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RECIPROCAL STATUS-DISTANCE INDEX OF GRAPHS

Kishori P. Narayankar, Pandith Giri Mohan das P K,
and Anteneh Alemu Ali

Abstract. Reciprocal Status-Distance (RSD) Index , RSD(G) of a connected
graph G is defined as,

RSD(G) =
∑

{u,v}⊆V (G)

σG(u) + σG(v)

dG(u, v)
,

where, σG(u) =
∑

v∈V (G)

dG(u, v) is the status of a vertex u in V (G).

This research study focuses on a newly developed Reciprocal Status-

Distance (RSD) Index of graphs and its bounds. In addition, the RSD Index

of some well-known class of graphs is derived. The regression analysis of RSD,
DD, and RDD index is carried out with the properties of some Paraffin hydro-

carbon molecules. The correlation analysis found that the RSD index is better
than the degree distance and reciprocal degree distance index for predicting

some properties of hydrocarbon molecules.

1. Introduction

Chemical graph theory is a branch of mathematical chemistry that explores the
connection between molecules and graphs. In a graph, points are called vertices,
and lines as edges. When we turn molecules into graphs, atoms become vertices, and
bonds become edges. This representation is called a molecular graph. Typically,
hydrogen atoms are excluded, and the remaining graph is known as the carbon
graph of the molecule.

A topological graph index is a numerical measure that shows a correlation be-
tween chemical composition and various physical properties, chemical reactivity, or
biological activity. Over the last few decades, numerous topological indices have
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been developed and used for chemical documentation, isomer classification, molec-
ular complexity analysis, chirality, similarity/dissimilarity, QSAR/QSPR, drug de-
sign, database selection, lead optimization, and more.

Let G be a graph of order n and size m. Let V (G) be the vertex set and E(G)
be the edge set of G. The edge between the vertices u and v is denoted by uv.
The degree dG(u) of a vertex u is the number of edges incident to it. The distance
between two vertices u and v, denoted by dG(u, v), is the length of the shortest
u− v path in G. The maximum distance between any pair of vertices in G is called
the diameter of G and is denoted by diam(G) or simply D. The status σG(u) of
a vertex u in graph G is the total sum of distances between u and all the other
vertices. We refer to the books [23, 12] for graph theoretic terminology.

The Wiener index W (G) of a connected graph G is defined as [14],

W (G) =
∑

{u,v}⊆V (G)

dG(u, v) =
1

2

∑
v∈V (G)

σG(u).

One can find further information about the Wiener index by referring to [25,
6, 22, 36].

The Harary index of G is defined as the sum of reciprocals of distances between
all unordered pairs of vertices of a connected graph [9],

H(G) =
∑

{u,v}⊆V (G)

1

dG(u, v)
.

To learn more about the Harary index, one can refer [7, 10, 26, 27, 29].
The most important graph indices are the first and second Zagreb indices intro-

duced by I. Gutman and Trinajstic, [20]. They are denoted as M1(G) and M2(G)
and were defined as:

M1(G) =
∑

uv∈E(G)

[dG(u) + dG(v)], M2(G) =
∑

uv∈E(G)

[dG(u)dG(v)].

One can locate chemical applications and explore the mathematical properties
of Zagreb indices in [28, 8, 34, 35].

The first and second Zagreb coindices of a graph G are defined as [38],

M1(G) =
∑

uv/∈E(G)

[dG(u) + dG(v)], M2(G) =
∑

uv/∈E(G)

[dG(u)dG(v)].

Recent findings related to Zagreb coindices in the literature [3, 4, 16, 17].
The degree distance index of a graph G was introduced independently by Do-

brynin, Kochetova [1] and Gutman [19],

DD(G) =
∑

{u,v}⊆V (G)

[dG(u) + dG(v)]dG(u, v).

