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COMPARISON OF SMALLEST EIGENVALUES FOR
NABLA FRACTIONAL BOUNDARY VALUE PROBLEMS

Jagan Mohan Jonnalagadda and N. Shobanadevi

Abstract. In this article, we establish the existence of and then compare

smallest eigenvalues for nabla fractional boundary value problems involving

a fractional difference boundary condition, using the theory of u0- positive
operators with respect to a cone in a Banach space.

1. Introduction

The theories of Krein–Rutman [30] and Krasnosel’skii [29] have been used by
many authors to establish the existence of and then compare smallest eigenvalues of
boundary value problems for differential equations [5, 10, 11, 12, 13, 32] difference
equations [7, 16] dynamic equations on time scales [6, 19], fractional differential
equations [8, 9, 18, 28], and delta fractional difference equations [17, 33, 34].

Motivated by these works, in this paper, we obtain the existence of and then
compare smallest eigenvalues for the eigenvalue problems(

∇α
ρ(a)u

)
(t) + λ1p(t)u(t) = 0, t ∈ Nb

a+2,(1.1) (
∇α

ρ(a)u
)
(t) + λ2q(t)u(t) = 0, t ∈ Nb

a+2,(1.2)

satisfying the boundary condition

(1.3) u(a) =
(
∇β

ρ(a)u
)
(b) = 0.
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Here 1 < α < 2, 0 ⩽ β ⩽ 1, a, b ∈ R with b− a ∈ N2, p, q : Nb
a+2 → (0,∞), ∇α

ρ(a)

and ∇β
ρ(a) are αth and βth-order nabla fractional difference operators, respectively.

Observe that the pair of boundary conditions in (1.3) reduces to conjugate [14, 24],
right-focal [22] and right-focal type [23] boundary condition as β → 0+, β → 1−

and β → (α− 1), respectively.
This article is organized as follows: In Section 2, we state the preliminary

definitions and results from nabla fractional calculus and the theory of u0-positive
operators with respect to a cone in a Banach space. In Section 3, we define the
appropriate Banach space and establish the existence of and then compare smallest
eigenvalues of (1.1) - (1.3) and (1.2) - (1.3).

2. Preliminaries

Denote the set of all real numbers by R. For any a, b ∈ R such that b−a ∈ N1,
define Na = {a, a + 1, a + 2, . . .} and Nb

a = {a, a + 1, a + 2, . . . , b}. Assume that
empty sums and products are taken to be 0 and 1, respectively.

Definition 2.1. [4] The backward jump operator ρ : Na+1 → Na is defined by

ρ(t) = t− 1, t ∈ Na+1.

Definition 2.2. [27, 31] The Euler gamma function is defined by

Γ(z) =

∫ ∞

0

tz−1e−tdt, ℜ(z) > 0.

Using the reduction formula

Γ(z + 1) = zΓ(z), ℜ(z) > 0,

the Euler gamma function can also be extended to the half-plane ℜ(z) ⩽ 0 except
for z ∈ {· · · ,−2,−1, 0}.

Definition 2.3. [15] For t ∈ R∖{. . . ,−2,−1, 0} and r ∈ R such that (t+r) ∈
R∖ {. . . ,−2,−1, 0}, the generalized rising function is defined by

tr =
Γ(t+ r)

Γ(t)
.

We use the convention that if t ∈ {. . . ,−2,−1, 0} and r ∈ R such that (t + r) ∈
R∖ {. . . ,−2,−1, 0}, then

tr = 0.

Definition 2.4. [4] Let u : Na → R and N ∈ N1. The first order backward
(nabla) difference of u is defined by(

∇u
)
(t) = u(t)− u(t− 1), t ∈ Na+1,

and the N th-order nabla difference of u is defined recursively by(
∇Nu

)
(t) =

(
∇
(
∇N−1u

))
(t), t ∈ Na+N .
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Definition 2.5. [15] Let u : Na+1 → R and N ∈ N1. The N th-order nabla
sum of u based at a is given by(

∇−N
a u

)
(t) =

1

(N − 1)!

t∑
s=a+1

(t− ρ(s))N−1u(s), t ∈ Na,

where by convention
(
∇−N

a u
)
(a) = 0. We define(

∇−0
a u

)
(t) = u(t), t ∈ Na+1.

Definition 2.6. [15] Let u : Na+1 → R and ν > 0. The νth-order nabla
fractional sum of u based at a is given by(

∇−ν
a u

)
(t) =

1

Γ(ν)

t∑
s=a+1

(t− ρ(s))ν−1u(s), t ∈ Na,

where by convention (∇−ν
a u) (a) = 0.

Definition 2.7. [15] Let u : Na+1 → R, ν > 0 and choose N ∈ N1 such that
N − 1 < ν ⩽ N . The νth-order Riemann–Liouville nabla fractional difference of u
based at a is given by

(∇ν
au) (t) =

(
∇N

(
∇−(N−ν)

a u
))

(t), t ∈ Na+N .

