PSEUDO-PARALLEL HYPERSURFACES IN SASAKIAN SPACE FORMS

Fatiha Mahi and Mohamed Belkhelfa

Abstract

The main purpose of this work is to investigate the existence of pseudo-parallel hypersurfaces in $(2 n+1)$-dimensional Sasakian space form $\widetilde{M}^{2 n+1}$ of constant φ-sectional curvature c.

1. Introduction

Given an isometric immersion $f: M \longrightarrow \widetilde{M}$, let σ be the second fundamental form and $\widetilde{\nabla}$ the van der Waerden-Bortolloti connection of \widetilde{M}. Then Deprez [4, 5] defined the immersion to be semi-parallel if $\widetilde{R}(X, Y) \cdot \sigma=\left(\widetilde{\nabla}_{X} \widetilde{\nabla}_{Y}-\widetilde{\nabla}_{Y} \widetilde{\nabla}_{X}-\right.$ $\left.\widetilde{\nabla}_{[X, Y]}\right) \sigma=0$, holds for any vectors X, Y tangent to M.
In [6], authors obtained some results on hypersurfaces in 4-dimension space $N^{4}(c)$ satisfying the curvature condition

$$
\begin{equation*}
\widetilde{R} \cdot \sigma=L Q(g, \sigma) \tag{1.1}
\end{equation*}
$$

where L is some smooth function on M and $Q(g, \sigma)$ is a $(0,4)$-tensor on M determined by $Q(g, \sigma)(Z, W ; X, Y)=((X \wedge Y) \cdot \sigma)(Z, W)$, where $X \wedge Y$ is an endomorphism given by $(X \wedge Y) Z=g(Y, Z) X-g(X, Z) Y$, for all $X, Y, Z \in T M$. The submanifolds satisfying (1.1) are called pseudo-parallel $[\mathbf{1}, \mathbf{2}]$.
In [2], authors showed that a pseudo-parallel hypersurface of a space form is either quasi-umbilical or cyclic of Dupin.
In the present study, we consider pseudo-parallel hypersurfaces in a Sasakian space form $\widetilde{M}^{2 n+1}(c)$ of constant φ-sectional curvature.

[^0]1.1. Preliminaries. Let M be a submanifold of a Riemannian manifold \widetilde{M} with a Riemannian metric g. Then, the Gauss-Weingarten formulas are given by
$$
\widetilde{\nabla}_{X} Y=\nabla_{X} Y+\sigma(X, Y), \widetilde{\nabla}_{X} V=-A_{V} X+\nabla_{X}^{\perp} V
$$
$X, Y \in T M, V \in T^{\perp} M$, where $\widetilde{\nabla}$ (resp. ∇) is the covariant differentiation in \widetilde{M} (resp. in M) and ∇^{\perp} is the connection in the normal bundle, σ is the second fundamental form of M and A_{V} is the Weingarten endomorphism associated with $V . A_{V}$ and σ are related by
\[

$$
\begin{equation*}
g\left(A_{V} X, Y\right)=g(\sigma(X, Y), V)=g\left(X, A_{V} Y\right) \tag{1.2}
\end{equation*}
$$

\]

The mean curvature vector H of M is defined to be $H=\frac{1}{n} \operatorname{Tr}(\sigma)$. A submanifold M in a Riemannian manifold is called minimal if its mean curvature vector vanishes identically.
The covariant derivative $\widetilde{\nabla} \sigma$ of σ is defined by

$$
\widetilde{\nabla}_{X} \sigma(Y, Z)=\nabla_{X}^{\perp}(\sigma(Y, Z))-\sigma\left(\nabla_{X} Y, Z\right)-\sigma\left(Y, \nabla_{X} Z\right),
$$

where, $\widetilde{\nabla} \sigma$ is a normal bundle valued tensor of type $(0,3)$ and is called the third fundamental form of M. If $\widetilde{\nabla} \sigma=0$, then M is called parallel [7].
As a parallel submanifold (in particular, totally geodesic submanifold, i.e. $\sigma=0$) is semi-parallel it is obvious that also is pseudo-parallel.
We denote by \widetilde{R} and R the curvature tensors associated with $\widetilde{\nabla}$ and ∇ respectively. Then, the Gauss equation is given by

$$
\begin{aligned}
g(\widetilde{R}(X, Y) Z, W)= & g(R(X, Y) Z, W)+g(\sigma(X, Z), \sigma(Y, W)) \\
& -g(\sigma(X, W), \sigma(Y, Z))
\end{aligned}
$$

