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SOFT F− METRIC SPACES AND THEIR FIXED
POINTS

Demet Binbaşıoğlu

Abstract. In this paper, we proposed the notion of soft F− metric spaces

which generalizes the soft metric space concept. Also, we give the topology

generated by the soft F− metric. Furthermore, we introduce a new style of
the Banach contraction principle in these spaces. Additionally, some examples

are presented to make our work more comprehensive.

1. Introduction

Soft set theory was introduced by [22]. He applied this theory to some areas
for example medical and social science, economi etc. In the following years, many
authors have work about soft set and its applications. [18, 19] applied the soft set
theory to decision-making problems. Some researchers have worked in this theory
and have gived the soft set topologies [6, 7, 11, 15, 16, 21, 23]. Samanta and Das
defined the notion of soft element, soft real and complex numbers on this sets [12].
Samanta et al. studied the concepts of soft norm, soft metric etc.. Also Samanta
et al. introduced contraction theorem [20]. Furthermore, many authors worked on
the soft set theory and its applications [3, 4, 5, 10, 13, 14, 17, 24].

On the other hand, many researchers have gived a lot of interesting extensions
of the metric space for example the notions of soft metric, F− metric etc.. Fur-
thermore the authors have also given new studies about some fixed point theorems
using different contractions in this various generalized metric spaces [1, 2, 8, 9].

In this study, we define the concept of soft F−metric space and give the topol-
ogy generated by the soft F−metric. Also, we present a new style of the Banach
contraction principle in this metric space and some examples are gived. Assume
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that F is an initial universe set, A is a parameters set, P (F ) is the family of all
subsets of F and E ⊆ A. Firstly, we give some definitions.

Definition 1.1 ([22]). The pair (H,E) called as a soft set on F where H is
a mapping given by H : E → P (F ).

Definition 1.2 ([19]). Let (H,E) be a soft set on F . If H(β) = ∅, for all

β ∈ E, (H,E) is defined as empty soft set and denoted with
∼
Φ. If H(β) = F for

all β ∈ E, (H,E) is defined as universal (absolute) soft set denoted with
∼
H.

Remark 1.1. In this study, the soft sets
∼
Φ and (H,E) on F , for every β ∈ E

such that H(β) ̸= ∅ will be discussed. Also, S(
∼
F ) and SS(

∼
F ) denote the class of

soft sets and soft subsets of F , respectively.

Definition 1.3 ([18]). Let (H,E) and (G,D) are soft sets on F .

i If H (β)⊆G (β), for all β ∈ E and E⊆D, then (H,E) is a soft subset of

(G,D) and denoted by (H,E)
∼
⊆ (G,D).

ii The soft sets (G,D) and (H,E) on F are called soft equal if (H,E)
∼
⊆

(G,D) and (G,D)
∼
⊆ (H,E).

iii If, where C = E ∪D and for all β ∈ C,

K(β) =

 H(β) , β ∈ E ∖D
G(β) , β ∈ D ∖ E

H(β) ∪G(β) , β ∈ E ∩D
then, the union of two soft sets of (H,E), (G,D) is the soft set (K,C)
and denoted by (H,E) ∪ (G,D) = (K,C).

iv Where C = E ∩ D and for all β ∈ C, K(β) = H(β) ∩ G(β) then, the
intersection of two soft sets of (H,E), (G,D) is the soft set (K,C) and
denoted by (H,E) ∩ (G,D) = (K,C).

Definition 1.4 ([20]). The complement of a soft set (H,E) is denoted by
(H,E)c = (Hc, E), where Hc : E → P (F ) is a mapping given by
Hc (β) = F ∖H (β).

Definition 1.5 ([17]). Let F ̸= ∅ be a set. Then, for each β ∈ F and E⊂F ,
we define a function as hEβ : β → P (F ), β → E. Each function hEβ is called a fixed

point function of the pair (β,E). The set (β, hEβ (β)) = (β,E) is defined as a soft

single point set on F . Also, for all β ∈ F , the set (β, ∅) is called an empty soft
single point set. The set of all soft single points is denoted by SF and is defined as
SF = {(β, hEβ (β)) : β ∈ F,E⊂F}.

Remark 1.2. Each function hEβ is unique and different for each β ∈ F,E⊂F
and consists of one element (β,E) (see [17]).

