BULLETIN OF THE INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE ISSN (p) 2303-4874, ISSN (o) 2303-4955 www.imvibl.org /JOURNALS / BULLETIN Bull. Int. Math. Virtual Inst., **13**(2)(2023), 263-270 DOI: 10.7251/BIMVI2302263N

> Former BULLETIN OF THE SOCIETY OF MATHEMATICIANS BANJA LUKA ISSN 0354-5792 (o), ISSN 1986-521X (p)

BINARY α -LOCALLY CLOSED SETS IN BINARY TOPOLOGICAL SPACES

OCHANAN NETHAJI and RAJENDRAN PREMKUMAR

ABSTRACT. In this paper, we will define some new class of locally closed sets called binary α -locally closed sets, binary α -lc^{*}, binary α -lc^{**}, binary α -dense and binary α -submaximal in binary topological spaces and study some of their characterizations and properties.

1. Introduction and preliminaries

In 1970 Levine [3] gives the concept and properties of generalized closed (briefly g-closed) sets and the complement of g-closed set is said to be g-open set. Njasted [11] introduced and studied the concept of α -sets. Later these sets are called as α -open sets in 1983. Mashhours et.al [6] introduced and studied the concept of α -closed sets, α -closure of set, α -continuous functions, α -open functions and α -closed functions in topological spaces. Maki et.al [4, 5] introduced and studied generalized α -closed sets and α -generalized closed sets. In 2011, S.Nithyanantha Jothi and P.Thangavelu [8] introduced topology between two sets and also studied some of their properties. Topology between two sets is the binary structure from X to Y which is defined to be the ordered pairs (A, B) where $A \subseteq X$ and $B \subseteq Y$. In this paper, we will define some new class of locally closed sets called binary α -locally closed sets, binary α -lc^{*}, binary α -dense and binary α -submaximal in binary topological spaces and study some of their characterizations and properties.

Let X and Y be any two nonempty sets. A binary topology [8] from X to Y is a binary structure $\mathcal{M} \subseteq \mathbb{P}(X) \times \mathbb{P}(Y)$ that satisfies the axioms namely

⁽¹⁾ (ϕ, ϕ) and $(X, Y) \in \mathcal{M}$,

²⁰¹⁰ Mathematics Subject Classification. Primary 54C05; Secondary 54C08, 54C10. Key words and phrases. binary α -locally closed sets, binary α -lc^{*}, binary α -dense and binary α -submaximal.

Communicated by Dusko Bogdanic.

(2) $(A_1 \cap A_2, B_1 \cap B_2) \in \mathcal{M}$ whenever $(A_1, B_1) \in \mathcal{M}$ and $(A_2, B_2) \in \mathcal{M}$, and

- (3) If $\{(A_{\alpha}, B_{\alpha}) : \alpha \in \delta\}$ is a family of members of \mathcal{M} , then
 - $(\bigcup_{\alpha\in\delta}A_{\alpha},\bigcup_{\alpha\in\delta}B_{\alpha})\in\mathcal{M}.$

If \mathcal{M} is a binary topology from X to Y then the triplet (X, Y, \mathcal{M}) is called a binary topological space and the members of \mathcal{M} are called the binary open subsets of the binary topological space (X, Y, \mathcal{M}) . The elements of $X \times Y$ are called the binary points of the binary topological space (X, Y, \mathcal{M}) . If Y = X then \mathcal{M} is called a binary topology on X in which case we write (X, \mathcal{M}) as a binary topological space.

DEFINITION 1.1. [8] Let X and Y be any two nonempty sets and let (A, B)and $(C, D) \in \mathbb{P}(X) \times \mathbb{P}(Y)$. We say that $(A, B) \subseteq (C, D)$ if $A \subseteq C$ and $B \subseteq D$.

DEFINITION 1.2. [8] Let (X, Y, \mathcal{M}) be a binary topological space and $A \subseteq X$, $B \subseteq Y$. Then (A, B) is called binary closed in (X, Y, \mathcal{M}) if $(X \setminus A, Y \setminus B) \in \mathcal{M}$.

PROPOSITION 1.1. [8] Let (X, Y, \mathcal{M}) be a binary topological space and $(A, B) \subseteq (X, Y)$.

Let $(A, B)^{1*} = \cap \{A_{\alpha} : (A_{\alpha}, B_{\alpha}) \text{ is binary closed and } (A, B) \subseteq (A_{\alpha}, B_{\alpha})\}$ and $(A, B)^{2*} = \cap \{B_{\alpha} : (A_{\alpha}, B_{\alpha}) \text{ is binary closed and } (A, B) \subseteq (A_{\alpha}, B_{\alpha})\}$. Then $((A, B)^{1*}, (A, B)^{2*})$ is binary closed and $(A, B) \subseteq ((A, B)^{1*}, (A, B)^{2*})$.

