y, Z)n(X)E&
(2.6) +9(Y, Z)pX — g(pX, Z)pY —29(pX,Y)pZ},

for all X,Y,Z € TM.

EXAMPLE 2.1. [8] We consider R*" "1 with the coordinates (x%,y',2), i =
1,...,n and its usual contact form n = 4(dz— 31", y'da’). The characteristic field

& is given by € = 2%, the tensor field p is given by the matrix

0 6&; O
—(Sij 0 0
0 ¥ 0

and the Riemannian metric g = n®n+ 1 > (dz')? + (dy*)? is an associated
metric forn. In this case R*"*! is a Sasakian space form with p-sectional curvature
c = —3 denoted by R?"+1(-3).

Let M™ be an m-dimensional submanifold immersed in M2"+!. For any vector
field X tangent to M, we put

(2.7) X =TX + NX,

where T'X is the tangential part and NX the normal part of ¢ X. Then T is an
endomorphism on the tangent bundle TM and N is a normal bundle valued 1-form
on the tangent bundle.

The submanifold M is said to be invariant if £ is tangent to M and X € TM,
for any X € TM. It is easy to show that an invariant submanifold of a Sasakian
manifold is a Sasakian manifold too. If M is invariant, then NX in (2.7) vanishes
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identically for all X € TM.

Now, let M2" be an immersed hypersurface of a Sasakian manifold M2n+1,
then we have the formulas of Gauss and Weingarten:

VxY =VxY + g(Ay X, Y)V,
VxV = —Ay X,
where X and Y are tangent vector fields, V' a unit normal vector field to M.

THEOREM 2.1. [9] There does not exist an invariant hypersurface of a contact
mamnifold.

It is known that a Sasakian manifold is a normal contact metric manifold.

Let M be an hypersurface of a Sasakian space form M2"+1(c), tangent to the
structure vector field £&. We denote by V a unit normal vector field to M and we
put (8]

(=—pV.
Since V is orthogonal to M, then by using (2.2) and (2.3), we have

9(¢.O)=1, g, V)=0.

Hence ( is a unit vector field tangent to M.
For any vector field X tangent to M, we set [11]

(2.8) X =TX +u(X)V,

where u and T are tensor fields on M of type (0,1) and (1,1) respectively, also
TX represents the tangent part of ¢ X, and it is easily shown that T is a skew-
symmetric operator.
Thus, from (2.7) we get

NX =u(X)V,
for any vector field X tangent to M.
Moreover, it is easy to verify that

Since the structure vector field ¢ is tangent to M, (2.8) implies that
(2.10) T¢=0, T¢=0.

(2.11) uw(@) =0=n(), u@=1  wTX)=0.
(2.12) T?°X = —X +n(X)& +u(X)C.

LEMMA 2.1. Let M be an hypersurface of a Sasakian space form M2"+1(c)
tangent to the structure vector field &. We have

(2.13) A = —(,
where A is the shape operator of M.
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PrROOF. By using the Gauss formula, (2.5) and (2.8) we obtain

Vx& = Vx&+g(AX, OV
= —pX=-TX —u(X)V.

Considering the tangential and normal parts of the above relation and since u(X) =
9(X,¢), we get

Which implies A = —(. O

On the other hand, the Gauss formula implies that

—@f = V& = Vel + g(AL V.

Since & = 0, we have

(2.14) Ve =0,  g(4£,€) =0

3. Main results

THEOREM 3.1. There are no pseudo-parallel hypersurfaces in a Sasakian space
form M?"*1(c) tangent to the structure vector field &, with ¢ # 1.