For any vector fields Z, W on M, the curvature operator $\widetilde{R}(X, Y)$ with respect to $\widetilde{\nabla}$ and $X \wedge Y$ can be extended as derivations of tensor fields in the usual way, so

$$
\begin{align*}
(\widetilde{R}(X, Y) \cdot \sigma)(Z, W)= & R^{\perp}(X, Y)(\sigma(Z, W))-\sigma(R(X, Y) Z, W) \\
& -\sigma(Z, R(X, Y) W), \tag{1.3}
\end{align*}
$$

and

$$
\begin{align*}
Q(g, \sigma)(Z, W ; X, Y)= & ((X \wedge Y) \cdot \sigma)(Z, W) \\
= & -\sigma((X \wedge Y) Z, W)-\sigma(Z,(X \wedge Y) W) \\
= & -g(Y, Z) \sigma(X, W)+g(X, Z) \sigma(Y, W) \\
& -g(Y, W) \sigma(Z, X)+g(X, W) \sigma(Z, Y) \tag{1.4}
\end{align*}
$$

2. Submanifolds of Sasakian space forms

Let \widetilde{M} be a $(2 n+1)$-dimensional Sasakian manifold with structure tensors (φ, ξ, η, g), where φ is a tensor field of type $(1,1), \xi$ a unit vector field, η a one-form dual to ξ. Then they satisfy

$$
\begin{gather*}
\varphi^{2}=-I+\eta \otimes \xi, \quad \eta \circ \varphi=0, \quad \varphi \xi=0 \tag{2.1}\\
g(\varphi X, \varphi Y)=g(X, Y)-\eta(X) \eta(Y), \quad d \eta(X, Y)=g(\varphi X, Y) \tag{2.2}
\end{gather*}
$$

$$
\begin{equation*}
g(\varphi X, Y)=-g(X, \varphi Y), \quad g(X, \xi)=\eta(X) \tag{2.3}
\end{equation*}
$$

for all $X, Y \in T \widetilde{M}$. We denote by $\widetilde{\nabla}$ the Levi-Civita connection on \widetilde{M}, then we have [3]

$$
\begin{gather*}
\left(\widetilde{\nabla}_{X} \varphi\right) Y=g(X, Y) \xi-\eta(Y) X \tag{2.4}\\
\widetilde{\nabla}_{X} \xi=-\varphi X \tag{2.5}
\end{gather*}
$$

for any vector fields X, Y tangent to \widetilde{M}.
If moreover the structure is normal, that is if $[\varphi X, \varphi Y]+\varphi^{2}[X, Y]-\varphi[X, \varphi Y]-$ $\varphi[\varphi X, Y]=-2 d \eta(X, Y) \xi$, then the contact metric structure is called a Sasakian structure and $\widetilde{M}^{2 n+1}$ is called a Sasakian manifold.
A plane section in the tangent space $T_{p} \widetilde{M}$ at $p \in \widetilde{M}$ is called a φ-section if it spanned by a vector X orthogonal to ξ and φX. The curvature of φ-section is called φ-sectional curvature.
A Sasakian space form is defined as a Sasakian manifold with constant φ-sectional curvature c and is denoted by $\widetilde{M}^{2 n+1}(c)$, for more details see $[\mathbf{3}, \mathbf{1 2}]$. The curvature tensor of a Sasakian space form $\widetilde{M}^{2 n+1}(c)$ is given by [3]

$$
\begin{align*}
\widetilde{R}(X, Y) Z= & \frac{c+3}{4}\{g(Y, Z) X-g(X, Z) Y\}+\frac{c-1}{4}\{\eta(X) \eta(Z) Y \\
& -\eta(Y) \eta(Z) X+g(X, Z) \eta(Y) \xi-g(Y, Z) \eta(X) \xi \\
& +g(\varphi Y, Z) \varphi X-g(\varphi X, Z) \varphi Y-2 g(\varphi X, Y) \varphi Z\} \tag{2.6}
\end{align*}
$$