PROPOSITION 1.2. [8] Let (X, Y, \mathcal{M}) be a binary topological space and $(A, B) \subseteq (X, Y)$. Let $(A, B)^{1*} = \bigcup \{A_{\alpha} : (A_{\alpha}, B_{\alpha}) \text{ is binary open and } (A_{\alpha}, B_{\alpha}) \subseteq (A, B)\}$ and $(A, B)^{2*} = \bigcup \{B_{\alpha} : (A_{\alpha}, B_{\alpha}) \text{ is binary open and } (A_{\alpha}, B_{\alpha}) \subseteq (A, B)\}.$

DEFINITION 1.3. [8] The ordered pair $((A, B)^{1*}, (A, B)^{2*})$ is called the binary closure of (A, B), denoted by b-cl(A, B) in the binary space (X, Y, \mathcal{M}) where $(A, B) \subseteq (X, Y)$.

DEFINITION 1.4. [8] The ordered pair $((A, B)^{1*}, (A, B)^{2*})$ defined in proposition 1.2 is called the binary interior of of (A, B), denoted by b-int(A, B). Here $((A, B)^{1*}, (A, B)^{2*})$ is binary open and $((A, B)^{1*}, (A, B)^{2*}) \subseteq (A, B)$.

DEFINITION 1.5. A subset (A, B) of a binary topological space (X, Y, \mathcal{M}) is called

(1) a binary semi open set [10] if $(A, B) \subseteq b\text{-}cl(b\text{-}int(A, B))$.

(2) a binary pre open set [2] if $(A, B) \subseteq b$ -int(b-cl(A, B)),

DEFINITION 1.6. [9] A subset (A, B) of a binary topological space (X, Y, \mathcal{M}) is called a binary g-closed set if $b\text{-cl}(A, B) \subseteq (U, V)$ whenever $(A, B) \subseteq (U, V)$ and (U, V) is binary open.

DEFINITION 1.7. [1] A subset (A, B) of a binary topological space (X, Y, \mathcal{M}) is called a binary α -open if $(A, B) \subseteq b$ -int(b-cl(b-int(A, B))).

LEMMA 1.1. (1) [8] Let $((K, L), \mathcal{M}|(K, L))$ be a subspace of (X, Y, \mathcal{M}) . If (K, L) is binary open in (X, Y), then $\mathcal{M}^{\alpha}|(K, L) = (\mathcal{M}|(K, L))^{\alpha}$.

(2) [1] Let $(A, B) \subseteq (C, D) \subseteq (X, Y)$ and (C, D) be binary α -closed in (X, Y). Then (A, B) is binary α -closed in (C, D) implies (A, B) is binary α -closed in (X, Y).

(3) [1] If $(A, B) \subseteq (C, D) \subseteq (X, Y)$ and (C, D) is binary closed in (X, Y), then (A, B) is binary α -open in (X, Y) implies (A, B) is binary α -open in (C, D).

DEFINITION 1.8. [7] A subset (A, B) of a binary topological space (X, Y, \mathcal{M}) is called

- (1) binary locally closed if $(A, B) = (E, F) \cap (G, H)$ where (E, F) is binary open and (G, H) is binary closed in (X, Y).
- (2) binary generalized locally closed (briefly bglc) if $(A, B) = (E, F) \cap (G, H)$ where (E, F) is binary g-open and (G, H) is binary g-closed in (X, Y).

2. Binary α -locally closed sets

DEFINITION 2.1. A subset (A, B) of (X, Y) is called binary α -locally closed (briefly b α -lc) if $(A, B) = (E, F) \cap (G, H)$ where (E, F) is binary α -open in (X, Y)and (G, H) is binary α -closed in (X, Y).

The set of all binary α -locally closed sets of (X, Y, \mathcal{M}) is denoted by $B\alpha$ - $LC(X, Y, \mathcal{M})$ (or $B\alpha$ -LC(X, Y) if there is no chance of confusion). This set coincides with the set of all binary locally closed sets in $(X, Y, \mathcal{M}^{\alpha})$. Every binary α -open set (resp. binary α -closed set) is $b\alpha$ -lc.

REMARK 2.1. Every binary locally closed set is binary α -locally closed but not conversely.