Definition 1.6 ([17]). Let R be the set of real numbers. For all α ∈ R and
E ⊆ R,

hEα : {α}
α

→
→
P (R)
E

.
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Then, the set
∼
R = {(α,E) : α ∈ R,E ⊆ R} is called the set of soft real points.

Similarly the set
∼
R+ = {(α,E) : α ∈ R+, E ⊆ R} and

∼
R− = {(α,E) : α ∈

R−, E ⊆ R} is called the set of positive soft real points and negative soft real
points, respectively.

example 1.1. {(1, (0, 1))}, { 1
3 , (4,∞)}, {(

√
3, {0})} are the examples of soft

real points (see [17]).

Definition 1.7 ([17]). If α = α
′
and E = E

′
for α, α

′ ∈ R and E,E
′ ⊂ R

the soft real points (α,E) and (α
′
, E

′
) are equal and denoted by (α,E)

∼
= (α

′
, E

′
).

Definition 1.8 ([17]). For α, α
′ ∈ R and E,E

′ ⊂ R,

i If {(α,E)}
∼
+ {(α′

, E
′
)} ∼

= {(α + α
′
, E ∪ E′

)} then the operation ”
∼
+” is

defined the common sum of two soft real points (α,E) and (α
′
, E

′
).

ii If {(α,E)}
∼
− {(α′

, E
′
)} ∼

= {(α − α
′
, E ∪ E′

)} then the operation ”
∼
−” is

defined the common difference of two soft real points (α,E) and (α
′
, E

′
).

iii If {(α,E)}∼. {(α′
, E

′
)} ∼

= {(α.α′
, E∪E′

)} then the operation ”∼. ” is defined

the common product of two soft real points (α,E) and (α
′
, E

′
).

Definition 1.9 ([17]). For (α,E), (α
′
, E

′
) ∈

∼
R an exponential soft real point

is defined by {(α,E)}{(α
′
,E

′
)} ∼

= {(αα
′

, E ∪ E′
)}.

Definition 1.10 ([17]). For (α,E), (α
′
, E

′
) ∈

∼
R with α < α

′
and E ⊂ E

′
.

Then, the soft real point {(α,E)} is a soft real point less than a soft real point

{(α′
, E

′
)} is denoted by {(α,E)}

∼
< {(α′

, E
′
)}.

Definition 1.11 ([17]). Let
∼
R be the set of all soft real points and a mapping

p :
∼
R×

∼
R→

∼
R

+

∪
∼
{0} satisfies the following conditions for each {(α,E)}, {(α′

, E
′
)},

{(α′′
, E

′′
)},

i p({(α,E)}, {(α′
, E

′
)}) ∼

= {(0, ∅)} ⇔ {(α,E)} ∼
= {(α′

, E
′
)}

ii p({(α,E)}, {(α′
, E

′
)}) ∼

= p({(α′
, E

′
)}, {(α,E)})

iii p({(α,E)}, {(α′
, E

′
)})

∼
⩽ p({(α,E)}, {(α′

, E
′
)})

∼
+p({(α′

, E
′
)}, {(α′′

, E
′′
)}).

Then, (
∼
R, p) is said to be soft real point metric space.

Definition 1.12 ([17]). Suppose that {(an, E)} is a sequence of soft real points

in (
∼
R, p). The sequence {(an, E)} is convergent to {(a,E)}, such that there is a

n0 ∈ N and p({(an, E)}, {(a,E)})
∼
< {(e, E)} for any {(0, ∅)}

∼
< {(e, E)} ∈

∼
R+.

Then, we denote by {(an, E)} ∼→ {(a,E)} as n→ ∞.

2. New generalized soft metric spaces

First of all, let’s give the definition and proposition that will be necessary in
the later sections of our work.
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Definition 2.1. For a constant number α ∈ R+ ∖ {1}, {(α,E)} ∈
∼
R+ and

for γ ∈ R, {(γ,E)} ∈
∼
R. A function f :

∼
R →

∼
R

+

is defined by f((γ,E)) =

{(α,E)}{(γ,E)} ∼
= {(αγ , E)}.

Proposition 2.1. The function f defined in the above definition is bijection.

Proof. (i) Let us take two soft real points {(γ1, E)}, {(γ2, E)} ∈
∼
R and

{(γ1, E)} ≠ {(γ2, E)}. Then, f((γ1, E)) = {(α,E)}{(γ1,E)} ∼
= {(αγ1 , E)}

∼
̸=

{(αγ2 , E)} ∼
= {(α,E)}{(γ2,E)} = f((γ2, E)).

