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DEGREE INVARIANT OF GRAPHS

P. Murugarajan and T. Stalin

Abstract. Topological invariants are such numbers or set of numbers that

describe topology of structures.Virtually 200 topological invariants are cal-
culated so far. The prognostication of physical, chemical, and biological at-

tributes of organic compounds is an important and still unsolved problem of

computational chemistry. Topological invariant is the tool to predict the phys-
iochemical properties such as boiling point, melting point, density, viscosity,

and polarity of organic compounds. In this paper, a comparative study of

the symmetric division degree topological invariant with some well-known and
mostly used graph invariants in a given graph is performed.

1. Introduction

Graph theory has played a good role in chemistry in the last decades. Topologi-
cal invariants investigate the features of graphs that persist constant after continual
changing in graphs. They describe symmetry of chemical structures with a number
and then work for the improvement of QSAR and QSPR which both are employed
to build a connection among the molecular structure and mathematical tools. These
invariants are useful to associate physiochemical properties of compounds and they
are independent of pictorial representation [15]. Among three categories of molec-
ular descriptors, vertex degree-based invariant are considerably more significant.
Graph theory and molecular invariants are playing a vital role in analyzing the
physiochemical properties of organic compounds.

The symmetric division degree invariant was studied by Vukicevic et al. [13]
as a remarkable predictor of total surface area of polychlorobiphenyls. It is one of
discrete Adriatic indices that showed good predictive properties on the testing sets
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338 MURUGARAJAN AND STALIN

provided by International Academy of Mathematical Chemistry. The symmetric

division degree invariant which is defined as SDD(Γ) =
∑

xy∈E(Γ)

(
λΓ(x)
λΓ(y)

+ λΓ(y)
λΓ(x))

)
,

where λΓ(x) and λΓ(y) are the degrees of vertices x and y respectively.
Furtula et al. [1] established some structural analysis and chemical applicability

of the SDD invariant. Some mathematical properties of SDD invariant in terms of
structure of a graph are investigated in [16]. Vasilev [14] and Palacios [4] provided
the different types of lower and upper bounds of symmetric division deg invariant in
some classes of graphs and determined the corresponding extremal graphs. Aguilar-
Sanchez et al. [19] obtained new inequalities for the variable symmetric division deg
invariant and they were characterized extremal graphs with respect to them. The
mathematical relations between the symmetric division deg invariant with Sombor
invariant and arithmetic-geometric invariant were investigated by Wang et al. [17]
and Rodŕıguez et al. [18], respectively. Several papers have been appeared in
literature addressing the mathematical aspects of this descriptor; for example see
[2, 3, 7, 8]. In this paper, we investigate some properties of this graph invariant in
terms of orbit structure of a graph and then we explore new bounds for symmetric
division deg invariant.

Let Γ be a finite simple connected graph with vertex set V (Γ) and edge set
E(Γ). We denote by δ and ∆ the minimum and maximum vertex degrees of Γ
respectively.

The Zagreb invariants are among the oldest topological invariants introduced
by Gutman and Trinajstic in 1972. These indices have since been used to study
molecular complexity, chirality, ZE-isomerism and hetero-systems. They are defined
as

M1(Γ) =
∑

xy∈E(Γ)

(λΓ(x) + λΓ(y))

and

M2(Γ) =
∑

xy∈E(Γ)

(λΓ(x)λΓ(y)).

A modification Zagreb invariants was proposed by Nikolic et al. [9] in 2003.
The first and second modified Zagreb invariants of Γ are defined as

M∗
1 (Γ) =

∑
x∈V (Γ)

1

λΓ(x)2

and

M∗
2 (Γ) =

∑
xy∈E(Γ)

1

λΓ(x)λΓ(y)
.

The multiplicative version of Zagreb invariants were introduced by Todeschini
and Consonni [20] in 2010. They are defined as

π1(Γ) =
∏

x∈V (Γ)

λΓ(x)
2
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and

π2(Γ) =
∏

xy∈E(Γ)

λΓ(x)λΓ(y).

In 1975, Randić [12] proposed a structure descriptor, based on the end -vertex
degrees of edges in a graph, called branching invariant that later became the well-
known Randić connectivity invariant. The Randić invariant of Γ is defined as

R(Γ) =
∑

xy∈E(Γ)

1√
λΓ(x)λΓ(y)

.