EXAMPLE 2.1. Let $X = \{a, b\}, Y = \{1, 2\}$ and $\mathcal{M} = \{(\phi, \phi), (\phi, \{1\}), (\{a\}, \{1\}), (\{b\}, \{1\}), (X, \{1\}), (X, Y)\}$. Then $BLC(X, Y) = \{(\phi, \phi), (\phi, \{1\}), (\phi, \{2\}), (\phi, Y), (\{a\}, \phi), (\{a\}, \{1\}), (\{a\}, \{2\}), (\{b\}, \phi), (\{b\}, \{1\}), (\{b\}, \{2\}), (\{b\}, Y), (X, \{1\}), (X, \{2\}), (X, Y)\}$ and $B\alpha LC(X, Y) = \mathbb{P}(X)$. Then the subset $(\{a\}, Y)$ is binary α -locally closed but not binary locally closed in (X, Y, \mathcal{M}) .

PROPOSITION 2.1. Let (X, Y, \mathcal{M}) be a binary α -space. Then

(1) $B\alpha$ -LC(X,Y) = BLC(X,Y)

(2) $B\alpha$ - $LC(X,Y) \subseteq BGLC(X,Y)$

(3) $B\alpha$ - $LC(X,Y) \subseteq BGLSC(X,Y)$.

PROOF. (1) Since every binary α -open set is binary open and every binary α -closed set is binary closed in (X, Y), $B\alpha$ - $LC(X, Y) \subseteq BLC(X, Y)$ and hence $B\alpha$ -LC(X, Y) = BLC(X, Y).

(2) and (3) Since $BLC(X, Y) \subseteq BGLC(X, Y)$ and $BLC(X, Y) \subseteq BGLSC(X, Y)$ for any space (X, Y), the proof follows from (1).

COROLLARY 2.1. If $BSO(X,Y) = \mathcal{M}$, then $B\alpha - LC(X,Y) \subseteq BGLSC(X,Y) \subseteq BGLC(X,Y)$.

PROOF. $BSO(X,Y) = \mathcal{M}$ implies (X,Y) is an binary α -space. Hence by Proposition 2.1(3) $B\alpha$ - $LC(X,Y) \subseteq BGLSC(X,Y)$. Let $(A,B) \subseteq BGLSC(X,Y,\mathcal{M})$. Then $(A,B) = (E,F) \cap (G,H)$ where (E,F) is binary g-open and (G,H) is binary semi-closed. Since $BSO(X,Y) = \mathcal{M}$, (G,H) is binary closed and hence binary g-closed. Thus $(A,B) \in BGLC(X,Y,\mathcal{M})$. PROPOSITION 2.2. If $BGO(X,Y) = \mathcal{M}^{\alpha}$, then

(1) $B\alpha - LC(X, Y) = BGLC(X, Y)$

(2) $BGLSC(X,Y) = B\alpha - LC(X,Y).$

PROOF. proof (1)It follows from definitions and hypothesis.

(2) Let $(A, B) \in BGLSC(X, Y)$. Then $(A, B) = (E, F) \cap (G, H)$ where (E, F) is binary g-open and (G, H) is binary semi-closed. By hypothesis, (E, F) is binary α -open and hence binary semi-open. Therefore $(A, B) \in BSLC(X, Y) = B\alpha$ -LC(X, Y).

DEFINITION 2.2. A subset (A, B) of (X, Y, \mathcal{M}) is called

- (1) binary α -lc^{*} if $(A, B) = (E, F) \cap (G, H)$ where (E, F) is binary α -open in (X, Y) and (G, H) is binary closed in (X, Y).
- (2) binary α -lc^{**} if $(A, B) = (E, F) \cap (G, H)$ where (E, F) is binary open in (X, Y) and (G, H) is binary α -closed in (X, Y).

The class of all binary α -lc^{*} (resp. binary α -lc^{**}) sets is denoted by $B\alpha$ -LC^{*}(X,Y) (resp. $B\alpha$ -LC^{**}(X,Y)). Every binary α -lc^{*} set is binary α -lc. Also every binary α -lc^{**} set is binary α -lc.

PROPOSITION 2.3. If $BSO(X, Y) = \mathcal{M}$, then $B\alpha - LC(X, Y) = B\alpha - LC^*(X, Y) = B\alpha - LC^*(X, Y)$.

PROOF. Since $\mathcal{M} \subseteq \mathcal{M}^{\alpha} \subseteq BSO(X, Y)$ for any space (X, Y), by hypothesis $\mathcal{M}^{\alpha} = \mathcal{M}$. That is, (X, Y) is a binary α -space and hence $B\alpha$ - $LC(X, Y) = B\alpha$ - $LC^{\star}(X, Y) = B\alpha$ - $LC^{\star}(X, Y)$.