(ii) Let us take {(ψ,E)} ∈
∼
R

+

. In this case ψ ∈ R+ and there exists a real

number γ = log
α
ψ ∈ R. Then, f((γ,E)) = {(α,E)}{(γ,E)} ∼

= {(αγ , E)}

and since γ = log
α
ψ ∈ R, αγ = α

log
α
ψ

= ψ i.e. f((γ,E))
∼
= {(ψ,E)}.

Therefore, this function has an inverse defined as f−1((γ,E))
∼
= {(ψ,E)}.

□

Remark 2.1. In this work, for simplicity, the notation
∼
α will be used for a soft

real point (α,E).

Definition 2.2. Assume that E is a parameters set and a mapping p : SF ×

SF →
∼
R

+

∪
∼
{0} satisfies the following conditions for each

∼
a,

∼
b ∈ SF ,

G1: p(
∼
a,

∼
b)

∼
=

∼
0 ⇔ ∼

a
∼
=

∼
b

G2: p(
∼
a,

∼
b)

∼
= p(

∼
b,

∼
a)

G3: There exists
∼
L ∈

∼
R

+

,
∼
L

∼
⩾

∼
1, for every n ∈ N, n ⩾ 2 and for every

(
∼
si)

n
i=1

∼
⊂ SF with (

∼
s1,

∼
sn) = (

∼
a,

∼
b), we have

p(
∼
a,

∼
b)

∼
⩽

∼
L

∼·
n−1∑
i=1

p(
∼
si,

∼
si+1).

Then, p is said to be generalized soft metric on F, (F, p,E) is a generalized
soft metric space.

Definition 2.3. Let F be the set of functions α :
∼
R

+

→
∼
R satisfying the

following conditions for
∼
k,

∼
l ∈

∼
R

+

α1: α is non decreasing that is
∼
0

∼
⩽

∼
k

∼
⩽

∼
l ⇒ α(

∼
k)

∼
⩽ α(

∼
l )

α2: For every sequence {
∼
kn}

∼
⊂

∼
R

+

, we have
∼
kn

∼→
∼
0, n→ ∞ ⇔ α(

∼
kn)

∼→
∼

−∞, n→ ∞.

Definition 2.4. Assume that E is a parameters set and F is a universal

set. Let consider a mapping p : SF × SF →
∼
R

+

∪ {
∼
0} that satisfies the following

conditions for α ∈ F and
∼
t ∈

∼
R

+

. For
∼
a,

∼
b ∈ SF ,
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F1: p(
∼
a,

∼
b)

∼
=

∼
0 ⇔ ∼

a
∼
=

∼
b,

F2: p(
∼
a,

∼
b)

∼
= p(

∼
b,

∼
a),

F3: For every n ∈ N,n ⩾ 2 and for every (
∼
si)

n
i=1

∼
⊂ SF with (

∼
s1,

∼
sn)

∼
=

(
∼
a,

∼
b), we have

p(
∼
a,

∼
b)

∼
>

∼
0 ⇒ α(p(

∼
a,

∼
b))

∼
⩽ α

∼

(

n−1∑
i=1

p(
∼
si,

∼
si+1))

∼
+

∼
t .

Then, p is said to be soft F metric on F and the (F, p,E) is a soft F
metric space.

Remark 2.2. Throughout the article, p is a soft F metric that meets the condi-

tion {p(∼a,
∼
b)(β)

∼
= p(

∼
a(β),

∼
b(β)) :

∼
a(β),

∼
b(β) ∈ SF } for β ∈ E and

∼
a(β),

∼
b(β)

∼
∈ SF

is singleton.

Remark 2.3. Observe that any soft metric on F is a soft F metric on F.
Indeed, if p is a soft metric on F . Obviously it satisfies G1 and G2. On the other

hand by the triangle inequality, for every
∼
a(β),

∼
b(β) ∈ SF for every n ∈ N, n ⩾ 2

and for every (
∼
si)

n
i=1

∼
⊂ SF with (

∼
s1,

∼
sn)

∼
= (

∼
a,

∼
b),

p(
∼
a,

∼
b)

∼
= p(

∼
s1,

∼
sn)

∼
⩽ p(

∼
si,

∼
si+1).