It gave rise to a number of generalizations. The most common one arises by varying
the exponent α in the edge contribution (λΓ(x)λΓ(y))

α. The α-Randić invariant is
then defined as

Rα(Γ) =
∑

xy∈E(Γ)

(λΓ(x)λΓ(y))
α.

The F -invariant and multiplicative F -invariant of a connected graph Γ are
respectively, defined as

F (Γ) =
∑

xy∈E(Γ)

(λΓ(x)
2 + λΓ(y)

2)

and

F ∗(Γ) =
∏

xy∈E(Γ)

(λΓ(x)
2 + λΓ(y)

2).

The α-F -invariant of Γ is defined as Fα(Γ) =
∑

xy∈E(Γ)

(λΓ(x)
2 + λΓ(y)

2)α.

2. Bounds for SDD

Let a1, a2, . . . , as be positive real numbers.
The arithmetic mean of a1, a2, . . . , as is equal to AM(a1, a2, . . . , as) =

a1+a2+...+as

s .
The geometric mean of a1, a2, . . . , as is equal to GM(a1, a2, . . . , as) =

s √a1a2 . . . as.
The harmonic mean of a1, a2, . . . , as is equal toHM(a1, a2, . . . , as) =

s
1
a1

+ 1
a2

+...+ 1
as

.

Related to these means, we have the following lemma.

Lemma 2.1. (Arithmetic-Geometric-Harmonic Mean Inequality)
Let a1, a2, . . . , as be positive real numbers. Then

AM(a1, a2, . . . , as) ⩾ GM(a1, a2, . . . , as) ⩾ HM(a1, a2, . . . , as),

with equality if and only if a1 = a2 = . . . = as.

Theorem 2.1. Let Γ be a connected graph with m edges. Then SDD(Γ) ⩾
2m2δ2

M2(Γ)
with equality if and only if Γ is regular.
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Proof. Using the arithmetic-harmonic mean inequality, we get

m

SDD
=

m∑
xy∈E(Γ)

λΓ(x)2+λΓ(y)2

λΓ(x)λΓ(y)

⩽
m∑

xy∈E(Γ)

2δ2

λΓ(x)λΓ(y)

=
1

2δ2
m∑

xy∈E(Γ)

1
λΓ(x)λΓ(y)

⩽
1

2mδ2

∑
xy∈E(Γ)

λΓ(x)λΓ(y)

=
1

2mδ2
M2(Γ).(2.1)

Equality (2.1) holds if and only if λΓ(x) = λΓ(y) = δ for any edge xy ∈ E(Γ),
this implies that Γ is regular. Equality (2.1) holds if and only if there exists a
constant c such that λΓ(x)λΓ(y) = c for each xy ∈ E(Γ). If xy, xz ∈ E(Γ), then
λΓ(x)λΓ(y) = λxλz which is easily simplified into λΓ(y) = λz. Consequently for
each vertex x ∈ V (Γ), every neighbor of x has the same degree, which implies that
Γ is regular (or) biregular. □

Theorem 2.2. For any connected graph Γ, SDD(Γ) ⩾ mm
√

F∗(Γ)
π2(Γ)

with equal-

ity if and only if Γ is regular (or) biregular.

Proof. Using the arithmetic-harmonic mean inequality, we obtain

SDD(Γ)

m
=

1

m

∑
xy∈E(Γ)

λΓ(x)
2 + λΓ(y)

2

λΓ(x)λΓ(y)

⩾ m

√√√√ ∏
xy∈E(Γ)

λΓ(x)2 + λΓ(y)2

λΓ(x)λΓ(y)

= m


√√√√√√

∏
xy∈E(Γ)

(λΓ(x)2 + λΓ(y)2)∏
xy∈E(Γ)

λΓ(x)λΓ(y)

 .

