COMPARISON OF SMALLEST EIGENVALUES FOR NABLA FRACTIONAL BOUNDARY VALUE PROBLEMS

Jagan Mohan Jonnalagadda and N. Shobanadevi

Abstract

In this article, we establish the existence of and then compare smallest eigenvalues for nabla fractional boundary value problems involving a fractional difference boundary condition, using the theory of u_{0-} positive operators with respect to a cone in a Banach space.

1. Introduction

The theories of Krein-Rutman [30] and Krasnosel'skii [29] have been used by many authors to establish the existence of and then compare smallest eigenvalues of boundary value problems for differential equations $[\mathbf{5}, \mathbf{1 0}, \mathbf{1 1}, \mathbf{1 2}, \mathbf{1 3}, \mathbf{3 2}]$ difference equations $[\mathbf{7}, \mathbf{1 6}]$ dynamic equations on time scales $[\mathbf{6}, \mathbf{1 9}]$, fractional differential equations $[8,9,18,28]$, and delta fractional difference equations $[17,33,34]$.

Motivated by these works, in this paper, we obtain the existence of and then compare smallest eigenvalues for the eigenvalue problems

$$
\begin{array}{ll}
\left(\nabla_{\rho(a)}^{\alpha} u\right)(t)+\lambda_{1} p(t) u(t)=0, & t \in \mathbb{N}_{a+2}^{b}, \\
\left(\nabla_{\rho(a)}^{\alpha} u\right)(t)+\lambda_{2} q(t) u(t)=0, & t \in \mathbb{N}_{a+2}^{b}, \tag{1.2}
\end{array}
$$

satisfying the boundary condition

$$
\begin{equation*}
u(a)=\left(\nabla_{\rho(a)}^{\beta} u\right)(b)=0 . \tag{1.3}
\end{equation*}
$$

2010 Mathematics Subject Classification. Primary 39A12; Secondary 39A27, 26A33.
Key words and phrases. Nabla fractional difference, boundary value problem, cone, $u_{0}-$ positive operator, eigenvalue.

Communicated by Dusko Bogdanic.

Here $1<\alpha<2,0 \leqslant \beta \leqslant 1, a, b \in \mathbb{R}$ with $b-a \in \mathbb{N}_{2}, p, q: \mathbb{N}_{a+2}^{b} \rightarrow(0, \infty), \nabla_{\rho(a)}^{\alpha}$ and $\nabla_{\rho(a)}^{\beta}$ are $\alpha^{t h}$ and $\beta^{t h}$-order nabla fractional difference operators, respectively. Observe that the pair of boundary conditions in (1.3) reduces to conjugate $[\mathbf{1 4}, \mathbf{2 4}]$, right-focal [22] and right-focal type [23] boundary condition as $\beta \rightarrow 0^{+}, \beta \rightarrow 1^{-}$ and $\beta \rightarrow(\alpha-1)$, respectively.

This article is organized as follows: In Section 2, we state the preliminary definitions and results from nabla fractional calculus and the theory of u_{0}-positive operators with respect to a cone in a Banach space. In Section 3, we define the appropriate Banach space and establish the existence of and then compare smallest eigenvalues of (1.1) - (1.3) and (1.2) - (1.3).

2. Preliminaries

Denote the set of all real numbers by \mathbb{R}. For any $a, b \in \mathbb{R}$ such that $b-a \in \mathbb{N}_{1}$, define $\mathbb{N}_{a}=\{a, a+1, a+2, \ldots\}$ and $\mathbb{N}_{a}^{b}=\{a, a+1, a+2, \ldots, b\}$. Assume that empty sums and products are taken to be 0 and 1 , respectively.

Definition 2.1. [4] The backward jump operator $\rho: \mathbb{N}_{a+1} \rightarrow \mathbb{N}_{a}$ is defined by

$$
\rho(t)=t-1, \quad t \in \mathbb{N}_{a+1}
$$

Definition 2.2. $[\mathbf{2 7}, \mathbf{3 1}]$ The Euler gamma function is defined by

$$
\Gamma(z)=\int_{0}^{\infty} t^{z-1} e^{-t} d t, \quad \Re(z)>0
$$

Using the reduction formula

$$
\Gamma(z+1)=z \Gamma(z), \quad \Re(z)>0
$$

the Euler gamma function can also be extended to the half-plane $\Re(z) \leqslant 0$ except for $z \in\{\cdots,-2,-1,0\}$.