For more about degree distance, one can refer [30, 41, 5, 21].
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Hongbo Hua and Shenggui Zhang introduced a new graph invariant named
reciprocal degree distance, which can be seen as a degree-weight version of the
Harary index as [15],

RDD(G) =
∑

{u,v}⊆V (G)

dG(u) + dG(v)

dG(u, v)
.

Recent findings concerning reciprocal degree distance can be found in the literature
[39, 13, 40, 37].

Inspired by the work on reciprocal degree distance index, the reciprocal status-
distance index (RSD) is defined as[31],

RSD(G) =
∑

{u,v}⊆V (G)

σG(u) + σG(v)

dG(u, v)
(1.1)

where, σG(u) =
∑

v∈V (G) dG(u, v) is the status of a vertex u in V (G) [11].

Recent findings related to the status can be found in the literature [32, 33,
18, 2].
Example: Let G be a graph shown in Figure 1.

u4

u3

u2

u1

Figure 1. Graph G

Here, σG(u1) = 5, σG(u2) = 4, σG(u3) = 3 and σG(u4) = 4.

RSD(G) =
∑

{u,v}⊆V (G)

σG(u) + σG(v)

dG(u, v)

=
σG(u1) + σG(u2)

dG(u1, u2)
+

σG(u1) + σG(u3)

dG(u1, u3)
+

σG(u1) + σG(u4)

dG(u1, u4)

+
σG(u2) + σG(u3)

dG(u2, u3)
+

σG(u2) + σG(u4)

dG(u2, u4)
+

σG(u3) + σG(u4)

dG(u3, u4)

RSD(G) = 39.

The paper is organized as follows: The bounds for the RSD are computed in the
next section. Section 3 calculates the RSD Index of a well-known class of graphs.
Section 4 computes the RSD Index of Cluster graphs. The last section deals with
the correlation between RSD, DD, and RDD index with the boiling point (BP),
molar volume (MV ), molar refractions (MR), and critical pressures (CP) of some
paraffin hydrocarbon molecules.
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2. Bounds for the reciprocal status-distance index

In this section, we obtained the bounds for the RSD index of graphs and
characterized the equality of these bounds.

Theorem 2.1. Let G be a graph of order n, size m, and diameter D. Then,

RSD(G) ⩾
4(n− 1)

D

((n
2

)
+m(D − 1)

)
− 1

D
[DM1(G) +M1(G)].

Equality holds if and only if D ⩽ 2.

Proof. For any vertex u of G, there are dG(u) vertices which are at a distance
one from u, and the remaining (n− 1− dG(u)) vertices are at a distance at least 2.
Thus,

σG(u) ⩾ dG(u) + 2(n− 1− dG(u)) = 2(n− 1)− dG(u)(2.1)

Moreover, equality holds if and only if D ⩽ 2. Then,

RSD(G) =
∑

{u,v}⊆V (G)

σG(u) + σG(v)

dG(u, v)

=
∑

uv∈E(G)

σG(u) + σG(v)

dG(u, v)
+

∑
uv/∈E(G)

σG(u) + σG(v)

dG(u, v)
(2.2)

⩾
∑

uv∈E(G)

(
4n− 4− [dG(u) + dG(v)]

)
+

∑
uv/∈E(G)

4n− 4− [dG(u) + dG(v)]

D
,

∵
1

dG(u, v)
⩾

1

D

= m(4n− 4)−M1(G) +
((n

2

)
−m

)
(
4n− 4

D
)− M1(G)

D

RSD(G) ⩾
4(n− 1)

D

((n
2

)
+m(D − 1)

)
− 1

D
[DM1(G) +M1(G)].

For equality: The right-hand summand of (2.2) is zero if and only if D = 1. For
uv /∈ E(G), 1

dG(u,v) =
1
D iff D = 2. Hence, by (2.1), equality holds iff D ⩽ 2. □

Theorem 2.2. Let G be a graph of order n, size m, and diameter D. Then,

RSD(G) ⩽ D(n− 1)
((n

2

)
+m

)
− D − 1

2

(
2M1(G) +M1(G)

)
.