Therefore,

p(
∼
a,

∼
b)

∼
>

∼
0 ⇒ α(p(

∼
a,

∼
b))

∼
⩽ α(

∼
n−1∑
i=1

p(
∼
si,

∼
si+1))

∼
+

∼
0. That is if we take

∼
t

∼
=

∼
0, p

satisfies G3.

example 2.1. Let p :
∼
R×

∼
R→

∼
R

+

is the mapping defined by

p(
∼
a,

∼
b)

∼
=

{
(
∼
k

∼
−

∼
l )

∼
2 ,

∼
k,

∼
l ∈

∼
R,

∼
0

∼
⩽

∼
k,

∼
l

∼
⩽

∼
4

|
∼
k

∼
−

∼
l |,

∼
k,

∼
l ∈

∼
R,

∼
k,

∼
l /∈ [

∼
0,

∼
4]

.

In this case p satisfies the first two conditions required to be a soft metric. But

p(
∼
1,

∼
4)

∼
=

∼
9

∼
> p(

∼
1,

∼
3)

∼
+ p(

∼
3,

∼
4)

∼
=

∼
4

∼
+

∼
1

∼
=

∼
5.

This show that the function p is not a soft metric on
∼
R

+

. Now, take
∼
k,

∼
l ∈

∼
R

+

such that p(
∼
k,

∼
l )

∼
>

∼
0. For every n ∈ N, n ⩾ 2 and for every (

∼
si)

n
i=1

∼
⊂ SF with

(
∼
s1,

∼
sn)

∼
= (

∼
k,

∼
l ).

Let I = {i = 1, 2, ..., n− 1 : (
∼
si,

∼
si+1), for 1⩽ i ⩽ n,

∼
0

∼
⩽

∼
si

∼
⩽

∼
4} and

J = {i = 1, 2, ..., n− 1}\I. Therefore
∼
n−1∑
i=1

p(
∼
si,

∼
si+1)

∼
=

∼∑
i∈I

p(
∼
si,

∼
si+1)

∼
+

∼∑
j∈J

p(
∼
sj ,

∼
sj+1)

∼
=

∼∑
i∈I

(
∼
si+1

∼
− ∼
si)

∼
2

∼
+

∼∑
j∈J

| ∼
sj

∼
− ∼
sj+1 | .
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There are two cases.

Case 1: If
∼
k,

∼
l ∈

∼
R

+

,
∼
k,

∼
l /∈ [

∼
0,

∼
4].

Then, we have

p(
∼
k,

∼
l )

∼
= |

∼
k
∼
−

∼
l |

∼
⩽

∼
n−1∑
i=1

| ∼
si+1

∼
− ∼
si |

∼
=

∼∑
i∈I

| ∼
si+1

∼
− ∼
si |

∼
+

∼∑
j∈J

| ∼
sj+1

∼
− ∼
sj |

Furthermore, | ∼
si+1

∼
− ∼
si |

∼
⩽ (

∼
sj+1

∼
− ∼
sj)

∼
2 , i ∈ I.

Consequently,

p(
∼
k,

∼
l )

∼
⩽

∼∑
i∈I

(
∼
si+1

∼
− ∼
si)

∼
2

∼
+

∼∑
j∈J

| ∼
sj+1

∼
− ∼
sj |

∼
=

∼
n−1∑
i=1

p(
∼
si,

∼
si+1)

Case 2: If
∼
k,

∼
l ∈

∼
R

+

,
∼
0

∼
⩽

∼
k,

∼
l

∼
⩽

∼
4.

Then, we have

p(
∼
k,

∼
l )

∼
= |

∼
k

∼
−

∼
l |

∼
2

∼
⩽

∼
4∼. |

∼
k

∼
−

∼
l |

∼
⩽

∼
4∼.

∼∑
i∈I

| ∼
si+1

∼
− ∼
si |

∼
+

∼∑
j∈J

| ∼
sj+1

∼
− ∼
sj |

∼
=

∼
4∼.

∼
n−1∑
i=1

p(
∼
si,

∼
si+1)

Therefore, for every
∼
k,

∼
l ∈

∼
R

+

, for every n ∈ N , n ⩾ 2 and for every (
∼
si)

n
i=1

∼
⊂

∼
R

+

with (
∼
s1,

∼
sn)

∼
= (

∼
k,

∼
l ), we have p(

∼
k,

∼
l )

∼
>

∼
0 ⇒ p(

∼
k,

∼
l )

∼
⩽

∼
4∼.