Definition 2.3. [15] For $t \in \mathbb{R} \backslash\{\ldots,-2,-1,0\}$ and $r \in \mathbb{R}$ such that $(t+r) \in$ $\mathbb{R} \backslash\{\ldots,-2,-1,0\}$, the generalized rising function is defined by

$$
t^{\bar{r}}=\frac{\Gamma(t+r)}{\Gamma(t)}
$$

We use the convention that if $t \in\{\ldots,-2,-1,0\}$ and $r \in \mathbb{R}$ such that $(t+r) \in$ $\mathbb{R} \backslash\{\ldots,-2,-1,0\}$, then

$$
t^{\bar{r}}=0
$$

Definition 2.4. [4] Let $u: \mathbb{N}_{a} \rightarrow \mathbb{R}$ and $N \in \mathbb{N}_{1}$. The first order backward (nabla) difference of u is defined by

$$
(\nabla u)(t)=u(t)-u(t-1), \quad t \in \mathbb{N}_{a+1},
$$

and the $N^{\text {th }}$-order nabla difference of u is defined recursively by

$$
\left(\nabla^{N} u\right)(t)=\left(\nabla\left(\nabla^{N-1} u\right)\right)(t), \quad t \in \mathbb{N}_{a+N}
$$

Definition 2.5. [15] Let $u: \mathbb{N}_{a+1} \rightarrow \mathbb{R}$ and $N \in \mathbb{N}_{1}$. The $N^{\text {th }}$-order nabla sum of u based at a is given by

$$
\left(\nabla_{a}^{-N} u\right)(t)=\frac{1}{(N-1)!} \sum_{s=a+1}^{t}(t-\rho(s))^{\overline{N-1}} u(s), \quad t \in \mathbb{N}_{a}
$$

where by convention $\left(\nabla_{a}^{-N} u\right)(a)=0$. We define

$$
\left(\nabla_{a}^{-0} u\right)(t)=u(t), \quad t \in \mathbb{N}_{a+1}
$$

Definition 2.6. [15] Let $u: \mathbb{N}_{a+1} \rightarrow \mathbb{R}$ and $\nu>0$. The $\nu^{\text {th }}$-order nabla fractional sum of u based at a is given by

$$
\left(\nabla_{a}^{-\nu} u\right)(t)=\frac{1}{\Gamma(\nu)} \sum_{s=a+1}^{t}(t-\rho(s))^{\overline{\nu-1}} u(s), \quad t \in \mathbb{N}_{a}
$$

where by convention $\left(\nabla_{a}^{-\nu} u\right)(a)=0$.
Definition 2.7. [15] Let $u: \mathbb{N}_{a+1} \rightarrow \mathbb{R}, \nu>0$ and choose $N \in \mathbb{N}_{1}$ such that $N-1<\nu \leqslant N$. The $\nu^{\text {th }}$-order Riemann-Liouville nabla fractional difference of u based at a is given by

$$
\left(\nabla_{a}^{\nu} u\right)(t)=\left(\nabla^{N}\left(\nabla_{a}^{-(N-\nu)} u\right)\right)(t), \quad t \in \mathbb{N}_{a+N}
$$

Definition 2.8. [29] Let \mathcal{B} be a real Banach space. A set $\mathcal{P} \subset \mathcal{B}$ is called a cone if the following conditions are satisfied:
(1) \mathcal{P} is closed;
(2) if $u, v \in \mathcal{P}$ then $\alpha u+\beta v \in \mathcal{P}$ for all $\alpha, \beta \geqslant 0$;
(3) if $u \in \mathcal{P}$ and $-u \in \mathcal{P}$ then $u=0$.