SDD(Γ)

m
⩾ m

√
F ∗(Γ)

π2(Γ)
.(2.2)

The equality holds if and only if there exists a constant c such that λΓ(x)
2+λΓ(y)

2

λΓ(x)λΓ(y)
= c

for each edge xy ∈ E(Γ). Thus Γ is regular (or) biregular. □

Theorem 2.3. For any graph Γ with atleast two vertices, SDD(Γ) ⩾ 2R−1(Γ)
with equality if and only if Γ is a path on two vertices.
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Proof. Since for each edge xy ∈ E(Γ), λΓ(x)
2 + λΓ(y)

2 ⩾ 2, we obtain;

SDD(Γ) =
∑

xy∈E(Γ)

λΓ(x)
2 + λΓ(y)

2

λΓ(x)λΓ(y)
⩾

∑
xy∈E(Γ)

2

λΓ(x)λΓ(y)
= 2R−1(Γ).

The equality holds if and only if for each edge xy ∈ E(Γ), λΓ(x)
2+λΓ(y)

2 = 2,
which implies that Γ is a path on two vertices. □

Theorem 2.4. For any graph Γ, SDD(Γ) ⩾ 2δ2m2

∆3 R(Γ) with equality if and only

if Γ is regular (or) biregular.

Proof. Using the arithmetic-harmonic mean inequality, we obtain

m

R(Γ)
=

m∑
xy∈E(Γ)

1√
λΓ(x)λΓ(y)

⩽
1

m

∑
xy∈E(Γ)

√
λΓ(x)λΓ(y)

=
1

m

∑
xy∈E(Γ)

√
λΓ(x)λΓ(y)

(λΓ(x)
2 + λΓ(y)

2

λΓ(x)2 + λΓ(y)2

)
=

1

m

∑
xy∈E(Γ)

(λΓ(x)
2 + λΓ(y)

2

λΓ(x)λΓ(y)

) (λΓ(x)λΓ(y))
3
2

λΓ(x)2 + λΓ(y)2

⩽
1

m
SDD(Γ)

( (∆2)
3
2

2δ2

)
=

1

m
SDD(Γ)

(∆3

2δ2

)
.

The first inequality holds if and only if there exists a constant c such that for
every edge xy ∈ E(Γ),

√
λΓ(x)λΓ(y) = c, this holds if and only if Γ is regular (or)

biregular. Also the second equality holds if and only if Γ is regular (or) biregular.

Therefore SDD(Γ) ⩾ 2m2δ2

∆3 R(Γ) with equality if and only if Γ is regular (or) biregular.

□

Theorem 2.5. Let Γ be a graph with t pendent vertices and minimal non-

pendent vertex degree δ1. Then SDD(Γ) ⩾ 2(m−t)δ21+∆ t(1+δ21)
∆2 with equality if and

only if Γ is regular (or) (1,∆)-biregular.

Proof. From the definition of SDD, we have

SDD(Γ) =
∑

xy∈E(Γ), λΓ(x),λΓ(y)̸=1

λΓ(x)
2 + λΓ(y)

2

λΓ(x)λΓ(y)
+

∑
xy∈E(Γ), λΓ(x)=1

1 + λΓ(y)
2

λΓ(y)

⩾ (m− t)
(2δ21
∆2

)
+ t
(1 + δ21

∆

)
=

2(m− t)δ21 +∆ t(1 + δ21)

∆2
.
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Equality holds if and only if λΓ(x) = ∆ = δ1, for each non-pendent vertex
x ∈ V (Γ). This implies that Γ is (1,∆)-biregular if t > 0 and Γ is regular if
t = 0. □

Corollary 2.1. Let Γ be a graph without pendent vertices. Then SDD(Γ) ⩾
2mδ2

∆2 with equality if and only if Γ is regular.

Proof. By setting t = 0 and δ1 = δ in Theorem 2.5, we can get the required
result. □

The inverse sum indeg invariant of Γ is defined as ISI(Γ) =
∑

xy∈E(Γ)

λΓ(x)λΓ(y)
λΓ(x)+λΓ(y)

.

Theorem 2.6. For any graph Γ, SDD(Γ) ⩾ 4δ
∆2 ISI(Γ). Equality holds if and

only if Γ is regular.

Proof. By geometric-quadratic mean inequality,
√
xy ⩽

√
x2+y2

2 . By squaring

it and applying to the numerators of edge contributions, we have

λΓ(x)λΓ(y)

λΓ(x) + λΓ(y)
⩽

1

2

(λΓ(x)
2 + λΓ(y)

2

λΓ(x) + λΓ(y)

)
.