Equality holds if and only if D ⩽ 2.

Proof. For any vertex u of G there are dG(u) which are at distance 1 from u
and the remaining (n− 1− dG(u)) vertices are at distance at most D. Thus,

σG(u) ⩽ D(n− 1)− (D − 1)dG(u) and equality holds if and only if D ⩽ 2.(2.3)
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Then,

RSD(G) =
∑

{u,v}⊆V (G)

σG(u) + σG(v)

dG(u, v)

=
∑

uv∈E(G)

σG(u) + σG(v)

dG(u, v)
+

∑
uv/∈E(G)

σG(u) + σG(v)

dG(u, v)
(2.4)

⩽
∑

uv∈E(G)

(
2D(n− 1)− (D − 1)[dG(u) + dG(v)]

)
+

∑
uv/∈E(G)

2D(n− 1)− (D − 1)[dG(u) + dG(v)]

2
,

∣∣∣∣∵ 1

dG(u, v)
⩽

1

2
, if uv /∈ E(G)

=2mD(n− 1)− (D − 1)M1(G) +D
((n

2

)
−m

)
(n− 1)(2.5)

− (D − 1)

2
M1(G)

RSD(G) ⩽D(n− 1)
((n

2

)
+m

)
− (D − 1)

2

(
2M1(G) +M1(G)

)
.

For equality: The right-hand summand of (2.4) is zero if and only if D = 1. For
uv /∈ E(G), 1

dG(u,v) =
1
2 iff D = 2. Hence, by (2.3), equality holds iff D ⩽ 2. □

3. RSD index of a well known class of graphs

Proposition 3.1. (1) For a complete graph Kn, RSD(Kn) = n(n−1)2.
(2) For a complete bipartite graph Kp,q,

RSD(Kp,q) = (p3 + q3) + (p+ q)− 2(p2 + q2) + pq

[
7
2 (p+ q)− 5

]
.

(3) Let For a path Pn of n vertices,

RSD(Pn) =
2

3
n(n2 − 1)Hn−1 −

(n− 1)

18
(13n2 − 2n− 12)

where Hk is the harmonic series 1 +
1

2
+

1

3
+ ....+

1

k

(4) For a cycle Cn of length n,

RSD(Cn) =

{
n2

2 H(Cn), if n is even
n2−1

2 H(Cn), if n is odd.

Proof. (1) For any vertex u of Kn, σG(u) = (n−1). Thus, RSD(Kn) =
n(n− 1)2.

(2) Let V1 and V2 be the partite sets of Kp,q, where |V1| = p and |V2| = q.
Then, ∀ u ∈ V1, σG(u) = q + 2(p− 1), ∀ v ∈ V2, σG(v) = p+ 2(q − 1).
Partition the set of all pairs of vertices in V (Kp,q) into three sets,
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X1 = {
{
u, v} ⊆ V |{u, v} ∈ V1

)
}, |X1| =

(
p

2

)
X2 = {

{
u, v} ⊆ V |{u, v} ∈ V2

)
}, |X2| =

(
q

2

)
X3 = {

{
u, v} ⊆ V |u ∈ V1 and v ∈ V2

}
, |X3| = pq. Now,

RSD(Kp,q) =
∑
X1

σG(u) + σG(v)

dG(u, v)
+
∑
X2

σG(u) + σG(v)

dG(u, v)
+

∑
X3

σG(u) + σG(v)

dG(u, v)

RSD(Kp,q) =
∑
X1

2(q + 2(p− 1))

2
+
∑
X2

2(p+ 2(q − 1))

2
+
∑
X3

(p+ q) + 2(p+ q − 2)

1

RSD(Kp,q) = (p3 + q3) + (p+ q)− 2(p2 + q2) + pq

[
7

2
(p+ q)− 5

]
.