∼
n−1∑
i=1

p(
∼
si,

∼
si+1). For

α(
∼
k)

∼
=

∼
4

∼
k

, α ∈ F and then α−1(p(
∼
k,

∼
l ))

∼
⩽ α−1(

∼
n−1∑
i=1

p(
∼
si,

∼
si+1))

∼
+ α−1(

∼
4).

Consequently, p is a soft F metric on F and call (F, p,E) a soft F metric
space.

Remark 2.4. Note that, any generalized soft metric on F is a soft F metric
on F.



298 BINBAŞIOĞLU

Remark 2.5. We can see that every soft metric is a generalized soft metric on

F for
∼
L

∼
=

∼
1. Furthermore, every soft b−metric is a generalized soft metric on F.

3. Topology of the soft F− metric space.

Definition 3.1. Let (F, p,E) be a soft F metric space,
∼
a ∈ SF and

∼
e ∈

∼
R+.

The set of soft elements; B(
∼
a,

∼
e) = {∼c ∈ SF : p(

∼
a,

∼
c)

∼
<

∼
e}

∼
⊂ SF is called as

an open ball and (B∼
e
, E) = SS(B(

∼
a,

∼
e)) is called as a soft F-open ball. Then,

(B∼
e
, E)(β) = B(

∼
a(β),

∼
e(β)) and is an open ball in the soft F metric space. The

set of soft elements
−
B(

∼
a,

∼
e) = {∼c ∈ SF : p(

∼
a,

∼
c)

∼
⩽

∼
e}

∼
⊂ SF is called as a closed

ball and (
−
B∼
e
, A) = SS(

−
B(

∼
a,

∼
e)) is called as a soft F-closed ball.

Definition 3.2. Let (F, p,E) be a soft F metric space, φ
∼
⊂ SF . If there is a

φ
∼
<

∼
e ∈

∼
R+ that satisfies

∼
a ∈

−
B(

∼
a,

∼
e)

∼
⊂ φ, then

∼
a ∈ φ called as a soft F -interior

point.

Now, we take a soft subset (H,E) ∈ SF in (F, p,E). If there is
∼
0

∼
<

∼
e ∈

∼
R+

that satisfies
∼
a ∈ B(

∼
a,

∼
e) ⊂ SS(H,E), then the element

∼
a is a soft F -interior

point of (H,E).
The class of all soft F−interior points in (H,E) is show that intF (H,E). In

this case the soft F−interior is defined as SS(intF (H,E)) = (H,E)◦.

Definition 3.3. The set φ, each element of which is a soft F−interior point,
is an open class in (F, p,E). So we can define the soft F−open set in (F, p,E), if
there is a class φ like above and (H,E) = SS (φ) .

Remark 3.1. Obviously, in the soft F metric (F, p,E), (B∼
e
, A) is a soft F

open set.

Theorem 3.1. Assume that (F, p,E) is a soft F metric space. Therefore the
following axioms are provided,

(i) SF ,
∼
Φ are two soft F−open sets,

(ii) Arbitrary elementary union of soft F−open sets is a soft F−open set,
(iii) Finite elementary intersection of soft F−open sets is a soft F−open set.

Proof. (i) For every
∼
a ∈ SF there is a

∼
0

∼
<

∼
e ∈

∼
R+ such that

∼
a ∈

B(
∼
a,

∼
e)

∼
⊂ SF . Thus SF is a soft F−open set. Obviously,

∼
Φ is a soft

F−open set.

(ii) Let for every i ∈ I,
∼
Ai is a soft F−open set that is for every

∼
ai ∈

∼
Ai,

∼
ai ∈ B(

∼
ai,

∼
ei)

∼
⊂

∼
Ai. Assume that we take any

∼
a ∈ ∪

i∈I

∼
Ai. By definition

of union, there is an i0 ∈ I and
∼
a ∈

∼
Ai0 . Since

∼
Ai0 is a soft F−open set,
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there is a
∼
0

∼
<

∼
e ∈ SF such that B(

∼
a,

∼
e)

∼
⊂

∼
Ai0

∼
⊂ ∪

i∈I

∼
Ai. Consequently

∪
i∈I

∼
Ai is a soft F−open set.