Definition 2.8. [29] Let B be a real Banach space. A set P ⊂ B is called a
cone if the following conditions are satisfied:

(1) P is closed;
(2) if u, v ∈ P then αu+ βv ∈ P for all α, β ⩾ 0;
(3) if u ∈ P and −u ∈ P then u = 0.

A cone P is solid if the interior, P0, of P, is nonempty. A cone is called reproducing
if every element w ∈ B can be represented in the form

w = u− v, u, v ∈ P.

Remark 2.1. [29] Every solid cone is reproducing.

By means of a cone, we define a partial ordering relation in a Banach space as
follows.

Definition 2.9. [29] Let P be a cone in a real Banach space B. For all u,
v ∈ B, we write u ⩽ v with respect to P if v − u ∈ P.

Further, we also introduce a partial ordering relation on bounded linear oper-
ators defined on a Banach space.

Definition 2.10. [29] Let P be a cone in a real Banach space B and T , S :
B → B are bounded linear operators. We write T ⩽ S with respect to P if Tu ⩽ Su
for all u ∈ P.

Definition 2.11. [29] A bounded linear operator T : B → B is u0-positive with
respect to P if there exists u0 ∈ P∖{0} such that for each u0 ∈ P∖{0}, there exist
positive constants k1(u) and k2(u) such that k1(u0) ⩽ Tu ⩽ k2(u0) with respect to
P.
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We use the following three theorems to establish our main results.

Theorem 2.1. [29] Let P ⊂ B be a solid cone. If T : B → B is a linear
operator such that T : P ∖ {0} → P0, then T is u0-positive.

Theorem 2.2. [29] Let B be a real Banach space, P ⊂ B be a reproducing
cone and T : B → B be a compact, u0-positive linear operator. Then, T has an
essentially unique eigenvector in P, and the corresponding eigenvalue is simple,
positive, and larger than the absolute value of any other eigenvalue.

Theorem 2.3. [29] Let B be a real Banach space, P ⊂ B be a cone and T ,
S : B → B be bounded, linear operators. Assume at least one of the operators T
and S is u0-positive. If T ⩽ S, Tu1 ⩾ λ1u1 for some u1 ∈ P and λ1 > 0, and
Su2 ⩽ λ2u2 for some u2 ∈ P and λ2 > 0, then λ1 ⩽ λ2. Further, λ1 = λ2 implies
u1 is a scalar multiple of u2.

3. Main results

The author [21] has derived the Green’s function G(β; t, s) for

(3.1)
(
∇α

ρ(a)u
)
(t) = 0, t ∈ Nb

a+2,

satisfying (1.3) and also obtained a few of its properties.

(3.2)

G(β; t, s) =


1

Γ(α)

[
(b−s+1)α−β−1

(b−a)α−β−1
(t− a)α−1

]
, t ∈ Nρ(s)

a ,

1
Γ(α)

[
(b−s+1)α−β−1

(b−a)α−β−1
(t− a)α−1 − (t− s+ 1)α−1

]
, t ∈ Nb

s.

Theorem 3.1. [21] The Green’s function G(β; t, s) defined in (3.2) satisfies
the following properties:

(1) G(β; a, s) = 0 for all 0 ⩽ β ⩽ 1 and s ∈ Nb
a+1.

(2) G(0; b, s) = 0 for all s ∈ Nb
a+1.

(3) G(β; t, a+ 1) = 0 for all 0 ⩽ β ⩽ 1 and t ∈ Nb
a.

(4) G(0; t, s) > 0 for all (t, s) ∈ Nb−1
a+1 × Nb

a+2.

(5) G(β; t, s) > 0 for all 0 < β ⩽ 1 and (t, s) ∈ Nb
a+1 × Nb

a+2.

Observe that u is a solution of (1.1) - (1.3) if and only if u is a solution of the
summation equation

(3.3) u(t) = λ1

b∑
s=a+2

G(β; t, s)p(s)u(s), t ∈ Nb
a.
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Similarly, u is a solution of (1.2) - (1.3) if and only if u is a solution of the summation
equation

(3.4) u(t) = λ2

b∑
s=a+2

G(β; t, s)q(s)u(s), t ∈ Nb
a.

Denote by

B =
{
u : Nb

a → R | u(a) =
(
∇β

ρ(a)u
)
(b) = 0

}
⊆ Rb−a+1.

Clearly, B is a Banach space equipped with the maximum norm

∥u∥ = max
t∈Nb

a

|u(t)|.

Define the cone

P =
{
u ∈ B | u(t) ⩾ 0 for all t ∈ Nb

a

}
.

Since

Ω =
{
u ∈ B | u(t) > 0 for all t ∈ Nb−1

a+1

}
⊂ P0,

P is solid and hence it is reproducing. Define the operators

(3.5) (Tu) (t) =

b∑
s=a+2

G(β; t, s)p(s)u(s), t ∈ Nb
a,

(3.6) (Su) (t) =

b∑
s=a+2

G(β; t, s)q(s)u(s), t ∈ Nb
a.