An upper bound for the right-hand term can be obtained by decreasing the
denominators as

1

2

(λΓ(x)
2 + λΓ(y)

2

λΓ(x) + λΓ(y)

)
⩽

1

4δ
(λΓ(x)

2 + λΓ(y)
2)

=
1

4δ

(λΓ(x)
2 + λΓ(y)

2

λΓ(x)λΓ(y)

)
(λΓ(x)λΓ(y))

⩽
∆2

4δ

(λΓ(x)
2 + λΓ(y)

2

λΓ(x)λΓ(y)

)
.

By summing over all edges of Γ, we get∑
xy∈E(Γ)

λΓ(x)λΓ(y)

λΓ(x) + λΓ(y)
⩽

∑
xy∈E(Γ)

∆2

4δ

(λΓ(x)
2 + λΓ(y)

2

λΓ(x)λΓ(y)

)
.

Hence, SDD(Γ) ⩾ 4δ
∆2 ISI(Γ).

The equality holds if and only if δ = λΓ(x) = λΓ(y) = ∆, for each edge
xy ∈ E(Γ). This implies that Γ is regular. □

Theorem 2.7. Let Γ be a graph with m edges. Then SDD(Γ) ⩾ 4∆
δ2 (mδ −

ISI(Γ)) with equality if and only if Γ is regular.

Proof. We start from λΓ(x)λΓ(y) =
1
2

[
(λΓ(x)+λΓ(y))

2− (λΓ(x)
2+λΓ(y)

2)
]
.

By dividing this expression for the contribution throughout λΓ(x) + λΓ(y), we get
following expression for the contribution of edges to SDD,

λΓ(x)λΓ(y)

λΓ(x) + λΓ(y)
=

1

2

[
(λΓ(x) + λΓ(y))−

λΓ(x)
2 + λΓ(y)

2

λΓ(x) + λΓ(y)

]
.
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Since 2δ ⩽ λΓ(x) + λΓ(y) ⩽ 2∆, for any edge xy in Γ. Therefore∑
xy∈E(Γ)

λΓ(x)λΓ(y)

λΓ(x) + λΓ(y)
⩾

1

2

[
2mδ −

∑
xy∈E(Γ)

λΓ(x)
2 + λΓ(y)

2

λΓ(x)λΓ(y)

( δ2

2∆

)]
.

This implies ISI(Γ) ⩾ mδ−
(

δ2

4∆

)
SDD(Γ). Equality holds if and only if δ = λΓ(x)

= λΓ(y) = ∆, for each edge xy ∈ E(Γ). This implies that Γ is regular. □

Lemma 2.2. (Cauchy-Schwarz inequality) Let X = (x1, x2 . . . xn) and Y =

(y1, y2, . . . , yn) be two sequences of real numbers. Then
( n∑

i=1

xiyi

)2
⩽

n∑
i=1

x2
i

n∑
i=1

y2i

with equality if and only if the sequences X and Y are proportional, that is, there
exists a constant c such that xi = cyi, for each 1 ⩽ i ⩽ n.

As a special case of the Cauchy-Schwarz inequality, when y1 = y2 = . . . = yn,
we get the following result.

Corollary 2.2. Let x1, x2, . . . , xn be real numbers. Then
( n∑

i=1

xi

)2
⩽ n

n∑
i=1

x2
i

with equality if and only if x1 = x2 = . . . = xn.

Theorem 2.8. For any graph Γ, SDD(Γ) ⩾ (R(Γ))2

F−1(Γ)
with equality if and only

if Γ is regular (or) biregular.

Proof. Using Cauchy-Schwarz inequality, we obtain;

(R(Γ))2 =
( ∑

xy∈E(Γ)

1√
λΓ(x)λΓ(y)

)2
(2.3)

=
( ∑

xy∈E(Γ)

√
λΓ(x)2 + λΓ(y)2√

λΓ(x)λΓ(y)

1√
λΓ(x)2 + λΓ(y)2

)2
⩽

∑
xy∈E(Γ)

λΓ(x)
2 + λΓ(y)

2

λΓ(x)λΓ(y)

∑
xy∈E(Γ)

1

λΓ(x)2 + λΓ(y)2

= SDD(Γ)F−1(Γ).