for all $X, Y, Z \in T \widetilde{M}$.
EXAMPLE 2.1. [3] We consider $\mathbb{R}^{2 n+1}$ with the coordinates $\left(x^{i}, y^{i}, z\right), i=$ $1, \ldots, n$ and its usual contact form $\eta=\frac{1}{2}\left(d z-\sum_{i=1}^{n} y^{i} d x^{i}\right)$. The characteristic field ξ is given by $\xi=2 \frac{\partial}{\partial z}$, the tensor field φ is given by the matrix

$$
\left(\begin{array}{ccc}
0 & \delta_{i j} & 0 \\
-\delta_{i j} & 0 & 0 \\
0 & y^{j} & 0
\end{array}\right)
$$

and the Riemannian metric $g=\eta \otimes \eta+\frac{1}{4} \sum_{i=1}^{n}\left(d x^{i}\right)^{2}+\left(d y^{i}\right)^{2}$ is an associated metric for η. In this case $\mathbb{R}^{2 n+1}$ is a Sasakian space form with φ-sectional curvature $c=-3$ denoted by $\mathbb{R}^{2 n+1}(-3)$.

Let M^{m} be an m-dimensional submanifold immersed in $\widetilde{M}^{2 n+1}$. For any vector field X tangent to M, we put

$$
\begin{equation*}
\varphi X=T X+N X \tag{2.7}
\end{equation*}
$$

where $T X$ is the tangential part and $N X$ the normal part of φX. Then T is an endomorphism on the tangent bundle $T M$ and N is a normal bundle valued 1-form on the tangent bundle.
The submanifold M is said to be invariant if ξ is tangent to M and $\varphi X \in T M$, for any $X \in T M$. It is easy to show that an invariant submanifold of a Sasakian manifold is a Sasakian manifold too. If M is invariant, then $N X$ in (2.7) vanishes
identically for all $X \in T M$.
Now, let $M^{2 n}$ be an immersed hypersurface of a Sasakian manifold $\widetilde{M}^{2 n+1}$, then we have the formulas of Gauss and Weingarten:

$$
\begin{gathered}
\widetilde{\nabla}_{X} Y=\nabla_{X} Y+g\left(A_{V} X, Y\right) V \\
\widetilde{\nabla}_{X} V=-A_{V} X
\end{gathered}
$$

where X and Y are tangent vector fields, V a unit normal vector field to M.
Theorem 2.1. [9] There does not exist an invariant hypersurface of a contact manifold.

It is known that a Sasakian manifold is a normal contact metric manifold.
Let M be an hypersurface of a Sasakian space form $\widetilde{M}^{2 n+1}(c)$, tangent to the structure vector field ξ. We denote by V a unit normal vector field to M and we put [8]

$$
\zeta=-\varphi V
$$

Since V is orthogonal to M, then by using (2.2) and (2.3), we have

$$
g(\zeta, \zeta)=1, \quad g(\zeta, V)=0
$$

Hence ζ is a unit vector field tangent to M.
For any vector field X tangent to M, we set [11]

$$
\begin{equation*}
\varphi X=T X+u(X) V \tag{2.8}
\end{equation*}
$$

where u and T are tensor fields on M of type $(0,1)$ and $(1,1)$ respectively, also $T X$ represents the tangent part of φX, and it is easily shown that T is a skewsymmetric operator.
Thus, from (2.7) we get

$$
N X=u(X) V
$$

for any vector field X tangent to M.
Moreover, it is easy to verify that

$$
\begin{equation*}
u(X)=g(X, \zeta), \quad \varphi \zeta=V \tag{2.9}
\end{equation*}
$$

Since the structure vector field ξ is tangent to M, (2.8) implies that

$$
\begin{equation*}
T \xi=0, \quad T \zeta=0 \tag{2.10}
\end{equation*}
$$

$$
\begin{gather*}
u(\xi)=0=\eta(\zeta), \quad u(\zeta)=1, \quad u(T X)=0 \tag{2.11}\\
T^{2} X=-X+\eta(X) \xi+u(X) \zeta \tag{2.12}
\end{gather*}
$$

Lemma 2.1. Let M be an hypersurface of a Sasakian space form $\widetilde{M}^{2 n+1}(c)$ tangent to the structure vector field ξ. We have

$$
\begin{equation*}
A \xi=-\zeta \tag{2.13}
\end{equation*}
$$

where A is the shape operator of M.