PROOF. Assume that M?" is a pseudo-parallel hypersurface in a Sasakian space
form M?"*1(c), tangent to the structure vector field &.
Since M is an hypersurface, and from (1.3) the (0, 4)-tensor field R .o is defined by

(E.U)(X, Y, Z,W)=—-0(R(X,Y)Z,W)—0o(Z,R(X,Y)W),
for any vector fields X, Y, Z and W tangent to M. Then (1.1) becomes
(3.1) o(R(X,Y)Z,W)+0o(Z,RX,Y)W)+ LQ(g,0)(Z,W;X,Y)=0.
The curvature tensor R of M is given by the Gauss equation
(3.2) R(X,Y)Z = R(X,Y)Z + g(AY, Z)AX — g(AX, Z)AY .
From (3.2), (2.6) and (2.8) , we obtain

REXY)Z = 3, 2)X (X, 2))

L X2 — (Y IZ)X + (X, Z)n(Y)e
—9(Y, Z)n(X)§+g(TY, Z)TX — g(TX,Z)TY —29(TX,Y)TZ}
(3.3) +g(AY, Z)AX — g(AX, Z)AY .
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Using (3.3) and (1.4), the condition (3.1) may be written in the form:

AY, Z)g(A2X, W)V — g(AX, Z)g(A%Y, W)V
AY,W)g(A2X, Z)V — g(AX,W)g(A%Y, Z)V + L{—g(Y, Z)g(AX, W)V
) (AY, W)V — g(Y, W)g(AX, Z)V + g(X,W)g(AY, Z)V'},

+g
+g
(34) +g

0 = CZ?’{ (Y, 2)g(AX, W)V — g(X, Z)g(AY, W)V + g(Y,W)g(AX, Z)V
—g9(X, W)g(AY, Z)V}+7{Tl( IN(Z2)g(AY, W)V —n(Y)n(Z)g(AX, W)V
+9(X, Z)n(Y)g(AE, W)V — g(Y, Z)n(X)g(AE, W)V + g(TY, Z)g(AT X, W)V
g(T 2)g(ATY, W)V — 29(TX,Y)g(ATZ, W)V + n(X)n(W)g(AY, Z)V
=n(Y)n(W)g(AX, Z)V + g(X, W)n(Y)g(AE, Z)V — g(Y, W)n(X)g(AE, Z)V
L g(TY, W)g(ATX, Z)V — g(TX,W)g(ATY, Z)V — 2¢(TX,Y )g(ATW, Z)V'}
(AY,
(AY,
(X

as 0(X,Y) = g(AY, X)V = g(AX,Y)V, for all X,Y,Z, W in TM and V € T+ M.
Since T is a skew-symmetric operator, then g(ATW, Z) = —g(W,TAZ) and the
equation (3.4) becomes

c+3
0:(4

_ D){g(Y, Z)AX — g(X, Z)AY + g(AX, Z)Y — g(AY, Z)X}

+ L XONZ)AY — (Y In(Z)AX + (X, Z)n(¥) AL

—g(Y, Z)n(X) A& + g(TY, Z)ATX — g(TX, Z)ATY
=29(TX,Y)ATZ + n(X)g(AY, Z)§ — n(Y)g(AX, Z)¢

+n(Y)g(AE, Z2)X — n(X)g(AE, 2)Y + g(ATX, Z)TY
—g(ATY,Z)TX +29(TX,Y)TAZ}

(3.5) +9(AY, 2)A*X — g(AX, Z)A%Y + g(A*X, Z)AY — g(A?Y, Z)AX .

If we set Y = Z in (3.5), we obtain

c+3

0 = ( 1 —L){9(Z, 2)AX — g(X,2)AZ + g(AX,2)Z — g(AZ, Z)X }

+%{7I(X)77(Z)AZ —n(Z)n(Z2)AX + g(X, Z)n(Z) AL — g(Z, Z)n(X) Ag

=39(T'X, Z)ATZ +n(X)g(AZ, Z)§ — n(Z)9(AX, Z)§ + n(Z)g(AE, Z) X

—n(X)g(AE, Z)Z + g(AT X, Z)TZ — g(AT Z, Z)T X + 29(T X, Z)TAZ}
(3.6)  +9(AZ,2)A’X — g(AX,2)A?Z + g(A’X, Z)AZ — g(A*Z, Z)AX ,
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since T is skew-symmetric we have g(TZ, Z) = 0.
If Z and & are orthogonal in (3.6), we have

0 = (X )92 2)AX — (X, 2)AZ + 9(AX, 2)7 — o(AZ, 2)X)
+E g2, 2)(X) AL ~ 39(TX, Z)ATZ + n(X)g(AZ, 2)¢

—n(X)g(AE, 2)Z + g(ATX, Z)TZ — g(ATZ, Z)TX + 29(TX, Z)TAZ}
(3.7)  +9(AZ,2)A’X — g(AX,2)A’Z + g(A*X, 2)AZ — g(A*Z,Z)AX .