(3) Let Pn be a path with n vertices which are labeled as, u1, u2, ..., un, where
ui−1 is adjacent to ui, i = 2, 3, ..., n. Then,

σ(ui) = i− 1 + i− 2 + ...+ 1 + 1 + 2 + ...+ n− i =
n(n+ 1)

2
+ (i− n− 1)i

RSD(Pn) =
∑

1⩽i<j⩽n

σG(ui) + σG(uj)

dG(ui, uj)
=

n−1∑
i=1

n∑
j=i+1

σG(ui) + σG(uj)

dG(ui, uj)

=

n−1∑
i=1

n∑
j=i+1

n(n+1)
2 + (i− n− 1)i+ n(n+1)

2 + (j − n− 1)j

j − i

=

n−1∑
i=1

n∑
j=i+1

[
n(n+ 1) + (i− n− 1)i

j − i
+ j+ i+

i2

j − i
−(n+ 1)

(
1+

i

j − i

)]

=

n−1∑
i=1

[
(n(n+ 1) + 2i2 − 2i(n+ 1))Hn−1 +

(n− i)

2
(3i− (n+ 1))

]
,

where Hn−i is the harmonic series 1 + 1
2 + 1

3 + ....+ 1
n−i . We have

n−1∑
i=1

Hn−1 =

n−1∑
i=1

n−i∑
j=1

1

i
= nHn−1 − (n− 1)

n−1∑
i=1

iHn−1 =

n−1∑
i=1

n−i∑
j=1

j

i
=

n

2
(n+ 1)Hn−1 −

(n− 1)

4
(3n+ 2)

n−1∑
i=1

i2Hn−1 =

n−1∑
i=1

n−i∑
j=1

j2

i
=

n

6
(2n2 + 3n+ 1)Hn−i −

(n− 1)

36
(22n(n+ 1) + 3(n+ 2)).

Hence,

RSD(Pn) =n(n+ 1)
[
nHn−1 − (n− 1)

]
+ 2

[
n(2n2 + 3n+ 1)

6
Hn−1



RECIPROCAL STATUS-DISTANCE INDEX OF GRAPHS 445

−n− 1

36
(22n2 + 25n+ 6)

]
−2(n+ 1)

[n(n+ 1)

2
Hn−i −

n− 1

4
(3n+ 2)

]
RSD(Pn) =

2

3
n(n2 − 1)Hn−1 −

(n− 1)

18
(13n2 − 2n− 12).

(4) Let Cn be a cycle with n vertices which are labeled as, u1, u2, ...., un such
that uiui+1, u1un ∈ E(Cn), 1 ⩽ i ⩽ n− 1.
Case 1: Cn is an even cycle.

σG(ui) = 2

n
2 −1∑
j=1

j +
n

2
=

n2

4
, 1 ⩽ i ⩽ n.

RSD(Cn) =
∑

{ui,uj}⊆V (Cn)

σG(ui) + σG(vj)

dG(ui, uj)
=

∑
{ui,uj}⊆V (Cn)

n2

4 + n2

4

dG(ui, uj)

Hence,

RSD(Cn) =
n2

2
H(Cn)

Case 2: Cn is an odd cycle.

σG(ui) =2

n−1
2∑

j=1

j =
n2 − 1

4
, 1 ⩽ i ⩽ n.

RSD(Cn) =
∑

{ui,uj}⊆V (Cn)

σG(ui) + σG(vj)

dG(ui, uj)

=
∑

{ui,uj}⊆V (Cn)

n2−1
4 + n2−1

4

dG(ui, uj)
=

n2 − 1

2
H(Cn),

where

H(Cn) =

{
n
(∑n

2
i=1

1
i

)
− 1, if n is even

n
(∑n−1

2
i=1

1
i

)
, if n is odd.