Clearly, T , S : B → B are linear. Note that T and S are summation operations on
a discrete finite set. Hence, T and S are compact.

Lemma 3.1. The operators T and S are u0-positive with respect to P.

Proof. We prove this statement for the operator T . For this purpose, we
apply Theorem 2.1. Clearly, P ⊂ B is a solid cone and T : B → B is a linear
operator. It is enough to show that T : P ∖ {0} → P0. To see this, let uϵP ∖ {0}.
Then, there exists a t0 ∈ Nb−1

a+2 such that u(t0) > 0. Since G(β; t, s) > 0 for all

0 ⩽ β ⩽ 1 and (t, s) ∈ Nb−1
a+1 × Nb

a+2 and p(s) > 0 for all s ∈ Nb
a+2, we have

(Tu) (t) =

b∑
s=a+2

G(β; t, s)p(s)u(s)

⩾ G(β; t, t0)p(t0)u(t0) > 0,

for all t ∈ Nb−1
a+1. So, Tu ∈ Ω ⊂ P0. The proof is complete. □

Remark 3.1. Let λ1 be a nonzero eigenvalue of (1.1) - (1.3). If u is an eigen-
vector corresponding to λ1 of (1.1) - (1.3), then

1

λ1
u = Tu.
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So, the eigenvalues of (1.1) - (1.3) are reciprocals of the eigenvalues of (3.5), and
conversely.

Theorem 3.2. T has an essentially unique eigenvector u ∈ P ∖ {0}, and the
corresponding eigenvalue Λ is positive, simple, and larger than the absolute value
of any other eigenvalue.

Proof. We know that P is a reproducing cone and T is a compact, u0-positive
linear operator. Then, by Theorem 2.2, T has an essentially unique eigenvector
u ∈ P ∖ {0}, and the corresponding eigenvalue Λ is positive, simple, and larger
than the absolute value of any other eigenvalue. □

Remark 3.2. From the proof of Lemma 3.1, we observe that (Tu) (t) > 0 for

all t ∈ Nb−1
a+1 and hence Tu ∈ P0. It follows from Theorem 3.2 that Λu = Tu. Thus,

we obtain

u(t) =
1

Λ
(Tu) (t) > 0

for all t ∈ Nb−1
a+1. Therefore, u ∈ Ω ⊂ P0.

Theorem 3.3. Let p(s) ⩽ q(s) for all s ∈ Nb
a+2. Let Λ1 and Λ2 be the eigen-

values defined in Theorem 3.2 associated with T and S, respectively, with the es-
sentially unique eigenvectors u1 and u2 in P ∖ {0}. Then, Λ1 ⩽ Λ2. Furthermore,
Λ1 = Λ2 if and only if p(s) = q(s) for all s ∈ Nb

a+2.

Proof. Let p(s) ⩽ q(s) for all s ∈ Nb
a+2. Then, for any u ∈ P and t ∈ Nb

a,

(Su− Tu) (t) =

b∑
s=a+2

G(β; t, s) (q(s)− p(s))u(s) ⩾ 0.

So, (Su− Tu) ∈ P for all u ∈ P. That is, T ⩽ S with respect to P. Then, by
Theorem 2.3, we obtain Λ1 ⩽ Λ2.

Now, we prove the second statement of the theorem. If possible, suppose
p(t0) < q(t0), for some t0 ∈ Nb−1

a+2. Since u1 ∈ P0, we have u1(t0) > 0. Then, for

all t ∈ Nb−1
a+1,

(Su1 − Tu1) (t) =

b∑
s=a+2

G(β; t, s) (q(s)− p(s))u1(s)

⩾ G(β; t, t0) (q(t0)− p(t0))u1(t0) > 0,

implying that (Su1 − Tu1) ∈ Ω ⊂ P0. So, there exists ϵ > 0 such that (S − T )u1−
ϵu1 ∈ P. Hence,

Λ1u1 + ϵu1 = Tu1 + ϵu1 ⩽ Su1,

which implies
(Λ1 + ϵ)u1 ⩽ Su1.

Since S ⩽ S and Su2 = Λ2u2, by Theorem 2.3, we obtain

Λ1 + ϵ ⩽ Λ2 and Λ1 < Λ2.

Thus, by contrapositive, if Λ1 = Λ2, then p(s) = q(s) for all t ∈ Nb
a+2. □
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By Remark 3.1, the following theorem is an immediate consequence of Theo-
rems 3.2 and 3.3.

Theorem 3.4. Assume the hypotheses of Theorem 3.3. Then, there exist small-
est positive eigenvalues λ1 and λ2 of (1.1) - (1.3) and (1.2) - (1.3), respectively,
each of which is simple, positive, and less than the absolute value of any other
eigenvalue of the corresponding problems. Also, eigenvectors corresponding to λ1

and λ2 may be chosen to belong to P ∖ {0}. Then, λ1 ⩾ λ2. Furthermore, λ1 = λ2

if and only if p(s) = q(s) for all s ∈ Nb
a+2.
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