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Abstract. In this paper, we use the p-norm to define the interval p-Henstock

integral, introduce the interval p-Sequential Henstock integrals and show the

equivalence of the interval p-Henstock-type integrals. The p-norm provides an
alternative approach to defining the Henstock-type integrals of interval valued

functions and the p-integral of interval valued functions.

1. Introduction

Several authors have studied the concept of integration for real valued space
functions. The techniques in this integration concept have some difficulties as that
of the Lebesgue integral. Some have sought to redefine the rigorous nature of these
techniques with a view of avoiding its difficulties by introducing new and reliable
integrals. One of the most popular integrals is the Henstock integral. Its definition
is obtained by a slight modification of the Riemann’s definition. Henstock integral
was introduced independently by R. Henstock and J. Kurzweil in 1955 and 1957
respectively. It is well known that Henstock integral is equivalent to the Denjoy and
Perron integrals and is easier and more reliable than the Wiener, Feynmann and
Lebesgue integrals(see[1-20]) and has been shown by Paxton [15] to be equivalent
to the Sequential Henstock integral. In 2018, Ray [16] obtained results dealing with
equivalence of Riemann integrals based on p-norm. It is well known that in the
usual generalised Riemann integral setting, the Henstock norm or mesh is adopted
for the Henstock sums. Interval analysis helps to reduce the uncertainty and error

2020 Mathematics Subject Classification. Primary 28B05; Secondary 28B10, 28B15, 46G10.
Key words and phrases. Interval Sequential Henstock integrals, Interval p-Henstock,

Continuous functions, Guages, Interval ap-Henstock integral.
Communicated by Dusko Bogdanic.

327



328 ILUEBE, MOGBADEMU, AJILORE, AND ESAN

bounds yields in real values computations and measurements as well as find guar-
anteed solutions to differential equations and optimization problems. In 2000, Wu
and Gong[19] introduced the concept of the Henstock (H) integral of interval valued
functions and fuzzy number-valued functions and obtained a number of properties.
In the same year, Hamid and Elmuiz[4] established the concept of the Henstock
Stieltjes (HS) integrals of interval valued functions and fuzzy number-valued func-
tions and obtained some number of properties of these integrals. The equivalence of
integrals in real valued space have been studied by several researchers. Paxton[15]
gave several variations of the Henstock integral of functions f in [a, b] and show
equivalence of same to the Sequential Henstock integral. Recently, the authors [7]
showed all sorts of equivalences of Henstock-type integrals and certain Sequential
Henstock integrals.

Therefore, it is pertinent to ask the following questions:

Question 1. Is interval p-Sequential Henstock integral equivalent to the inter-
val Sequential Henstock integral?

Question 2. Is interval ap-Sequential Henstock integral equivalent to the interval
Sequential Henstock integral?

These questions were answered later in this work.

2. Preliminaries

Let R denote the set of real numbers, F (X) as an interval valued function, F−,
the left endpoint, F+ as right endpoint, {δn(x)}∞n=1, as set of gauge functions, Pn,
as set of partitions of subintervals of a compact interval [a, b], X, as non empty
interval in R and d(X) = X+ − X−, as width of the interval X and ≪ as much
more smaller. Moreso, we recall the following as given in [15].
• FPV [a, b] =

⋃∞
n=1 FPV (n)[a, b] is the set of all the finite partition vectors of [a, b]

whose length is n. i.e.,

FPV
(n)
f [a, b] = {β̄ ∈ Rn+1 : β0 = a < β1 < ... < βj < βj+1 < ... < βn = b}

• FPV [a, b] = ∪∞
n=1FPV (n)[a, b] is the set of all the finite partition vectors of

[a, b]. Observe that FPV [a, b] ⊆ ∪∞
n=1R

n+1.