Proof. By using the Gauss formula, (2.5) and (2.8) we obtain

$$
\begin{aligned}
\bar{\nabla}_{X} \xi & =\nabla_{X} \xi+g(A X, \xi) V \\
& =-\varphi X=-T X-u(X) V
\end{aligned}
$$

Considering the tangential and normal parts of the above relation and since $u(X)=$ $g(X, \zeta)$, we get
$\nabla_{X} \xi=-T X, \quad g(A X, \xi) V=-u(X) V=g(X, A \xi) V=-g(X, \zeta) V$.
Which implies $A \xi=-\zeta$.

On the other hand, the Gauss formula implies that

$$
-\varphi \xi=\bar{\nabla}_{\xi} \xi=\nabla_{\xi} \xi+g(A \xi, \xi) V
$$

Since $\varphi \xi=0$, we have

$$
\begin{equation*}
\nabla_{\xi} \xi=0, \quad g(A \xi, \xi)=0 \tag{2.14}
\end{equation*}
$$

3. Main results

Theorem 3.1. There are no pseudo-parallel hypersurfaces in a Sasakian space form $\widetilde{M}^{2 n+1}(c)$ tangent to the structure vector field ξ, with $c \neq 1$.

Proof. Assume that $M^{2 n}$ is a pseudo-parallel hypersurface in a Sasakian space form $\widetilde{M}^{2 n+1}(c)$, tangent to the structure vector field ξ.
Since M is an hypersurface, and from (1.3) the (0,4)-tensor field $\widetilde{R} . \sigma$ is defined by

$$
(\widetilde{R} \cdot \sigma)(X, Y, Z, W)=-\sigma(R(X, Y) Z, W)-\sigma(Z, R(X, Y) W),
$$

for any vector fields X, Y, Z and W tangent to M. Then (1.1) becomes

$$
\begin{equation*}
\sigma(R(X, Y) Z, W)+\sigma(Z, R(X, Y) W)+L Q(g, \sigma)(Z, W ; X, Y)=0 \tag{3.1}
\end{equation*}
$$

The curvature tensor R of M is given by the Gauss equation

$$
\begin{equation*}
R(X, Y) Z=\widetilde{R}(X, Y) Z+g(A Y, Z) A X-g(A X, Z) A Y \tag{3.2}
\end{equation*}
$$

From (3.2), (2.6) and (2.8), we obtain

$$
\begin{aligned}
R(X, Y) Z= & \frac{c+3}{4}\{g(Y, Z) X-g(X, Z) Y\} \\
& +\frac{c-1}{4}\{\eta(X) \eta(Z) Y-\eta(Y) \eta(Z) X+g(X, Z) \eta(Y) \xi \\
& -g(Y, Z) \eta(X) \xi+g(T Y, Z) T X-g(T X, Z) T Y-2 g(T X, Y) T Z\} \\
& +g(A Y, Z) A X-g(A X, Z) A Y .
\end{aligned}
$$

Using (3.3) and (1.4), the condition (3.1) may be written in the form:

$$
\begin{aligned}
& 0= \frac{c+3}{4}\{g(Y, Z) g(A X, W) V-g(X, Z) g(A Y, W) V+g(Y, W) g(A X, Z) V \\
&-g(X, W) g(A Y, Z) V\}+\frac{c-1}{4}\{\eta(X) \eta(Z) g(A Y, W) V-\eta(Y) \eta(Z) g(A X, W) V \\
&+g(X, Z) \eta(Y) g(A \xi, W) V-g(Y, Z) \eta(X) g(A \xi, W) V+g(T Y, Z) g(A T X, W) V \\
&-g(T X, Z) g(A T Y, W) V-2 g(T X, Y) g(A T Z, W) V+\eta(X) \eta(W) g(A Y, Z) V \\
&-\eta(Y) \eta(W) g(A X, Z) V+g(X, W) \eta(Y) g(A \xi, Z) V-g(Y, W) \eta(X) g(A \xi, Z) V \\
&+g(T Y, W) g(A T X, Z) V-g(T X, W) g(A T Y, Z) V-2 g(T X, Y) g(A T W, Z) V\} \\
&+g(A Y, Z) g\left(A^{2} X, W\right) V-g(A X, Z) g\left(A^{2} Y, W\right) V \\
&+g(A Y, W) g\left(A^{2} X, Z\right) V-g(A X, W) g\left(A^{2} Y, Z\right) V+L\{-g(Y, Z) g(A X, W) V \\
&(3.4)+g(X, Z) g(A Y, W) V-g(Y, W) g(A X, Z) V+g(X, W) g(A Y, Z) V\}
\end{aligned}
$$