□

A Wheel Wn+1 is a graph obtained from the cycle Cn, n ⩾ 3 by adding a new
vertex and making it adjacent to all the vertices of Cn. The degree of a central
vertex of Wn+1 is n, and the degree of all other vertices is 3.

W7 :

Figure 2. Wheel graph, W7
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Proposition 3.2. For a Wheel graph Wn+1, n ⩾ 3. Then,

RSD(Wn+1) = n3 +
n2

2
− 3n

2
+ 2m2n− 3m2.

Proof. Let u0 be the center of Wn+1 then . Partition the set of all pairs of
vertices in V (Wn+1) into two sets,

X1 =
{
(u0, v)|v ∈ V1

}
, |X1| = n

X2 =
{
(u, v)|(u, v) ∈ V1

}
, |X2| =

n(n− 1)

2
, m2 = uv ∈ E(X2).

We have,

σG(u0) = n

σG(u) = 3 + 2(n− 3) = 2n− 3, u ∈ V (Wn+1)− {u0}
Then,

RSD(Wn+1) =
∑
X1

σG(u0) + σG(v)

dG(u, v)
+

∑
X2

σG(u) + σG(v)

dG(u, v)

RSD(Wn+1) = n[n+ (2n− 3)] +
∑

uv∈X2

σG(u) + σG(v)

dG(u, v)
+

∑
uv/∈X2

σG(u) + σG(v)

dG(u, v)

RSD(Wn+1) = n3 +
n2

2
− 3n

2
+ 2m2n− 3m2

□

A friendship graph (or Dutch windmill graph) Fn,n⩾ 2 is constructed by co-
alescence n copies of the cycle C3 length 3 with a common vertex. It has 2n + 1
vertices and 3n edges. The degree of a coalescence vertex of Fn is 2n, and the
degrees of all other vertices are 2.

Figure 3. Friendship graph, F4

Proposition 3.3. For a friendship graph Fn,n⩾ 2. Then,

RSD(Fn) = 8n3 − 2n2 + 4m2n− 2m2.

Proof. Let u ∈ V1 = V (Fn)− {u0},partition the set of all pairs of vertices of
Fn into two sets,

X1 = {(u0, v)|v ∈ V1}, |X1| = n(3.1)
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X2 = {(u, v)|u, v ∈ V1}, |X2| =
(
2n

2

)
, m2 = uv ∈ E(X2)(3.2)

We have,

σG(u0) = 2n, σG(u) = 2 + 2(2n− 2) = 4n− 2, u ∈ V (Fn)− {u0},(3.3)

RSD(Fn) =
∑
X1

σG(u0) + σG(v)

dG(u, v)
+

∑
X2

σG(u) + σG(v)

dG(u, v)

RSD(Fn) =
∑
X1

σG(u0) + σG(v)

dG(u, v)
+

∑
uv∈X2

σG(u) + σG(v)

dG(u, v)
+

∑
uv/∈X2

σG(u) + σG(v)

dG(u, v)
.(3.4)

Substituting equations 3.1, 3.2, and 3.3 in 3.4. Thus,
RSD(Fn) = 8n3 − 2n2 + 4m2n− 2m2.

□

4. RSD index of some graphs obtained from the complete graph.

Proposition 4.1. Let ei, i = 1, 2, ..k, 1 ⩽ k ⩽ n− 2, be the distinct edges of a
complete graph Kn, n ⩾ 3, all being incident to a single vertex. The graph Kan(k)
is obtained by deleting ei, i = 1, 2, ..., k from Kn. Then,

RSD(Kan(k)) = n3 − 2n2 + n+ 2nk − k2 − 3k − M1(Kan(k))

2
.