•
∏
[β̄] =

∏|β̄|−1
i=0 [βi−βi−1]. For example, if β̄ = (1, 1.2, 1.5, 2.2, 2.6, 3) ∈ FPV (5)[1, 3],

then (1.1, 1.4, 1.5, 2.4, 2.9) ∈
∏
[β̄]. Its’ obvious that

∏
[β̄] represents the space where

the tags are located, given a partition β̄ of [a, b]

• ∥β̄p∥ =
p

√
(
∑|βϵ|−1

i=0 |β̄i+1 − β̄i|)p, where p > 1. For example, if β̄ = (1, 2, 4, 7, 10)

then ∥β̄∥3= 3
√
(1 + 23 + 33 + 33) = 3

√
64. By exploiting Minkowski inequality.

Hence ∥.∥p is a norm.
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• Sf (β̄, P̄n) =
∑|βϵ|−1

i=0 |β̄i+1 − β̄i|.f(P̄i), where P̄i ∈ [βi, βi+1], where P̄n represents
a sequence of tags. i.e P̄ =

∏
[β̄]

Definition 2.1. [14]. A gauge on [a, b] is a positive real-valued function δ :
[a, b] → R+. Let δ > 0, then a partition P is δ-fine if every subinterval [ui−1, ui]
satisfies [ui−1, ui] ⊂ [ti − δ(ti), ti + δ(ti)].

Definition 2.2. [14] A sequence of tagged partition Pn of [a,b] is a finite
collection of ordered pairs Pn = {(u(i−1)n uin), tin}

mn
i=1 where [ui−1, ui] ∈ [a, b],

u(i−1)n ⩽ tin ⩽ uin and a = u0 < ui1 < ... < umn
= b.

Definition 2.3. [15]. (p-integral). A function f : [a, b] → R is p integrable on
[a, b] to a number α ∈ R if for any ε̄ > 0, there exists a δpε̄ > 0 such that for any
β̄ ∈ FPVp(δε̄) and for all P̄ ∈

∏
[β̄], we have |Sf (β̄, P̄ )− α| < ε̄. We say that α is

a p-integral of f on [a, b] with α = (p)
∫ b

a
f . We use p[a, b] to denote the set of all

p-integrable functions defined on [a, b].

Definition 2.4. ([2]. Let E be a measurable set and let c ∈ R. The density of
E at c is defined by

dcE = lim
h→0+

µ(E ∩ (c− h, c+ h))

2h
,

provided the limit exists. The point c is called a point of density of E if dcE = 1.
The set Ed represents the set of all points x ∈ E such that x is a point of density
of E.

Definition 2.5. [2]. A function F : [a, b] → R is said to be approximately
differentiable at c ∈ [a, b] if there exists a measurable set E ⊆ [a, b] such that c ∈ Ed

and

lim
t→c,t∈E

F (t)− F (c)

t− c
,

exists. The approximate derivative of F at c is denoted by F
′

ap(c). The concept of
sequence of approximate neighborhoods(or ap-nbds) of tin ∈ [a, b] is a measurable set
Stin ⊆ [a, b] containing tin as a sequence of points of density. For every tin ∈ E ⊆
[a, b], choose an ap-nbd Stin

⊆ [a, b] of tin . Then we say that S = {Stin
: tin ∈ E}

is a choice on E. A tagged interval (tin , [cin , din ]) is said to be subordinate to the
choice S = Stin

if cin , din ∈ Stin
. Let Pn = {(tin , [cin , din ]) : 1 ⩽ i ⩽ m,m ∈

N} be a finite collection of non-overlapping tagged intervals. If (tin , [cin , din ]) is
subordinate to a choice S for each in for i = 1, ...,m, then we say that Pn is

subordinate to S. If Pn is subordinate to S and [a, b] =

n⋃
i=1

[cin , din ], then we say

that Pn is a tagged partition of [a, b] that is subordinate to S.