Equality holds if and only if there exists a constant c such that for every edge
xy in Γ, √

λΓ(x)2 + λΓ(y)2√
λΓ(x)λΓ(y)

=
c√

λΓ(x)2 + λΓ(y)2
,

this implies that

c2 =
(λΓ(x)

2 + λΓ(y)
2)2

λΓ(x)λΓ(y)
.

If xy, yz ∈ E(Γ), then (λΓ(x)
2+λΓ(y)

2)2

λΓ(x)λΓ(y)
=

(λΓ(x)
2+λ2

z)
2

λxλz
, which is easily simplified into

λz(λΓ(x)
2 + λΓ(y)

2)2 − λΓ(y)(λΓ(x)
2 + λ2

z)
2 = 0.
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By direct calculation, we get (λz − λΓ(y))
(
λΓ(x)

4 − λzλy(λ
2
z + λΓ(y)

2 +2λ2
x +

λzλy)
)
= 0. since λΓ(x)

4 − λzλy(λ
2
z + λΓ(y)

2 + 2λ2
x + λzλy) ̸= 0, so λz = λΓ(y).

Consequently, for each vertex x ∈ V (Γ), every neighbor of x has the same
degree, this holds if and only if Γ is regular (or) biregular. □

Lemma 2.3. (Pólya-Szego inequality [21]) Let 0 < m1 ⩽ xi ⩽ M1 and 0 <
m2 ⩽ yi ⩽ M2, for 1 ⩽ i ⩽ n. Then

n∑
i=1

x2
i

n∑
i=1

y2i ⩽
1

4

(√M1M2

m1m2
+

√
m1m2

M1M2

)2
(

n∑
i=1

xiyi)
2.

Theorem 2.9. Let Γ be a simple connected graph on s vertices and m edges and
let t, ∆ and δ1 denote the number of pendent vertices, maximum vertex degree and

minimum nonpendant vertex degree of Γ, respectively. ThenSDD(Γ) ⩾ 16(m−t)δ61(
δ41+∆4

)2 +

tδ21+1
∆ with equality if and only if Γ is regular.

Proof. For 2 ⩽ δ1 ⩽ λΓ(x) ⩽ ∆, we have 2δ1
2

∆2 ⩽ λΓ(x)
2+λΓ(y)

2

λΓ(x)λΓ(y)
⩽ 2∆2

δ21
for any

edge xy in Γ. Setting m1 =
2δ21
∆2 ,xi = λΓ(x)

2+λΓ(y)
2

λΓ(x)λΓ(y)
, 1 ⩽ i ⩽ m, M1 = 2∆2

δ21
and

m2 = yi = M2 = 1, 1 ⩽ i ⩽ m in Polya-Szego inequality (Lemma 2.3), we obtain∑
xy∈E(Γ),λΓ(x), λΓ(y)̸=1

(λΓ(x)
2 + λΓ(y)

2

λΓ(x)λΓ(y)

)2 ∑
xy∈E(Γ),λΓ(x), λΓ(y)̸=1

(
1
)2

⩽
1

4

(√√√√ 2∆2

δ21
2δ21
∆2

+

√√√√ 2δ21
∆2

2∆2

δ21

)2( ∑
xy∈E(Γ),λΓ(x), λΓ(y)̸=1

λΓ(x)
2 + λΓ(y)

2

λΓ(x)λΓ(y)

)2

.

(m− t)
∑

xy∈E(Γ),
λΓ(x), λΓ(y)̸=1

(λΓ(x)
2 + λΓ(y)

2

λΓ(x)λΓ(y)

)2
⩽

1

4

( δ21
∆2

+
∆2

δ21

)2( ∑
xy∈E(Γ),

λΓ(x), λΓ(y) ̸=1

λΓ(x)
2 + λΓ(y)

2

λΓ(x)λΓ(y)

)2

.