Proof. Let ei, i = 1, 2, ..k, 1 ⩽ k ⩽ n− 2, be the distinct edges of a complete
graph Kn, n ⩾ 3, all being incident to a vertex u0. Partition the set of all edges in
E(Kan(k)) into four sets,

X1 = {uv| dG(u) = n− 1− k, dG(v) = n− 1}, |X1| = (n− k − 1),(4.1)

X2 = {uv| dG(u) = n− 2, dG(v) = n− 2}, |X2| =
k(k − 1)

2
,(4.2)

X3 = {uv| dG(u) = n− 2, dG(v) = n− 1}, |X3| = k(n− 1− k)(4.3)

X4 = {uv| dG(u) = n− 1, dG(v) = n− 1}, |X4| =
(n− k − 1)(n− k − 2)

2
(4.4)

We have,
σG(u) = 2(n− 1)− dG(u),

σG(v) = 2(n− 1)− dG(v),

σG(u) + σG(v) = 4(n− 1)− (dG(u) + dG(v)),(4.5)

RSD(Kan(k)) =
∑

{u,v}⊆V (Kan(k))

σG(u) + σG(v)

dG(u, v)

=
∑
X1

σG(u) + σG(v)

dG(u, v)
+

∑
X2

σG(u) + σG(v)

dG(u, v)
+

∑
X3

σG(u) + σG(v)

dG(u, v)

+
∑
X4

σG(u) + σG(v)

dG(u, v)
+

∑
uv/∈E(Kan(k))

4(n− 1)− (dG(u) + dG(v))

dG(u, v)
.(4.6)
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By using equations 4.1 to 4.5 in 4.6. Thus,

RSD(Kan(k)) = (n− k − 1)[2(n− 1) + k] + k(k − 1)n+ k(n− k − 1)(2n− 1)

+ (n− 1)(n− k − 1)(n− k − 2) +
4(n− 1)k

2
− M1(Kan(k))

2

= n3 − 2n2 + n+ 2nk − k2 − 3k − M1(Kan(k))

2
.

□
Proposition 4.2. Let fi, i − 1, 2, ..., k, 1 ⩽ k ⩽

[
n
2

]
be independent edges of

the complete graph Kn, n ⩾ 3. The graph Kbn(k) is obtained by deleting fi, i =
1, 2, ..., k from Kn. Then

RSD(Kbn(k)) = n3 − 2n2 + n+ 2kn+ 4k − 8k2 − M1(Kbn(k))

2

Proof. Let fi, i−1, 2, ..., k, 1 ⩽ k ⩽
[
n
2

]
be independent edges of the complete

graph Kn, n ⩾ 3. The set of all edges of E(Kbn(k)) can be partitioned into three
edge sets,

X1 ={uv| dG(u) = n− 2 and dG(v) = n− 1}, |X1|=2k(n− 2k),(4.7)

X2 ={uv| dG(u) = n− 1 and dG(v) = n− 1}, |X2|=
(n− 2k)(n− 2k − 1)

2
,(4.8)

X3 ={uv| dG(u) = n− 2 and dG(v) = n− 2}, |X3|=
2k(2k − 1)

2
− k(4.9)

We have,

σG(u) = 2(n− 1)− dG(u), σG(v) = 2(n− 1)− dG(v)(4.10)

σG(u) + σG(v) = 4(n− 1)− (dG(u) + dG(v)). Then,(4.11)

RSD(Kbn(k)) =
∑

{u,v}⊆V (Kbn(k))

σG(u) + σG(v)

dG(u, v)

RSD(Kbn(k)) =
∑
X1

σG(u) + σG(v)

dG(u, v)
+

∑
X2

σG(u) + σG(v)

dG(u, v)
+
∑
X3

σG(u) + σG(v)

dG(u, v)

+
∑

uv/∈E(Kan(k))

4(n− 1)− (dG(u) + dG(v))

dG(u, v)
.(4.12)

After using equations 4.7, 4.8, 4.9, and 4.11 in 4.12, the result is obtained:

RSD(Kbn(k)) = n3 − 2n2 + n+ 2kn+ 4k − 8k2 − M1(Kbn(k))

2
.