A cone \mathcal{P} is solid if the interior, \mathcal{P}^{0}, of \mathcal{P}, is nonempty. A cone is called reproducing if every element $w \in \mathcal{B}$ can be represented in the form

$$
w=u-v, \quad u, v \in \mathcal{P}
$$

REmark 2.1. [29] Every solid cone is reproducing.
By means of a cone, we define a partial ordering relation in a Banach space as follows.

Definition 2.9. [29] Let \mathcal{P} be a cone in a real Banach space \mathcal{B}. For all u, $v \in \mathcal{B}$, we write $u \leqslant v$ with respect to \mathcal{P} if $v-u \in \mathcal{P}$.

Further, we also introduce a partial ordering relation on bounded linear operators defined on a Banach space.

Definition 2.10. [29] Let \mathcal{P} be a cone in a real Banach space \mathcal{B} and T, S : $\mathcal{B} \rightarrow \mathcal{B}$ are bounded linear operators. We write $T \leqslant S$ with respect to \mathcal{P} if $T u \leqslant S u$ for all $u \in \mathcal{P}$.

Definition 2.11. [29] A bounded linear operator $T: \mathcal{B} \rightarrow \mathcal{B}$ is u_{0}-positive with respect to \mathcal{P} if there exists $u_{0} \in \mathcal{P} \backslash\{0\}$ such that for each $u_{0} \in \mathcal{P} \backslash\{0\}$, there exist positive constants $k_{1}(u)$ and $k_{2}(u)$ such that $k_{1}\left(u_{0}\right) \leqslant T u \leqslant k_{2}\left(u_{0}\right)$ with respect to \mathcal{P}.

We use the following three theorems to establish our main results.
Theorem 2.1. [29] Let $\mathcal{P} \subset \mathcal{B}$ be a solid cone. If $T: \mathcal{B} \rightarrow \mathcal{B}$ is a linear operator such that $T: \mathcal{P} \backslash\{0\} \rightarrow \mathcal{P}^{0}$, then T is u_{0}-positive.

Theorem 2.2. [29] Let \mathcal{B} be a real Banach space, $\mathcal{P} \subset \mathcal{B}$ be a reproducing cone and $T: \mathcal{B} \rightarrow \mathcal{B}$ be a compact, u_{0}-positive linear operator. Then, T has an essentially unique eigenvector in \mathcal{P}, and the corresponding eigenvalue is simple, positive, and larger than the absolute value of any other eigenvalue.

THEOREM 2.3. [29] Let \mathcal{B} be a real Banach space, $\mathcal{P} \subset \mathcal{B}$ be a cone and T, $S: \mathcal{B} \rightarrow \mathcal{B}$ be bounded, linear operators. Assume at least one of the operators T and S is u_{0}-positive. If $T \leqslant S$, $T u_{1} \geqslant \lambda_{1} u_{1}$ for some $u_{1} \in \mathcal{P}$ and $\lambda_{1}>0$, and $S u_{2} \leqslant \lambda_{2} u_{2}$ for some $u_{2} \in \mathcal{P}$ and $\lambda_{2}>0$, then $\lambda_{1} \leqslant \lambda_{2}$. Further, $\lambda_{1}=\lambda_{2}$ implies u_{1} is a scalar multiple of u_{2}.

3. Main results

The author [21] has derived the Green's function $G(\beta ; t, s)$ for

$$
\begin{equation*}
\left(\nabla_{\rho(a)}^{\alpha} u\right)(t)=0, \quad t \in \mathbb{N}_{a+2}^{b}, \tag{3.1}
\end{equation*}
$$

satisfying (1.3) and also obtained a few of its properties.

$$
G(\beta ; t, s)= \begin{cases}\frac{1}{\Gamma(\alpha)}\left[\frac{(b-s+1)^{\overline{\alpha-\beta-1}}}{(b-a)^{\overline{\alpha-\beta-1}}}(t-a)^{\overline{\alpha-1}}\right], & t \in \mathbb{N}_{a}^{\rho(s)}, \tag{3.2}\\ \frac{1}{\Gamma(\alpha)}\left[\frac{(b-s+1)^{\alpha-\beta-1}}{(b-a)^{\overline{\alpha-\beta-1}}}(t-a)^{\overline{\alpha-1}}-(t-s+1)^{\overline{\alpha-1}}\right], & t \in \mathbb{N}_{s}^{b}\end{cases}
$$