(iii) Let for every i = 1, 2, ..., n,
∼
Ai be a soft F−open set. Assume that

n
∩
i=1

∼
Ai ̸=

∼
Φ and we take any

∼
a ∈

n
∩
i=1

∼
Ai. By definition of intersection,

∼
a ∈

∼
Ai for

i = 1, 2, ..., n. If we choose the smallest of this
∼
0

∼
<

∼
e ∈

∼
R+ for i = 1, 2, ..., n

and denote by
∼
e, then B(

∼
a,

∼
e)

∼
⊂

n
∩
i=1

∼
Ai. Consequently

n
∩
i=1

∼
Ai is a soft

F−open set.
□

Theorem 3.2. A soft F−metric space is an elementary soft topological space.

Proof. Suppose that τF
∼
⊂ SF is the class of soft F−open sets in (F, p,E). From

above theorem τF−is a topology on F . □

Definition 3.4. The topology τF is called by the elementary soft F−metric
topology on F and (F, τF , E) the elementary soft F−metric topological space.

Definition 3.5. A soft set (H,A) ∈ SF is soft F−closed in the soft F− metric
space (F, p,E) if (H,A)c ∈ τF .

Theorem 3.3. Assume that (F, p,E) is a soft F− metric space. Therefore the
following axioms are provided,

(i) SF ,
∼
Φ are two soft F−closed sets,

(ii) Arbitrary elementary intersection of soft F−closed sets is a soft F−closed
set,

(iii) Finite elementary union of soft F−closed sets is a soft F−closed set.

Definition 3.6. Suppose that { ∼
an} is a sequence of soft points in (F, p,E) and

∼
a ∈ SF .

(i) { ∼
an} is F−convergent to

∼
a, if there is a n0 ∈ N and p(

∼
an,

∼
a)

∼
<

∼
e for any

∼
0

∼
<

∼
e ∈

∼
R+. Then, we denote by

∼
an

∼→F
∼
a as n→ ∞.

(ii) { ∼
an} is F−Cauchy in (F, p,E), if there is a n0 ∈ N and p(

∼
an,

∼
am)

∼
<

∼
e

for all n,m > n0 and any
∼
0

∼
<

∼
e ∈

∼
R+.

(iii) (F, p,E) is F−complete, if any F−Cauchy sequence { ∼
an} converges a soft

point in F.

Proposition 3.1. Assume that (F, p,E) is a soft F− metric space and
∼
a,

∼
b ∈

SF . Then,

(i) A sequence { ∼
an} of soft points of F converges to

∼
a if and only if

p(
∼
an,

∼
a)

∼→F
∼
0, n→ ∞.
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(ii) Two sequence { ∼
an} and {

∼
bn} of soft points of F with

∼
an

∼→F
∼
a and

∼
bn

∼→F
∼
b , n→ ∞. Then, p(

∼
an,

∼
bn)

∼→F (
∼
a,

∼
b), n→ ∞.

4. Fixed point theory in soft F−metric spaces

Definition 4.1. Let (F, p,E) be a soft F−metric space and T : SF → SF
is a mapping. We call an

∼
a0 is a soft fixed point of T, if satisfies the condition

T (
∼
a0)

∼
=

∼
a0.

Definition 4.2. If there is a soft real point
∼
k,

∼
0

∼
<

∼
k

∼
<

∼
1 and for each

∼
a,

∼
b ∈ SF , p(T

∼
a, T

∼
b)

∼
⩽

∼
k∼. p(

∼
a,

∼
b) then T is called as a soft F−contractive mapping

on F.

Theorem 4.1. Let (F, p,E) be a F−complete soft F−metric space and T :
SF → SF is a soft F−contractive mapping on F. Then, T has a unique soft fixed
point.

Proof. Let α ∈ F ,
∼
t ∈

∼
R+ ∪

∼
{0} and

p(
∼
a,

∼
b)

∼
⩾

∼
0 ⇒ α(p(

∼
a,

∼
b))

∼
⩽ α(

n−1
∼∑
i=1

p(
∼
si,

∼
si+1))

∼
+

∼
t . Let take a soft fixed

∼
ε ∈

∼
R+.

From the condition α2, there exists
∼
δ ∈

∼
R+ and

∼
0

∼
<

∼
l

∼
<

∼
δ ⇒ α(

∼
l )

∼
< α(

∼
ε)

∼
−

∼
t .