□

Proposition 4.3. Let Vk be a k-element subset of the vertex set of the complete
graph Kn, 2 ⩽ k ⩽ n− 1, n ⩾ 3. The graph Kcn(k) is obtained by deleting from Kn

all the edges connecting pairs of vertices from Vk. Then,

RSD(Kcn(k)) = n3 − 2n2 + n− k3 + 2k2 + 2kn− 3k − M1(Kcn(k))

2
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Proof. Let Vk be a k-element subset of the vertex set of the complete graph
Kn, 2 ⩽ k ⩽ n− 1, n ⩾ 3.The set of all edges of E(Kcn(k)) can be partitioned into
two edge sets,

X1 ={uv| dG(u) = n− k and dG(v) = n− 1}, |X1| = (n− k)k(4.13)

X2 ={uv| dG(u) = n− 1 and dG(v) = n− 1}, |X2| =
(n− k)(n− k − 1)

2
.(4.14)

We have,

σG(u) = 2(n− 1)− dG(u),(4.15)

σG(v) = 2(n− 1)− dG(v), σG(u) + σG(v) = 4(n− 1)− (dG(u) + dG(v)),(4.16)

RSD(Kcn(k)) =
∑

{u,v}⊆V (Kcn(k))

σG(u) + σG(v)

dG(u, v)
(4.17)

RSD(Kcn(k)) =
∑
X1

σG(u) + σG(v)

dG(u, v)
+

∑
X2

σG(u) + σG(v)

dG(u, v)
(4.18)

+
∑

uv/∈E(Kan(k))

4(n− 1)− (dG(u) + dG(v))

dG(u, v)
.

Using equations 4.13, 4.14, and 4.16 in equation 4.18. Thus,

RSD(Kcn(k)) = n3 − 2n2 + n− k3 + 2k2 + 2kn− 3k − M1(Kcn(k))

2
.

□

Proposition 4.4. Let 3 ⩽ k ⩽ n, n ⩾ 5. The graph Kdn(k) is obtained by
deleting from Kn the edges of a k− membered cycle. Then,

RSD(Kdn(k)) = n3 − 2n2 + 2nk − 6k − M1(Kdn(k))

2

Proof. Let 3 ⩽ k ⩽ n, n ⩾ 5. The set of all edges of E(Kdn(k)) can be
partioned into three edge sets,

X1 = {uv| dG(u) = n− 3 and dG(v) = n− 3}, |X1| = [

(
k

2

)
− k],(4.19)

X2 = {uv| dG(u) = n− 3 and dG(v) = n− 1}, |X2| = (n− k)k(4.20)

X3 = {uv| dG(u) = n− 1 and dG(v) = n− 1}, |X3| =
(n− k)(n− k − 1)

2
(4.21)

RSD(Kdn(k)) =
∑
X1

σG(u) + σG(v)

dG(u, v)
+
∑
X2

σG(u) + σG(v)

dG(u, v)
+

∑
X3

σG(u) + σG(v)

dG(u, v)

+
∑

uv/∈E(Kdn(k))

4(n− 1)− (dG(u) + dG(v))

dG(u, v)
.(4.22)
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To obtain the result, substitute equations 4.19 to 4.21 into equation 4.22. Thus

RSD(Kdn(k)) = n3 − 2n2 + 2nk − 6k − M1(Kdn(k))

2
□

5. Obtained correlation between RSD, DD and RDD indices with the
properties of paraffin molecules.

The properties of Graphs can be used in the study of the quantitative structure-
property relationship (QSPR) and quantitative structure-activity relationship
(QSAR) of the molecules [24]. The properties of the molecules are listed in Table
1. This section studied the correlation between the boiling points (BP) ◦C, molar
volume (MV) cm3, molar refractions (MR) cm3, and critical pressures (CP) atm of
the paraffin hydrocarbons with the reciprocal status distance, degree distance and
reciprocal degree distance index, of the corresponding molecular graphs.