Theorem 3.1. [21] The Green's function $G(\beta ; t, s)$ defined in (3.2) satisfies the following properties:
(1) $G(\beta ; a, s)=0$ for all $0 \leqslant \beta \leqslant 1$ and $s \in \mathbb{N}_{a+1}^{b}$.
(2) $G(0 ; b, s)=0$ for all $s \in \mathbb{N}_{a+1}^{b}$.
(3) $G(\beta ; t, a+1)=0$ for all $0 \leqslant \beta \leqslant 1$ and $t \in \mathbb{N}_{a}^{b}$.
(4) $G(0 ; t, s)>0$ for all $(t, s) \in \mathbb{N}_{a+1}^{b-1} \times \mathbb{N}_{a+2}^{b}$.
(5) $G(\beta ; t, s)>0$ for all $0<\beta \leqslant 1$ and $(t, s) \in \mathbb{N}_{a+1}^{b} \times \mathbb{N}_{a+2}^{b}$.

Observe that u is a solution of (1.1) - (1.3) if and only if u is a solution of the summation equation

$$
\begin{equation*}
u(t)=\lambda_{1} \sum_{s=a+2}^{b} G(\beta ; t, s) p(s) u(s), \quad t \in \mathbb{N}_{a}^{b} \tag{3.3}
\end{equation*}
$$

Similarly, u is a solution of (1.2) - (1.3) if and only if u is a solution of the summation equation

$$
\begin{equation*}
u(t)=\lambda_{2} \sum_{s=a+2}^{b} G(\beta ; t, s) q(s) u(s), \quad t \in \mathbb{N}_{a}^{b} \tag{3.4}
\end{equation*}
$$

Denote by

$$
\mathcal{B}=\left\{u: \mathbb{N}_{a}^{b} \rightarrow \mathbb{R} \mid u(a)=\left(\nabla_{\rho(a)}^{\beta} u\right)(b)=0\right\} \subseteq \mathbb{R}^{b-a+1}
$$

Clearly, \mathcal{B} is a Banach space equipped with the maximum norm

$$
\|u\|=\max _{t \in \mathbb{N}_{a}^{b}}|u(t)| .
$$

Define the cone

$$
\mathcal{P}=\left\{u \in \mathcal{B} \mid u(t) \geqslant 0 \text { for all } t \in \mathbb{N}_{a}^{b}\right\} .
$$

Since

$$
\Omega=\left\{u \in \mathcal{B} \mid u(t)>0 \text { for all } t \in \mathbb{N}_{a+1}^{b-1}\right\} \subset \mathcal{P}^{0}
$$

\mathcal{P} is solid and hence it is reproducing. Define the operators

$$
\begin{array}{ll}
(T u)(t)=\sum_{s=a+2}^{b} G(\beta ; t, s) p(s) u(s), & t \in \mathbb{N}_{a}^{b} \\
(S u)(t)=\sum_{s=a+2}^{b} G(\beta ; t, s) q(s) u(s), & t \in \mathbb{N}_{a}^{b} . \tag{3.6}
\end{array}
$$

Clearly, $T, S: \mathcal{B} \rightarrow \mathcal{B}$ are linear. Note that T and S are summation operations on a discrete finite set. Hence, T and S are compact.

Lemma 3.1. The operators T and S are u_{0}-positive with respect to \mathcal{P}.
Proof. We prove this statement for the operator T. For this purpose, we apply Theorem 2.1. Clearly, $\mathcal{P} \subset \mathcal{B}$ is a solid cone and $T: \mathcal{B} \rightarrow \mathcal{B}$ is a linear operator. It is enough to show that $T: \mathcal{P} \backslash\{0\} \rightarrow \mathcal{P}^{0}$. To see this, let $u \epsilon \mathcal{P} \backslash\{0\}$. Then, there exists a $t_{0} \in \mathbb{N}_{a+2}^{b-1}$ such that $u\left(t_{0}\right)>0$. Since $G(\beta ; t, s)>0$ for all $0 \leqslant \beta \leqslant 1$ and $(t, s) \in \mathbb{N}_{a+1}^{b-1} \times \mathbb{N}_{a+2}^{b}$ and $p(s)>0$ for all $s \in \mathbb{N}_{a+2}^{b}$, we have