Let
∼
a0 ∈ SF be an arbitrary element and the sequence { ∼

an}
∼
⊂ SF is an iterative

sequence. Assume that p(
∼
a0,

∼
a1)

∼
>

∼
0. T is a soft F−contractive mapping on F, we

have for n ∈ N , p(
∼
an,

∼
an+1)

∼
⩽

∼

k
∼
n∼. p(

∼
a0,

∼
a1).

Therefore for m > n,

p(
∼
an,

∼
am)

∼
⩽ p(Tn

∼
a0, T

m ∼
a0)

∼
= p(Tn

∼
a0, T

nTm−n ∼
a0)

∼
⩽

∼

k
∼
n∼. p(

∼
a0, T

m−n ∼
a0)

∼
=

∼

k
∼
n∼. p(

∼
a0,

∼
am−n)

∼
⩽

∼

k
∼
n∼. [p(

∼
a0,

∼
a1)

∼
+ ...

∼
+ p(

∼
am−n−1,

∼
am−n)]

∼
⩽

∼

k
∼
n∼. p(

∼
a0,

∼
a1)∼. [

∼
1

∼
+

∼
k

∼
+

∼

k
∼
2

∼
+ ...

∼
+

∼
km−n−1]

∼
⩽

∼

k
∼
n∼. p(

∼
a0,

∼
a1)

∼
1

∼
−

∼
k
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Since

∼

k
∼
n∼. p(

∼
a0,

∼
a1)

∼
1

∼
−

∼
k

∼→F
∼
0, there exists some n0 ∈ N as n ⩾ n0,

∼
0

∼
<

∼

k
∼
n∼. p(

∼
a0,

∼
a1)

∼
1

∼
−

∼
k

∼
<

∼
δ .

So, α(

∼

k
∼
n∼. p(

∼
a0,

∼
a1)

∼
1

∼
−

∼
k

)
∼
< α(

∼
ε)

∼
−

∼
t and from (α1),

α(

m−1
∼∑
i=n

p(
∼
si,

∼
si+1))

∼
< α(

∼

k
∼
np(

∼
a0,

∼
a1)

∼
1

∼
−

∼
k

)
∼
< α(

∼
ε)

∼
−

∼
t , for m > n ⩾ n0. Then, we get

p(
∼
an,

∼
am)

∼
>

∼
0, m > n ⩾ n0 ⇒ α(p(

∼
an,

∼
am))

∼
⩽ α(

∼
m−1∑
i=n

p(
∼
ai,

∼
ai+1))

∼
+

∼
t

∼
< α(

∼
ε).

From (α1), p(
∼
an,

∼
am)

∼
<

∼
ε, for m > n ⩾ n0.

That is, {∼an} is a F−Cauchy sequence. Since (F, p,E) is F−complete, there

exists
∼
a ∈ SF such that {∼an} is F−convergent to

∼
a i.e.

∼
an

∼→F
∼
a.

Now, we show that
∼
a ∈ SF is a fixed point of T. From the condition (F3), we

get for n ∈ N , α(p(T
∼
a,

∼
a))

∼
⩽ α(p(T

∼
a, T

∼
an)

∼
+ p(T

∼
an,

∼
a))

∼
+

∼
t .

Hence α(p(T
∼
a,

∼
a))

∼
⩽ α(

∼
k∼. p(

∼
a,

∼
an)

∼
+ p(

∼
an+1,

∼
a))

∼
+

∼
t .

Using α ∈ F , α(
∼
k∼. p(

∼
a,

∼
an)

∼
+p(

∼
an+1,

∼
a))

∼
+

∼
t

∼→F −∼∞. This contradicts the fact

that p(T
∼
a,

∼
a)

∼
>

∼
0. Consequently p(T

∼
a,

∼
a)

∼
=

∼
0 that is T

∼
a

∼
=

∼
a. Now let

∼
a,

∼
b ∈ SF

are two soft fixed points of T and
∼
a

∼
̸=

∼
b. Then, p(

∼
a,

∼
b)

∼
>

∼
0, T

∼
a

∼
=

∼
a, T

∼
b

∼
=

∼
b. Thus

we have p(
∼
a,

∼
b)

∼
= p(T

∼
a, T

∼
b)

∼
⩽

∼
k∼. p(

∼
a,

∼
b)

∼
< p(

∼
a,

∼
b) and this is a contradiction. □

Remark 4.1. Note that the sequence {∼an}
∼
⊂ SF for any

∼
a0 ∈ SF defined by

∼
an+1

∼
= T

∼
an, n ∈ N is F−convergent to

∼
a.
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