We cousider {ey,...,ea,} a local orthonormal frame of TM. We insert Z = ey
in (3.7) and taking summation over k = 1, ..., 2n, we get

0 = (023 —L){2n AX —tr(A)X} + C; 1{—(2n + 1)n(X)AE — 3AT?*X

+tr(A(X)E +3TATX — tr(AT)T X} + tr(A)A%X — tr(A?)AX,
for any vector field X tangent to M.
From (2.12), it follows that AT?X = —AX + n(X)AE + u(X)AC and the above

equation becomes

0 = (“X2 - DyenAX — ()X} + T 20+ 2)n(X) A€

+3AX — 3u(X)AC + tr(A)n(X)E + 3TATX — tr(AT)T X}
(3.8) +tr(A)A2X — tr(A?)AX .

For any W € TM, Equation (3.8) turns into

0 — (c+3

—L){2ng(AX, W) —tr(A)g(X, W)}

+ETH 20+ 2)n(X)g(AL, W) + Bg(AX, W) — 3u(X)g(AC, W)

+tr(A)n(X)n(W) + 3g(TATX, W) — tr(AT)g(TX, W)}
(3.9) +tr(A)g(A2X, W) — tr(A?)g(AX, W) .

Exchanging X and W in (3.9), we get

3
0 = (&5

= L){2ng(AW, X) — tr(A)g(W, X)}
c—1

+——{=2(n +2)n(W)g(AE, X) + 3g(AW, X) — 3u(W)g(A(, X)
r(A)g(W)(X) + 3g(TATW, X) — tr(AT)g(TW, X )}

(3.10) +tr(A)g(A2W, X) — tr(A?)g(AW, X) .

Subtracting (3.9) to (3.10) and using (1.2), (2.13) and (2.9) , we have

0 = 200+ 2(W)u(X) — 200+ 2n(X)u(W) — 3u(W)g(AC, X)
(3.11) +3u(X)g(AC, W) — tr(AT)g(TW, X) + tr(AT)g(TX, W)} .



462 F. MAHI AND M. BELKHELFA

If we insert W = ¢ in (3.11) and using (2.10), (2.11), (2.13) and (2.14) , we get

c—1

(2n+1)

for any X € TM. Since ¢ # 1, then u(X) = 0. Hence, from (2.8) we deduce
that X is tangent, and as { is tangent to M, this shows that M is an invariant
hypersurface in a Sasakian space form M?"*!(c). According to Theorem 2.1 this
leads to a contradiction. (]

u(X) =0,

COROLLARY 3.1. There are no pseudo-parallel hypersurfaces in R?"+1(=3).

REMARK 3.1. Let S?"*! be a (2n + 1)-dimensional unit sphere, i.e., S?"*! =
{z € C"*1 | 2z |=1}. For any point z € S*"*1 put £ = Jz, where J is the almost
complex structure of C**!. We consider the orthogonal projection

7 T (C™TY) — T, (52",

Putting ¢ = 7o J, we have a Sasakian structure (p,&,n,g) on S?"*! where g
is a 1-form dual to & and ¢ the standard metric tensor field on S2"*+!. We see
that S2"*! is of constant ¢-sectional curvature 1, that is, of constant curvature 1
(cf. [10]).

Now we consider the Clifford hypersurface M, , defined by

M, — g2+l [P 20+1( | 4 =n—1
pg =S ( Qn)xs ( Qn)’p+q n

Then M, , is a minimal hypersurface of S?"*! tangent to the structure vector field
¢ of $?"*1 and M, , has the parallel second fundamental form, so it is pseudo-
parallel. Therefore the assumption in Theorem 3.1 on the ¢-sectional curvature
¢ # 1 of the ambient space M?"*1(c) is essential.
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