16(m− t)δ61(
δ41 +∆4

)2 ⩽

( ∑
xy∈E(Γ),

λΓ(x), λΓ(y)̸=1

λΓ(x)
2 + λΓ(y)

2

λΓ(x)λΓ(y)

)2

.(2.4)

It is easy to see that

SDD(Γ) =
∑

xy∈E(Γ),
λΓ(x), λΓ(y) ̸=1

λΓ(x)
2 + λΓ(y)

2

λΓ(x)λΓ(y)
+

∑
xy∈E(Γ),
λΓ(y)=1

λΓ(x)
2 + 1

λΓ(x)

⩾
∑

xy∈E(Γ),
λΓ(x), λΓ(y) ̸=1

λΓ(x)
2 + λΓ(y)

2

λΓ(x)λΓ(y)
+

t
(
δ21 + 1

∆

)
.(2.5)
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From (2.4) and (2.5), we have SDD(Γ) ⩾ 16(m−t)δ61(
δ41+∆4

)2 +
tδ21+1

∆ with equality if and

only if Γ is regular. □

Theorem 2.10. Let Γ be a graph on s vertices and m edges. Then SDD(Γ) ⩾
M∗

2 (Γ)F (Γ)
m with equality if and only if Γ is regular.

Proof. One can observe that δ2 ⩽ λΓ(x)λΓ(y) ⩽ ∆2 for any edge xy in Γ
and setting m1 = 1

δ2 ,xi = 1
λΓ(x)λΓ(y)

, 1 ⩽ i ⩽ m, M1 = 1
∆2 and m2 = 2δ2,yi =

λΓ(x)
2 + λΓ(y)

2,M2 = 2∆2, 1 ⩽ i ⩽ m in Polya-Szego inequality (Lemma 2.3), we
obtain∑
xy∈E(Γ)

( 1

λΓ(x)λΓ(y)

)2 ∑
xy∈E(Γ)

(
λΓ(x)

2 + λΓ(y)
2
)2

⩽
( ∑

xy∈E(Γ)

λΓ(x)
2 + λΓ(y)

2

λΓ(x)λΓ(y)

)2
.

By Cauchy inequality, we have∑
xy∈E(Γ)

( 1

λΓ(x)λΓ(y)

)2 ∑
xy∈E(Γ)

(
λΓ(x)

2 + λΓ(y)
2
)2

⩾
1

m2

( ∑
xy∈E(Γ)

1

λΓ(x)λΓ(y)

)2( ∑
xy∈E(Γ)

(
λΓ(x)

2 + λΓ(y)
2
)2

=
1

m2

(
M∗

2 (Γ)F (Γ)
)2

.

Combining the above two inequality, we obtain

SDD(Γ) ⩾
M∗

2 (Γ)F (Γ)

m
.

The equality holds if and only if λΓ(x)) = λΓ(y) = δ = ∆ for each xy ∈ E(Γ) which
implies that Γ is regular. □

The (a, b)-eccentric Zagreb invariant is defined for a connected graph Γ as

ξa,b(Γ) =
1

2

∑
xy∈E(Γ)

(
ϵaxϵ

b
y + ϵbxϵ

a
y

)
.

Note that ξ0,0(Γ) = E(Γ),2ξ1,0(Γ) = ξ(Γ) and ξ1,1(Γ) = ξ2(Γ).

Lemma 2.4. [5] Let Γ be a nontrivial connected graph of order s. For each
vertex x ∈ V (Γ), ϵx ⩽ (s − λΓ(x)) with equality if and only if Γ ∼= P4 or Γ ∼=
Ks − iK2,0 ⩽ i ⩽

⌊
s
2

⌋
, where P4 denotes the path on 4 vertices and Ks − iK2

denotes the graph obtained from the complete graph Ks by removing i independent
edges.

Theorem 2.11. Let Γ be a graph on s vertices and m edges. Then SDD(Γ) ⩾
1

2δ2

√
m
σ , where σ = ms4 + 2s2ξ2,0(Γ) − 4s3ξ1,0(Γ) − 4sξ2,1(Γ) + 4s2ξ(Γ) + ξ2(Γ).