Definition 2.6. [14] .(Sequential Henstock Integral). A function f : [a, b] → R
is Sequential Henstock integrable ( SH[a, b]) on [a, b], to a real number α if for any
ε > 0, there exists a sequence of gauge functions {δn(x)}∞n=1 such that for any
δn(x)− fine tagged partitions Pn = {(u(i−1)n , uin), tin}

mn
i=1, we have

|
∑mn

i=1 f(tin)(uin − u(i−1)n) − α| < ε. We say that α is a Sequential Henstock
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integral of f on [a, b]. i.e. α = SH
∫
[a,b]

f and use SHf [a, b] to denote the set of

all Sequential Henstock-integrable functions defined on [a, b]

Definition 2.7. ([12]) (p-Sequential Henstock integral). A function f : [a, b] →
R is p-Sequential Henstock integrable on [a, b] to a number α ∈ R if for any
ε̄ > 0 there exists a sequence of positive functions {δpnε̄(x)}∞n=1, such that for any
β̄n ∈ FPVp(δnε̄(x)) and for all P̄n ∈

∏mn

i=1[β̄n], we have |Sf (β̄n, P̄n)− α| < ε̄.. We
say that α is a p-Sequential Henstock integral of f on [a, b]. i.e. p-SHf [a, b] =
α =

∫
[a,b]

f . and use p − SHf [a, b] to denote the set of all p-Sequential Henstock

integrable functions defined on [a, b].

Definition 2.8. ([12]) (ap-Sequential Henstock integral) A function f : [a, b] →
R is ap-Sequential Henstock integrable on [a, b] to a vector α ∈ R if for any ε > 0
there exists a sequence of choice {Sn(x)}∞n=1 on [a, b] such that for any Sn-fine
tagged partitions Pn = {(u(i−1)n , uin), tin}

mn
i=1 we have

|
mn∑
i=1

f(tin)(uin − u(i−1)n)− α| < ε.

We say that α is an ap-Sequential Henstock integral of f on [a, b]. We use apSHf [a, b]
to denote the set of all ap-Sequential Henstock integrable functions defined on [a, b].

Definition 2.9. ([11,15]) Let IR = {I = [I−, I+]: I is a closed bounded inter-
val on the real line R}. For X,Y ∈ IR, we define
i. X ⩽ Y if and only if Y − ⩽ X− and X+ ⩽ Y +,
ii. X + Y = Z if and only if Z− = X− + Y − and Z+ = X+ + Y +,
iii. X.Y = {x.y : x ∈ X, y ∈ Y }, where

(X.Y )− = min{X−.Y −, X−.Y +, X+.Y −, X+.Y +}

Then d(X,Y ) = max(|X− − Y −|, |X+ − Y +|) is the metric distance between
intervals X and Y .

Now, we will define the Sequential Henstock integral of interval valued function.

Definition 2.10. An interval valued function F : [a, b] → IR is Sequential
Henstock integrable(ISH[a, b]) to I0 ∈ IR on [a, b] if for any ε > 0 there exists a
sequence of positive gauge functions {δn(x)}∞n=1 such that for every δn(x) − fine
tagged partitions Pn = {(u(i−1)n , uin), tin}

mn
i=1, we have

d(

mn∑
i=1

F (tin)(uin − u(i−1)n), I0) < ε

= max|d(
mn∑
i=1

F−(tin)(uin − u(i−1)n), I
−
0 ) < ε, d(

mn∑
i=1

F+(tin)(uin − u(i−1)n), I
+
0 ) < ε|

We say that I0 = [I−0 , I+0 ] is the Sequential Henstock integral of F on [a, b]. i.e.
(IH)

∫
[a,b]

F = α and F ∈ ISH[a, b].
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Definition 2.11. ([5]) (p-Sequential Henstock integral). A function f : [a, b] →
R is p-Sequential Henstock integrable on [a, b] to a number α ∈ R if for any
ε̄ > 0 there exists a sequence of positive functions {δpnε̄(x)}∞n=1, such that for any
β̄n ∈ FPVp(δnε̄(x)) and for all P̄n ∈

∏mn

i=1[β̄n], we have |Sf (β̄n, P̄n)− α| < ε̄.. We

say that α is a p-Sequential Henstock integral of f on [a, b]. i.e. α =
∫ b

a
f i.e p-

SHf [a, b] = α =
∫
[a,b]

f . and use p− SHf [a, b] to denote the set of all p-Sequential

Henstock integrable functions defined on [a, b].