$$
\begin{aligned}
(T u)(t) & =\sum_{s=a+2}^{b} G(\beta ; t, s) p(s) u(s) \\
& \geqslant G\left(\beta ; t, t_{0}\right) p\left(t_{0}\right) u\left(t_{0}\right)>0
\end{aligned}
$$

for all $t \in \mathbb{N}_{a+1}^{b-1}$. So, $T u \in \Omega \subset \mathcal{P}^{0}$. The proof is complete.
Remark 3.1. Let λ_{1} be a nonzero eigenvalue of (1.1) - (1.3). If u is an eigenvector corresponding to λ_{1} of (1.1) - (1.3), then

$$
\frac{1}{\lambda_{1}} u=T u
$$

So, the eigenvalues of (1.1) - (1.3) are reciprocals of the eigenvalues of (3.5), and conversely.

Theorem 3.2. T has an essentially unique eigenvector $u \in \mathcal{P} \backslash\{0\}$, and the corresponding eigenvalue Λ is positive, simple, and larger than the absolute value of any other eigenvalue.

Proof. We know that \mathcal{P} is a reproducing cone and T is a compact, u_{0}-positive linear operator. Then, by Theorem 2.2, T has an essentially unique eigenvector $u \in \mathcal{P} \backslash\{0\}$, and the corresponding eigenvalue Λ is positive, simple, and larger than the absolute value of any other eigenvalue.

Remark 3.2. From the proof of Lemma 3.1, we observe that $(T u)(t)>0$ for all $t \in \mathbb{N}_{a+1}^{b-1}$ and hence $T u \in \mathcal{P}^{0}$. It follows from Theorem 3.2 that $\Lambda u=T u$. Thus, we obtain

$$
u(t)=\frac{1}{\Lambda}(T u)(t)>0
$$

for all $t \in \mathbb{N}_{a+1}^{b-1}$. Therefore, $u \in \Omega \subset \mathcal{P}^{0}$.
Theorem 3.3. Let $p(s) \leqslant q(s)$ for all $s \in \mathbb{N}_{a+2}^{b}$. Let Λ_{1} and Λ_{2} be the eigenvalues defined in Theorem 3.2 associated with T and S, respectively, with the essentially unique eigenvectors u_{1} and u_{2} in $\mathcal{P} \backslash\{0\}$. Then, $\Lambda_{1} \leqslant \Lambda_{2}$. Furthermore, $\Lambda_{1}=\Lambda_{2}$ if and only if $p(s)=q(s)$ for all $s \in \mathbb{N}_{a+2}^{b}$.

Proof. Let $p(s) \leqslant q(s)$ for all $s \in \mathbb{N}_{a+2}^{b}$. Then, for any $u \in \mathcal{P}$ and $t \in \mathbb{N}_{a}^{b}$,

$$
(S u-T u)(t)=\sum_{s=a+2}^{b} G(\beta ; t, s)(q(s)-p(s)) u(s) \geqslant 0
$$

So, $(S u-T u) \in \mathcal{P}$ for all $u \in \mathcal{P}$. That is, $T \leqslant S$ with respect to \mathcal{P}. Then, by Theorem 2.3, we obtain $\Lambda_{1} \leqslant \Lambda_{2}$.