Equality holds if and only if Γ ∼= P4 or Γ ∼= Ks − iK2,0 ⩽ i ⩽
⌊
s
2

⌋
.
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Proof. Let Γ be a nontrivial connected graph on s vertices. Then( m

SDD(Γ)

)2
=

( m∑
xy∈E(Γ)

λ2
Γ(x)+λ2

Γ(y)

λΓ(x)λΓ(y)

)2

⩽
( 1

m

∑
xy∈E(Γ)

λΓ(x)λΓ(y)

λ2
Γ(x) + λ2

Γ(y)

)2
⩽

1

m

∑
xy∈E(Γ)

( λΓ(x)λΓ(y)

λ2
Γ(x) + λ2

Γ(y)

)2
⩽

1

4δ4m

∑
xy∈E(Γ)

(λΓ(x)λΓ(y))
2

For each vertex y ∈ V (Γ), we have ϵy ⩽ s− λΓ(y). Thus( m

SDD(Γ)

)2
⩽

1

4δ4m

∑
xy∈E(Γ)

(
(s− ϵx)(s− ϵy)

)2
=

1

4δ4m

∑
xy∈E(Γ)

(
s4 + s2(ϵ2x + ϵ2y)− 2s3(ϵx + ϵy)(2.6)

− 2s(ϵ2xϵy + ϵxϵ
2
y) + 4s2ϵxϵy + ϵ2xϵ

2
y

)
=

1

4δ4m

(
ms4 + 2s2ξ2,0(Γ)− 4s3ξ1,0(Γ)

− 4sξ2,1(Γ) + 4s2ξ(Γ) + ξ2(Γ)
)
.

By Lemma 2.4, the equality holds if and only if λΓ(y) = s− ϵx for each vertex x ∈
V (Γ), which by Lemma 2.4, implies that Γ ∼= P4 or Γ ∼= Ks− iK2,0 ⩽ i ⩽

⌊
s
2

⌋
. □

Let Γ be a connected graph with s vertices and m edges and let ∆ = λ1 ⩾
λ2 ⩾ . . . ⩾ λs = δ > 0, λi = λ(i) and λ(e1) ⩾ λ(e2) ⩾ . . . ⩾ λ(em) be sequences of
its vertex
and edge degrees, respectively. We denote ∆e1 = λ(e1) + 2 and δe1 = λ(em) + 2. If
the vertices x and y are adjacent, we write x ∼ y.

The first and second Zagreb indices are recalled as M1(Γ) =
s∑

i=1

λ2
i =

∑
i∼j

(λi +

λj) and M2(Γ) =
∑
i∼j

λiλj . Bearing in mind that for the edge e connecting the

vertices x and y, λ(e) = λΓ(x) + λΓ(y) + 2, the F -invariant and multiplicative F -
invariant are respectively defined as F (Γ) =

∑
i∼j

(λ2
i +λ2

j ) and F ∗(Γ) =
∏
i∼j

(λ2
i +λ2

j ).

The α- F -invariant and α- Randić invariant are respectively, defined as
Fα(Γ) =

∑
i∼j

(λ2
i + λ2

j )
α and Rα(Γ) =

∑
i∼j

(λiλj)
α, where α is an arbitrary real

number.
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Theorem 2.12. Let Γ be a connected graph. Then

SDD(Γ) ⩾ 1
δe1+∆e1

(
F (Γ)F−1(Γ) + 4δe1∆e1(R−1(Γ))

2
)
. Equality holds if and only

if Γ is regular (or) biregular.

Proof. Let p = (pi) and a = (ai), i = 1, 2, . . . ,m be positive real number
sequences with the properties p1 + p2 + . . . + pm = 1 and 0 < a ⩽ ai ⩽ A < ∞.
Rennie [10] proven

m∑
i=1

piai + aA

m∑
i=1

pi
ai

⩽ a+A(2.7)

with equality if and only if ai = A(or)ai = a, for every i = 1, 2, . . . ,m.