We define newly the following concepts

Definition 2.12. (p-interval integral). A function F : [a, b] → IR is p-interval
integrable on [a, b] to a number I0 ∈ IR if for any ε̄ > 0, then there exists a δpε̄ > 0
such that for any β̄ ∈ FPVp(δε̄) and for all P̄ ∈

∏
[β̄], we have

d(SF (β̄, P̄ ), I0) < ε̄.

We say that I0 = [I−0 , I+0 ] is a p-interval integral of F on [a, b] with I0 = (p)
∫ b

a
F .

We use p[a, b] to denote the set of all p-interval integrable functions defined on
[a, b].

Definition 2.13. ([5]) (Interval p-Sequential Henstock integral). A function
F : [a, b] → IR is p-Sequential Henstock integrable on [a, b] to a number I0 ∈ IR if
for any ε̄ > 0 there exists a sequence of positive functions {δpnε̄(x)}∞n=1, such that
for any β̄n ∈ FPVp(δnε̄(x)) and for all P̄n ∈

∏mn

i=1[β̄n], we have

d(SF (β̄n, P̄n), I0) = max|d(SF−(β̄n, P̄n), I
−
0 ) < ε̄, d(SF+(β̄n, P̄n), I

+
0 ) < ε̄|.

We say that I0 is a interval p-Sequential Henstock integral of F on [a, b]. i.e
p-ISHF [a, b] = I0 =

∫
[a,b]

F . and use p-ISHF [a, b] to denote the set of all in-

terval p-Sequential Henstock integrable functions defined on [a, b].

Definition 2.14. ([5]) (interval ap-Sequential Henstock integral) A function
F : [a, b] → IR is interval ap-Sequential Henstock integrable on [a, b] to a vector I0 ∈
IR if for any ε > 0 there exists a sequence of positive choice functions {Sn(x)}∞n=1

on [a,b] such that

d(

mn∑
i=1

F (tin)(uin − u(i−1)n), I0)

= max|d(
mn∈N∑
i=1

F−(tin)(uin−u(i−1)n), I
−
0 ) < ε, d(

mn∈N∑
i=1

F+(tin)(uin−u(i−1)n), I
+
0 ) < ε|

whenever Pn = {([u(i−1)n , uin ], tin)}
mn
i=1 is a Sn(x) − fine ap-interval Sequential

Henstock partitions on [a, b]. We say that I0 is a interval ap-Sequential Hen-

stock integral of F on [a, b] i.e I0 = (apISH)
∫ b

a
F and F ∈ apISH[a, b] and use

apISHF [a, b] to denote the set of all interval ap-Sequential Henstock integrable
functions defined on [a, b]
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3. Main results

Now, we give the equivalence of certain interval Henstock-type integrals IH[a, b]
using sequential approach. Firstly, we state and prove the following:

Theorem 3.1. If F : [a, b] → IR is interval Sequential Henstock integrable on
[a, b], then it is p-Sequential Henstock integrable there, Infact,

(ISH)

∫ b

a

F = (p-IH)

∫ b

a

F

Proof. Suppose F ∈ SH[a, b] in the sense of Definition 2.10, we want to show
that F ∈ p-SH[a, b]. Let ε > 0 be given, then there exists a {δn(x)}∞n=1 and
Pn ≪ δn(x), such that

max|d(
mn∑
i=1

F−(tin)(uin − u(i−1)n), I
−
0 ) < ε, d(

mn∑
i=1

F+(tin)(uin − u(i−1)n), I
+
0 ) < ε|

Choose arbitrarily one δpµε(x) from {δpnε(x)}∞n=1 for 0 < p < 1, such that for a given