as $\sigma(X, Y)=g(A Y, X) V=g(A X, Y) V$, for all X, Y, Z, W in $T M$ and $V \in T^{\perp} M$. Since T is a skew-symmetric operator, then $g(A T W, Z)=-g(W, T A Z)$ and the equation (3.4) becomes

$$
\begin{align*}
0= & \left(\frac{c+3}{4}-L\right)\{g(Y, Z) A X-g(X, Z) A Y+g(A X, Z) Y-g(A Y, Z) X\} \\
& +\frac{c-1}{4}\{\eta(X) \eta(Z) A Y-\eta(Y) \eta(Z) A X+g(X, Z) \eta(Y) A \xi \\
& -g(Y, Z) \eta(X) A \xi+g(T Y, Z) A T X-g(T X, Z) A T Y \\
& -2 g(T X, Y) A T Z+\eta(X) g(A Y, Z) \xi-\eta(Y) g(A X, Z) \xi \\
& +\eta(Y) g(A \xi, Z) X-\eta(X) g(A \xi, Z) Y+g(A T X, Z) T Y \\
& -g(A T Y, Z) T X+2 g(T X, Y) T A Z\} \\
& +g(A Y, Z) A^{2} X-g(A X, Z) A^{2} Y+g\left(A^{2} X, Z\right) A Y-g\left(A^{2} Y, Z\right) A X . \tag{3.5}
\end{align*}
$$

If we set $Y=Z$ in (3.5), we obtain

$$
\begin{aligned}
0= & \left(\frac{c+3}{4}-L\right)\{g(Z, Z) A X-g(X, Z) A Z+g(A X, Z) Z-g(A Z, Z) X\} \\
& +\frac{c-1}{4}\{\eta(X) \eta(Z) A Z-\eta(Z) \eta(Z) A X+g(X, Z) \eta(Z) A \xi-g(Z, Z) \eta(X) A \xi \\
& -3 g(T X, Z) A T Z+\eta(X) g(A Z, Z) \xi-\eta(Z) g(A X, Z) \xi+\eta(Z) g(A \xi, Z) X \\
& -\eta(X) g(A \xi, Z) Z+g(A T X, Z) T Z-g(A T Z, Z) T X+2 g(T X, Z) T A Z\} \\
& +g(A Z, Z) A^{2} X-g(A X, Z) A^{2} Z+g\left(A^{2} X, Z\right) A Z-g\left(A^{2} Z, Z\right) A X,
\end{aligned}
$$

since T is skew-symmetric we have $g(T Z, Z)=0$.
If Z and ξ are orthogonal in (3.6), we have

$$
\begin{align*}
0= & \left(\frac{c+3}{4}-L\right)\{g(Z, Z) A X-g(X, Z) A Z+g(A X, Z) Z-g(A Z, Z) X\} \\
& +\frac{c-1}{4}\{-g(Z, Z) \eta(X) A \xi-3 g(T X, Z) A T Z+\eta(X) g(A Z, Z) \xi \\
& -\eta(X) g(A \xi, Z) Z+g(A T X, Z) T Z-g(A T Z, Z) T X+2 g(T X, Z) T A Z\} \\
& +g(A Z, Z) A^{2} X-g(A X, Z) A^{2} Z+g\left(A^{2} X, Z\right) A Z-g\left(A^{2} Z, Z\right) A X . \tag{3.7}
\end{align*}
$$