By setting pi =
λ2
i+λ2

j

λiλj SDD(Γ) ,ai = λiλj ,a = δe1 and A = ∆e1 in (2.7), then

m∑
i=1

λ2
i + λ2

j

λiλj SDD(Γ)
λiλj + δe1∆e1

m∑
i=1

λ2
i + λ2

j

λiλj SDD(Γ)

( 1

λiλj

)
⩽ δe1 +∆e1

⇒
m∑
i=1

(
λ2
i + λ2

j

)
+ δe1∆e1

m∑
i=1

λ2
i + λ2

j

λ2
iλ

2
j

⩽
(
δe1 +∆e1

)
SDD(Γ)

⇒ F (Γ) + δe1∆e1

∑
i∼j

λ2
i + λ2

j

λ2
iλ

2
j

⩽
(
δe1 +∆e1

)
SDD(Γ).(2.8)

Let x = (xi) and a = (ai), i = 1, 2, . . . ,m be positive real number sequences.
Then by [11],

m∑
i=1

xr+1
i

ari
⩾

( m∑
i=1

xi

)r+1

( m∑
i=1

ai

)r(2.9)

with equality if and only if a1

x1
= a2

x2
= . . . = am

xm
.

By setting r = 1, xi =
1

λiλj
and ai =

1
λ2
i+λ2

j
in (2.9), we obtain;

∑
i∼j

λ2
i + λ2

j

λ2
iλ

2
j

⩾

( ∑
i∼j

1
λiλj

)2
( ∑

i∼j

1
λ2
i+λ2

j

) ⩾

(
R−1(Γ)

)2
F1(Γ)

(2.10)

Using (2.10) in (2.8), we have

SDD(Γ) ⩾
1

δe1 +∆e1

(
F (Γ)F−1(Γ) + δe1∆e1(R−1(Γ))

2
)
.

The equality in (2.10) holds if and only if for any pair of adjacent vertices i ∼ j
and x ∼ y such that 1

λi
+ 1

λj
= 1

λΓ(x)
+ 1

λΓ(y)
. Let j and x be two vertices adjacent

to i, that is, i ∼ j and i ∼ x. Then λj = λΓ(x). Since Γ is a connected, equality
in 2.10 holds if and only if Γ is reqular (or) biregular. Similarly, equality in (2.8)
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holds if and only if λi + λj = ∆e1 (or) λi + λj = δe1 , for every edge of Γ, that is, Γ
is regular or biregular. □

Theorem 2.13. Let Γ be a connected graph with m edges. Then

SDD(Γ) ⩾ F (Γ)+m(m−1)(F∗(Γ))
1
m

M2(Γ)
Equality holds if and only if for any two pair of

vertices i ∼ j and x ∼ y the identity λi

λj
+

λj

λi
= λΓ(x)

λΓ(y)
+ λΓ(y)

λΓ(x)
and λ2

i + λ2
j =

λΓ(x)
2 + λΓ(y)

2 holds.

Proof. For r = 1, xi =
√
λ2
i + λ2

j and ai = λiλj in (2.9), we obtain;

∑
i∼j

√
λ2
i + λ2

j

λiλj
⩾

( ∑
i∼j

√
λ2
i + λ2

j

)2
( m∑

i=1

λiλj

) .(2.11)

If a = (ai), i = 1, 2, . . . ,m is a positive real number sequences, then by [6], we
write ( m∑

i=1

√
ai
)2

⩾
m∑
i=1

ai +m(m− 1)
( m∏

i=1

ai

) 1
m

(2.12)

with equality if and only if a1 = a2 = . . . = am.
Setting ai = λ2

i + λ2
j in (2.12), we have( m∑

i=1

√
λ2
i + λ2

j

)2
⩾

m∑
i=1

(λ2
i + λ2

j ) +m(m− 1)
( m∏

i=1

(λ2
i + λ2

j )
) 1

m

= F (Γ) +m(m− 1)(F ∗(Γ))
1
m .(2.13)

Using (2.13) in (2.11), we have

SDD(Γ) ⩾
F (Γ) +m(m− 1)(F ∗(Γ))

1
m

M2(Γ)
.

Equality holds in (2.11) if and only if for any two pair of adjacent vertices i ∼ j

and x ∼ y the identity λi

λj
+

λj

λi
= λΓ(x)

λΓ(y)
+ λΓ(y)

λΓ(x)
and λ2

i + λ2
j = λΓ(x)

2 + λΓ(y)
2

holds. Equality holds in (2.12) if and only if for any two pair of adjacent vertices
i ∼ j and x ∼ y the identity λ2

i + λ2
j = λΓ(x)

2 + λΓ(y)
2 holds. □
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