δpµε(x) > 0 and β̄ϵ = p
√

(S(F, Pn)p be arbitrary, then

∥βp∥ =
p

√√√√|βϵ|−1∑
i=0

d(β̄(i+1)n , β̄in)
p ⩽ ∥β̄ϵ∥p =

p

√√√√(

|βϵ|−1∑
i=0

d(β̄ϵ
(i+1)n

, β̄ϵ
in
))p < δ̄pϵ .

i.e SH[a, b] ⊆ FPV
(n)
p [a, b]. Then, the result F ∈ SH[a, b] follows immediately

from

ISH[a, b] = p-IH[a, b].

□

Theorem 3.2. If F : [a, b] → IR is p-interval Sequential Henstock integrable
on [a, b], then it is interval Sequential Henstock integrable there. Infact,

(p-IH)

∫ b

a

F = (ISH)

∫ b

a

F.

Proof. Suppose F ∈ p-IH[a, b] in the sense of Definition 2.13, we want to
show that F ∈ ISH[a, b].
Let ε > 0 be given, there exist sequence of positive functions {δpnϵ(x)}∞n=1 and
Pn ≪ δn(x), such that

max|d(SF−(β̄n, P̄n), I
−
0 ) < ε̄, d(SF+(β̄n, P̄n), I

+
0 ) < ε̄|. < 1

np
.

Let ε > 0 be arbitrary, we choose an arbitrary δ̄pµϵ
⩽ δpµϵ

from {δpnϵ(x)}∞n=1 for
n ⩾ µ such that for a given δpµϵ

(x) > 0, then we have

d(δpµϵ
(x), δpNϵ(x)) < ε
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for all β̄ ∈ FPVp(δnε̄(x)) and P̄n ∈
∏mn

i=1[β̄n] |SF (β̄, P̄n)− α| < ε̄ for some I0 ∈ IR.

Choose β̄ϵ
n ∈ FPV

(n)
p (δ̄pµϵ

) where β̄ϵ ∈ Pn(β̄
ϵ) is arbitrary, so that for a given

δpµ(x) > 0, we have

∥β̄n∥p = p

√√√√|βn|−1∑
j=0

(d(β̄i+1,β̄i
))p ⩽ ∥βϵ∥p < ε,∀x ∈ [a, b].

Let λ → 0, then, our choice of δµ(x) guarantees that if P̄n ≪ δpµϵ
(x), then P̄n ≪

δµ(x). Hence for a given P̄ 1
n ≪ δn(x), we can make the Riemann sums for FPV

(n)
p

and P̄n arbitrary close(using the same tagged partition) such that

d(β̄ϵ
n, SF (β̄, P̄n)) <

ε

2
.

Now, for any ε > 0, there exists a δpµϵ
(x) ∈ {δpn(x)}∞n=1 for n ⩾ µ, we find a

δµ(x) ∈ {δn(x)}∞n=1 satisfying (1) above and move down the sequence {δn(x)}∞n=1

denoting its’ new position as N∗, so that
1

N∗ <
ε

2
. If Pn ≪ δn(x), then

d(β̄ϵ
n, I0) ⩽ d(β̄ϵ

n, SF (β̄, P̄n)) + d(SF (β̄, P̄n), I0)

<
ε

2
.+

1

N∗

<
ε

2
+

ε

2
= ε.

Thus, p-IH[a, b] = ISH[a, b]. □

Corollary 3.1. A F : [a, b] → IR is p-interval Sequential Henstock integrable
on [a, b], if and only if, it is interval Sequential Henstock integrable there and

p-IH[a, b] = ISH[a, b].

Proof. The result follows easily from the proof of Theorems 3.1 and 3.2. This
completes the proof. □

Theorem 3.3. If F : [a, b] → IR is interval ap-Sequential Henstock integrable
on [a, b], then it is interval Sequential Henstock integrable there. Infact,

(apIH)

∫ b

a

F = (ISH)

∫ b

a

F.