Now, we prove the second statement of the theorem. If possible, suppose $p\left(t_{0}\right)<q\left(t_{0}\right)$, for some $t_{0} \in \mathbb{N}_{a+2}^{b-1}$. Since $u_{1} \in \mathcal{P}^{0}$, we have $u_{1}\left(t_{0}\right)>0$. Then, for all $t \in \mathbb{N}_{a+1}^{b-1}$,

$$
\begin{aligned}
\left(S u_{1}-T u_{1}\right)(t) & =\sum_{s=a+2}^{b} G(\beta ; t, s)(q(s)-p(s)) u_{1}(s) \\
& \geqslant G\left(\beta ; t, t_{0}\right)\left(q\left(t_{0}\right)-p\left(t_{0}\right)\right) u_{1}\left(t_{0}\right)>0
\end{aligned}
$$

implying that $\left(S u_{1}-T u_{1}\right) \in \Omega \subset \mathcal{P}^{0}$. So, there exists $\epsilon>0$ such that $(S-T) u_{1}-$ $\epsilon u_{1} \in \mathcal{P}$. Hence,

$$
\Lambda_{1} u_{1}+\epsilon u_{1}=T u_{1}+\epsilon u_{1} \leqslant S u_{1}
$$

which implies

$$
\left(\Lambda_{1}+\epsilon\right) u_{1} \leqslant S u_{1} .
$$

Since $S \leqslant S$ and $S u_{2}=\Lambda_{2} u_{2}$, by Theorem 2.3, we obtain

$$
\Lambda_{1}+\epsilon \leqslant \Lambda_{2} \text { and } \Lambda_{1}<\Lambda_{2} .
$$

Thus, by contrapositive, if $\Lambda_{1}=\Lambda_{2}$, then $p(s)=q(s)$ for all $t \in \mathbb{N}_{a+2}^{b}$.

By Remark 3.1, the following theorem is an immediate consequence of Theorems 3.2 and 3.3.

Theorem 3.4. Assume the hypotheses of Theorem 3.3. Then, there exist smallest positive eigenvalues λ_{1} and λ_{2} of (1.1) - (1.3) and (1.2) - (1.3), respectively, each of which is simple, positive, and less than the absolute value of any other eigenvalue of the corresponding problems. Also, eigenvectors corresponding to λ_{1} and λ_{2} may be chosen to belong to $\mathcal{P} \backslash\{0\}$. Then, $\lambda_{1} \geqslant \lambda_{2}$. Furthermore, $\lambda_{1}=\lambda_{2}$ if and only if $p(s)=q(s)$ for all $s \in \mathbb{N}_{a+2}^{b}$.