We consider $\left\{e_{1}, \ldots, e_{2 n}\right\}$ a local orthonormal frame of $T M$. We insert $Z=e_{k}$ in (3.7) and taking summation over $k=1, \ldots, 2 n$, we get

$$
\begin{aligned}
0= & \left(\frac{c+3}{4}-L\right)\{2 n A X-\operatorname{tr}(A) X\}+\frac{c-1}{4}\left\{-(2 n+1) \eta(X) A \xi-3 A T^{2} X\right. \\
& +\operatorname{tr}(A) \eta(X) \xi+3 T A T X-\operatorname{tr}(A T) T X\}+\operatorname{tr}(A) A^{2} X-\operatorname{tr}\left(A^{2}\right) A X
\end{aligned}
$$

for any vector field X tangent to M.
From (2.12), it follows that $A T^{2} X=-A X+\eta(X) A \xi+u(X) A \zeta$ and the above equation becomes

$$
\begin{align*}
0= & \left(\frac{c+3}{4}-L\right)\{2 n A X-\operatorname{tr}(A) X\}+\frac{c-1}{4}\{-2(n+2) \eta(X) A \xi \\
& +3 A X-3 u(X) A \zeta+\operatorname{tr}(A) \eta(X) \xi+3 T A T X-\operatorname{tr}(A T) T X\} \\
& +\operatorname{tr}(A) A^{2} X-\operatorname{tr}\left(A^{2}\right) A X \tag{3.8}
\end{align*}
$$

For any $W \in T M$, Equation (3.8) turns into

$$
\begin{aligned}
0= & \left(\frac{c+3}{4}-L\right)\{2 n g(A X, W)-\operatorname{tr}(A) g(X, W)\} \\
& +\frac{c-1}{4}\{-2(n+2) \eta(X) g(A \xi, W)+3 g(A X, W)-3 u(X) g(A \zeta, W) \\
& +\operatorname{tr}(A) \eta(X) \eta(W)+3 g(T A T X, W)-\operatorname{tr}(A T) g(T X, W)\} \\
& +\operatorname{tr}(A) g\left(A^{2} X, W\right)-\operatorname{tr}\left(A^{2}\right) g(A X, W)
\end{aligned}
$$

Exchanging X and W in (3.9), we get

$$
\begin{align*}
0= & \left(\frac{c+3}{4}-L\right)\{2 n g(A W, X)-\operatorname{tr}(A) g(W, X)\} \\
& +\frac{c-1}{4}\{-2(n+2) \eta(W) g(A \xi, X)+3 g(A W, X)-3 u(W) g(A \zeta, X) \\
& +\operatorname{tr}(A) \eta(W) \eta(X)+3 g(T A T W, X)-\operatorname{tr}(A T) g(T W, X)\} \\
& +\operatorname{tr}(A) g\left(A^{2} W, X\right)-\operatorname{tr}\left(A^{2}\right) g(A W, X) . \tag{3.10}
\end{align*}
$$

Subtracting (3.9) to (3.10) and using (1.2), (2.13) and (2.9), we have

$$
\begin{align*}
0= & \frac{c-1}{4}\{2(n+2) \eta(W) u(X)-2(n+2) \eta(X) u(W)-3 u(W) g(A \zeta, X) \\
& +3 u(X) g(A \zeta, W)-\operatorname{tr}(A T) g(T W, X)+\operatorname{tr}(A T) g(T X, W)\} \tag{3.11}
\end{align*}
$$

If we insert $W=\xi$ in (3.11) and using (2.10), (2.11), (2.13) and (2.14), we get

$$
(2 n+1) \frac{c-1}{4} u(X)=0
$$

for any $X \in T M$. Since $c \neq 1$, then $u(X)=0$. Hence, from (2.8) we deduce that φX is tangent, and as ξ is tangent to M, this shows that M is an invariant hypersurface in a Sasakian space form $\widetilde{M}^{2 n+1}(c)$. According to Theorem 2.1 this leads to a contradiction.