Proof. Let F ∈ ap-IH[a, b] in the sense of Definition 2.14, we want to show
that F ∈ ISH[a, b]. Suppose that {Sn(x)}∞n=1 is a decreasing sequence of choice
functions such that Sn+1 < Sn for all t ∈ [a, b]. Let ε > 0 be given, then there
exists a {Sn(x)}∞n=1 and Sn(x)− fine partitions Pn = {[u(i−1)n , uin , tin ]}

mn
i=1, then

max|d(
mn∑
i=1

F−(tin)(uin − u(i−1)n), I
−
0 ) < ε, d(

mn∑
i=1

F+(tin)(uin − u(i−1)n), I
+
0 ) < ε|,

where I0 = [I−0 , I+0 ] =
∫ b

a
F . For n = 1, 2, ...,. Let εn be a rational ε such that

0 < ε < 1. By Definition 2.10, there exists δn(x) for each εn satisfying the last
equation. Since Q is a rational number which is countable, then {δn(x)}∞n=1 is
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a sequence. Given ε > 0, there exists a {δnv
(x)}∞n=1 and δn − fine partitions

Pn = [(u(i−1)n , uin), tin ]
mn

i=1
, then

d(

mn∑
i=1

F (tin)(uin − u(i−1)n), I0) < ε.

Thus,

apIH[a, b] = ISH[a, b].

□

Theorem 3.4. If F : [a, b] → IR is interval Sequential Henstock integrable on
[a, b], then it is interval ap-Sequential Henstock integrable there. Infact,

(ISH)

∫ b

a

F = (apIH)

∫ b

a

F.

Proof. Suppose F ∈ ISH[a, b] in the sense of Definition 2.14, we want to
show that F ∈ ap-IH[a, b].
Suppose there exists a positive {δn(x)}∞n=1 such that Pn = {[(u(i−1)n , uin), tin ]}

mn
i=1

where u(i−1)n ⩽ tin ⩽ uin . For every δn-fine partition of [a, b], then

max|d(
mn∑
i=1

F−(tin)(uin − u(i−1)n), I
−
0 ), d(

mn∑
i=1

F+(tin)(uin − u(i−1)n), I
+
0 )| < 1

N∗ .

Let µ ∈ R > 0, we choose a {δn(x)}∞n=1 such that for a given δn(x) > 0

d(δµv (t), δµ(x)) < ε

for all x ∈ [a, b]. where δµv
(x) is a sequence of positive gauge function in [a, b] for

n ⩾ N. Then, the choice sequence Sn(x) guarantees that Pn ≪ δµ(x). Hence, for
a positive gauge function then Pn ≪ Sµv

(x), We can make the Riemann sums for
Pµ and Pn arbitrarily close (using the similar tags on each partition) such that

d(S(F, Pµ), S(F, Pn)) <
ε

2
.

Since for any ε > 0, there exists a choice {Sn(x)}∞n=1 such that for each Sµ(x) ∈
{Sn(x)}∞n=1 and move down the sequence {Sn(x)}∞n=1, we denote its’ new position

as N∗, so that
1

N∗ <
ε

2
. Then if Pn ≪ Sn(x), then

d(S(F, Pn), I0) = d(S(F, Pn), S(F, Pµ) + S(f, Pµ), I0)

⩽ d(S(F, Pn), S(F, Pµ)) + d(S(F, Pµ), I0)

<
ε

2
.+

1

N∗

<
ε

2
+

ε

2
= ε.

Thus,

ISH[a, b] = apIH[a, b].

□
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Corollary 3.2. F : [a, b] → IR is interval ap-Sequential Henstock integrable
on [a, b], if and only if, it is interval Sequential Henstock integrable there and

apIH[a, b] = ISH[a, b].

Proof. It follows easily from the proof of Theorems 3.3 and 3.4. This com-
pletes the proof. □
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