References

[1] T. Abdeljawad and F. M. Atici, On the definitions of nabla fractional operators, Abstr. Appl. Anal. 2012 (2012), 1-13.
[2] F. M. Atici and P. W. Eloe, Discrete fractional calculus with the nabla operator, Electron. J. Qual. Theory Differ. Equ. 2009 (2009), 1-12.
[3] F. M. Atici and J. M. Jonnalagadda, An eigenvalue problem in fractional h-discrete calculus, Fract. Calc. Appl. Anal. 25 (2022), 630-647.
[4] M. Bohner and A. Peterson, Dynamic Equations on Time Scales, Birkhauser, Boston, MA, 2001.
[5] S. S. Cheng, Comparison of eigenvalues for systems of linear differential equations, Proc. Amer. Math. Soc. 64 (1977), 81-86.
[6] C. J. Chyan, J. M. Davis, J. Henderson, and W. K. C. Yin, Eigenvalue comparisons for differential equations on a measure chain, Electron. J. Differential Equations 35 (1998), 1-7.
[7] J. M. Davis, P. W. Eloe, and J. Henderson, Comparison of eigenvalues for discrete Lidstone boundary value problems, Dynam. Systems Appl. 8 (1999), 381-388.
[8] P. W. Eloe and J. T. Neugebauer, Existence and comparison of smallest eigenvalues for a fractional boundary-value problem, Electron. J. Differential Equations 43 (2014), 1-10.
[9] P. W. Eloe and J. T. Neugebauer, Smallest eigenvalues for a right focal boundary value problem, Fract. Calc. Appl. Anal. 19 (2016), 11-18.
[10] P. W. Eloe and J. Henderson, Comparison of eigenvalues for a class of two-point boundary value problems, Appl. Anal. 34 (1989), 25-34.
[11] P. W. Eloe and J. Henderson, Comparison of eigenvalues for a class of multipoint boundary value problems, World Sci. Ser. Appl. Anal. 1 (1992), 179-188.
[12] M. Gaudenzi, Existence and comparison of eigenvalues for linear differential equations of order n, Dynam. Systems Appl. 7 (1998), 187-214.
[13] R.D. Gentry and C. C. Travis, Comparison of eigenvalues associated with linear differential equations of arbitrary order, Trans. Amer. Math. Soc. 223 (1976), 167-179.
[14] Y. Gholami and K. Ghanbari, Coupled systems of fractional ∇-difference boundary value problems, Differ. Equ. Appl. 8 (2016), 459-470.
[15] C. Goodrich and A. C. Peterson, Discrete Fractional Calculus, Springer, Cham, 2015.
[16] D. Hankerson and A. Peterson, Comparison of eigenvalues for focal point problems for nth order difference equations, Differ. Integral Equ. 3 (1990), 363-380.
[17] J. Henderson and J. T. Neugebauer, Smallest eigenvalues for a fractional difference equation with right focal boundary conditions, J. Difference Equ. Appl. 23 (2017), 1317-1323.
[18] J. Henderson and N. Kosmatov, Eigenvalue comparison for fractional boundary value problems with the Caputo derivative, Fract. Calc. Appl. Anal. 17 (2014), 872-880.
[19] J. Hoffacker, Green's functions and eigenvalue comparisons for a focal problem on time scales, Comput. Math. Appl. 45 (2003), 1339-1368.
[20] A. Ikram, Lyapunov inequalities for nabla Caputo boundary value problems, J. Difference Equ. Appl. 25 (2019), 757-775.
[21] J. M. Jonnalagadda, An ordering on Green's function and a Lyapunov-type inequality for a family of nabla fractional boundary value problems, Fract. Differ. Calc. 9 (2019), 109-124.
[22] J. M. Jonnalagadda, Discrete fractional Lyapunov-type inequalities in nabla sense, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 27 (2020) 397-419.
[23] J. M. Jonnalagadda, Lyapunov-type inequalities for discrete Riemann-Liouville fractional boundary value problems, Int. J. Difference Equ. 13 (2018), 85-103.
[24] J. M. Jonnalagadda, On two-point Riemann-Liouville type nabla fractional boundary value problems, Adv. Dyn. Syst. Appl. 13 (2018), 141-166.
[25] M. S. Keener and C. C. Travis, Positive cones and focal points for a class of nth-order differential equations, Trans. Amer. Math. Soc. 237 (1978), 331-351.
[26] W. G. Kelley and A. C. Peterson, Difference Equations, Second Edition, Harcourt/Academic Press, San Diego, CA, 2001.
[27] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science B.V., Amsterdam, 2006.
[28] A. M. Koester and J.T. Neugebauer, Smallest eigenvalues for fractional boundary value problems with a fractional boundary condition, Journal Nonlinear Functional Analysis 2017 (2017), 1-16.
[29] M. A. Krasnosel'skii, Positive Solutions of Operator Equations, P. Noordhoff Ltd., Groningen, 1964.
[30] M. G. Krein and M. A. Rutman, Linear operators leaving invariant a cone in a Banach space, Amer. Math. Soc. Translation 1950 (1950), 1-128.
[31] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, CA, 1999.
[32] C. C. Travis, Comparison of eigenvalues for linear differential equations of order $2 n$, Trans. Amer. Math. Soc. 177 (1973), 363-374.
[33] A. Yang, L. Zhang, and J. Henderson, Comparison of smallest eigenvalues for fractional difference equations, Enlightenment Pure Appl. Math. 2 (2016), 161-170.
[34] A. Yang, L. Zhang, and J. Henderson, Comparison of smallest eigenvalues for right focal Atici-Eloe fractional difference equations, J. Korean Soc. Math. Educ. Ser. B Pure Appl. Math. 24 (2017), 191-200.

Jagan Mohan Jonnalagadda, Department of Mathematics, Birla Institute of Technology and Science Pilani, Hyderabad - 500078, Telangana, India

Email address: j.jaganmohan@hotmail.com
N. Shobanadevi, Department of Mathematics, Vellore Institute of Technology, Vellore - 632014, Tamilnadu, India. Email address: n.shobanadevi@gmail.com