R No. Molecules RSDs DDs RDDs

1 3-methylpentane 180.166667 95 33.8333

2 2,2 -dimethylbutane 159.166 82 36

3 2,3 dimethylbutane 173.333 86 34.666

4 2,2 dimethylpentane 275 142 46.1666

5 3,3 dimethylpentane 291.5 134 46.9166

6 n-octane 531.283 280 49.785

7 3-methylheptane 521.96 234 58.686

8 3-ethylhexane 496.9 228 53.3

9 2,2-dimethylhexane 494.733 222 55.2

10 2,4 dimethylhexane 514.8833 226 55.7333

11 2-methyl, 3-ethylpentene 478.5 212 57.1666

12 2,2,4-trimethylpentene 486.833 194 54.833

Table 1. RSD, DD and RDD index of paraffin molecules.

From Tables 1 and 2, one can obtain the correlation coefficient and regression
equations of RSD, DD, and RDD indices with some properties of the paraffin
molecules. From Table 3, one can notice that the correlation between RSD with
the properties of paraffin molecules is obtained and compared with the correlation
achieved from other indices.

R No. Properties of Molecules Regression Equations R2

1 Boiling Point (BP) y = 2.5x− 56.08 0.81896733

2 Molar Volume (MV) y = 3.45x− 349.17 0.594349346

3 Molar Refraction (MR) y = 13x− 295.05 0.908109456

4 Critical Pressure (PC) y = −25.93x+ 890.61 0.817207108

Table 5. The observation shows the correlation analysis between
DD index with certain properties of paraffin molecules.
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R No. Molecules BP(◦C) MV(cm3) MR(cm3) CP(atm)

1 3-methylpentane 62.9 129.7 29.8 30.8

2 2,2 -dimethylbutane 50 148.7 29.93 30.7

3 2,3 dimethylbutane 57.9 130.2 29.81 31

4 2,2 dimethylpentane 79 34.62 148.7 28.4

5 3,3 dimethylpentane 86 144.5 34.33 30

6 n-octane 125 162.6 39.19 24.64

7 3-methylheptane 118 144.5 39.1 25.6

8 3-ethylhexane 118 164.3 38.94 25.74

9 2,2-dimethylhexane 107 160.1 39.25 25.6

10 2,4 dimethylhexane 108 163.1 39.13 25.8

11 2-methyl, 3-ethylpentene 116 174.5 43.46 25.96

12 2,2,4-trimethylpentene 99 165.1 39.26 25.5

Table 2. Properties of paraffin molecules.

R No. Indices BP MV MR PC

1 RSDs 0.968606 0.777507 0.939561 -0.981

2 DDs 0.976755 0.737975 0.896882 -0.96955

3 RDDs 0.904968 0.770941 0.952948 -0.904

Table 3. Correlation coefficient of RSD, DD, and RDD with the
some properties of paraffin molecules.

R No. Properties of Molecules Regression Equations R2

1 Boiling Point (BP) y = 5.7x− 151.37 0.938197212

2 Molar Volume (MV) y = 8.39x− 900.07 0.604517823

3 Molar Refraction (MR) y = 31.45x− 761.35 0.882775418

4 Critical Pressure (PC) y = −59.34x+ 2010.7 0.962361937

Table 4. The observation shows the correlation analysis between
the RSD index with certain properties of paraffin molecules.

R No. Properties of Molecules Regression Equations R2

1 Boiling Point (BP) y = 0.32x+ 18.86 0.81896733

2 Molar Volume (MV) y = 0.49x− 26.98 0.594349346

3 Molar Refraction (MR) y = 1.89x− 20.32 0.908109456

4 Critical Pressure (PC) y = −3.31x+ 139.34 0.817207108

Table 6. The observation shows the correlation analysis between
the RDD index with certain properties of paraffin molecules.

From Tables 4,5 and 6, one can notice that the regression analysis was done by
using RSD, DD, and RDD indices.
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