Corollary 3.1. There are no pseudo-parallel hypersurfaces in $\mathbb{R}^{2 n+1}(-3)$.
Remark 3.1. Let $S^{2 n+1}$ be a $(2 n+1)$-dimensional unit sphere, i.e., $S^{2 n+1}=$ $\left\{z \in \mathbb{C}^{n+1}:|z|=1\right\}$. For any point $z \in S^{2 n+1}$, put $\xi=J z$, where J is the almost complex structure of \mathbb{C}^{n+1}. We consider the orthogonal projection

$$
\pi: T_{x}\left(\mathbb{C}^{n+1}\right) \longrightarrow T_{x}\left(S^{2 n+1}\right)
$$

Putting $\varphi=\pi \circ J$, we have a Sasakian structure (φ, ξ, η, g) on $S^{2 n+1}$, where η is a 1 -form dual to ξ and g the standard metric tensor field on $S^{2 n+1}$. We see that $S^{2 n+1}$ is of constant φ-sectional curvature 1, that is, of constant curvature 1 (cf. [10]).
Now we consider the Clifford hypersurface $M_{p, q}$ defined by

$$
M_{p, q}=S^{2 p+1}\left(\sqrt{\frac{p}{2 n}}\right) \times S^{2 q+1}\left(\sqrt{\frac{q}{2 n}}\right), p+q=n-1
$$

Then $M_{p, q}$ is a minimal hypersurface of $S^{2 n+1}$ tangent to the structure vector field ξ of $S^{2 n+1}$ and $M_{p, q}$ has the parallel second fundamental form, so it is pseudoparallel. Therefore the assumption in Theorem 3.1 on the φ-sectional curvature $c \neq 1$ of the ambient space $\widetilde{M}^{2 n+1}(c)$ is essential.

References

1. A. C. Asperti, and G. A. Lobos, F. Mercuri, Pseudo-parallel immersions in space form, Math. Contemp. 17 (1999), 59-70.
2. A. C. Asperti, G. A. Lobos, and F. Mercuri, Pseudo-parallel submanifolds of a space form, Adv. Geom. 2 (2002), 57-71.
3. D. E. Blair, Riemannian geometry of contact and symplectic manifolds, Springer Science, Business Media, 2010.
4. J. Deprez, Semiparallel surfaces in Euclidean space, J. Geom. 25 (1985), 192-200.
5. J. Deprez, Semi-parallel hypersurfaces, Rend sem. Math. Univ. Torino 44(1986), 303-316.
6. R. Deszcz, L. Verstraelen, and S. Yaprak, Pseudosymmetric hypersurfaces in 4-dimensional spaces of constant curvature, Bull. Inst. Math. Acad. Sinica 22(1994), 167-179.
7. D. Ferus, Symmetric submanifolds of Euclidean space, Mathematische Annalen 247(1) (1980), 81-93.
8. F. Gherib and M. Belkhelfa, Parallel submanifolds of generalized Sasakian space forms, Bull. Transilv. Univ. Brasov, Ser. III, Math. Inform. Phys. 51(2) (2009), 185-192.
9. S. I. Goldberg and K. Yano, Noninvariant hypersurfaces of almost contact manifolds, J. Math. Soc. Japan 22 (1970), 25-34.
10. S. Tanno, Sasakian manifolds with constant φ-holomorphic sectional curvature, Tôhoku Math. J. 21 (1969), 501-507.
11. K. Yano and M. Kon, CR submanifolds of Kaehlerian and Sasakian manifolds, Progress in Mathematics, Vol. 30. Boston - Basel - Stuttgart: Birkhauser, 1983.
12. K. Yano and M. Kon, Structures on manifolds, World Scientific, Singafora, 1984.

Received by editors 6.1.2023; Revised version 14.9.2023; Available online 23.12.2023.
Fatiha Mahi, Department of Mathematics, Higher Normal school, Mostaganem 27000, Algeria

Email address: fatihamahi@gmail.com
Mohamed Belkhelfa, Department of Mathematics, Faculty of Exact sciences, University of Mustapha Stambouli Mascara-Algeria, Algeria

Email address: mohamed.belkhelfa@gmail.com

[^0]: 2010 Mathematics Subject Classification. Primary 53C40; Secondary 53C25, 53B25.
 Key words and phrases. Sasakian space forms, hypersurface, pseudo-parallel.
 Communicated by Dusko Bogdanic.