The hypothesis in Proposition 2.3 can still be weakened as follows.

PROPOSITION 2.4. If $BSO(X,Y) \subseteq BLC(X,Y)$, then $B\alpha - LC(X,Y) = B\alpha - LC^{\star}(X,Y) = B\alpha - LC^{\star \star}(X,Y)$.

PROOF. Let $(A, B) \in B\alpha$ -LC(X, Y). Then $(A, B) = (E, F) \cap (G, H)$ where (E, F) is binary α -open and (G, H) is binary α -closed. Since $\mathcal{M}^{\alpha} \subseteq BSO(X, Y)$, (G, H) is binary semi-closed. $BSO(X, Y) \subseteq BLC(X, Y)$ implies $BSC(X, Y) \subseteq BLC(X, Y)$,

Therefore (G, H) is binary locally closed. Let $(G, H) = (P, Q) \cap (U, V)$ where (P, Q) is binary open and (U, V) is binary closed. Hence $(A, B) = ((E, F) \cap (P, Q)) \cap (U, V)$ where $(E, F) \cap (P, Q)$ is binary α -open and (U, V) is binary closed. Hence $(A, B) \in B\alpha$ - $LC^*(X, Y)$. For any space $(X, Y), B\alpha$ - $LC^*(X, Y) \subseteq B\alpha$ -LC(X, Y). Thus $B\alpha$ - $LC(X, Y) = B\alpha$ - $LC^*(X, Y)$.

Let $(C, D) \in B\alpha - LC(X, Y)$, then $(C, D) = (E, F) \cap (G, H)$ where (E, F) is binary α -open and (G, H) is binary α -closed. $BSO(X, Y) \subseteq BLC(X, Y)$ implies $\mathcal{M}^{\alpha} \subseteq BLC(X, Y)$ and so (E, F) is binary locally closed. Let $(E, F) = (P, Q) \cap$ (U, V) where (P, Q) is binary open and (U, V) is binary closed. Hence (C, D) = $(P, Q) \cap ((U, V) \cap (G, H))$ where $(U, V) \cap (G, H)$ is binary α -closed. Then $(C, D) \in$ $B\alpha - LC^{**}(X, Y)$. That is, $B\alpha - LC(X, Y) \subseteq B\alpha - LC^{**}(X, Y)$. For any space (X, Y), $B\alpha - LC^{**}(X, Y) \subseteq B\alpha - LC(X, Y)$. Thus $B\alpha - LC(X, Y) = B\alpha - LC^{**}(X, Y)$.

PROPOSITION 2.5. If $(A, B) \subseteq (X, Y)$ is binary pre open and binary α -locally closed, then it is binary semi-open.

PROOF. As $(A, B) \in B\alpha - LC(X, Y)$, (A, B) is a binary δ -set. That is, b-int(b- $cl(A, B)) \subseteq b$ -cl(b-int(A, B)). As (A, B) is binary pre open $(A, B) \subseteq b$ -int(b-cl(A, B)). That is, $(A, B) \subseteq b$ -cl(b-int(A, B)). Hence (A, B) is binary semi-open.

THEOREM 2.1. Let (A, B) and (C, D) be subsets of (X, Y, \mathcal{M}) .

- (1) If $(A, B), (C, D) \in B\alpha LC(X, Y)$, then $(A, B) \cap (C, D) \in B\alpha LC(X, Y)$.
- (2) If $(A, B), (C, D) \in B\alpha LC^{\star}(X, Y)$, then $(A, B) \cap (C, D) \in B\alpha LC^{\star}(X, Y)$.
- (3) If $(A, B), (C, D) \in B\alpha LC^{\star\star}(X, Y)$, then $(A, B) \cap (C, D) \in B\alpha LC^{\star\star}(X, Y)$.
- (4) If $(A, B) \in B\alpha \text{-}LC(X, Y)$ and (C, D) is binary α -open (resp. binary α closed), then $(A, B) \cap (C, D) \in B\alpha \text{-}LC(X, Y)$.
- (5) If $(A, B) \in B\alpha LC^{*}(X, Y)$ and (C, D) is binary α -open (resp. closed), then $(A, B) \cap (C, D) \in B\alpha - LC^{*}(X, Y)$.
- (6) If $(A, B) \in B\alpha LC^{\star\star}(X, Y)$ and (C, D) is binary α -closed (resp. open), then $(A, B) \cap (C, D) \in B\alpha - LC^{\star\star}(X, Y)$.
- (7) If $(A, B) \in B\alpha LC^{\star}(X, Y)$ and (C, D) is binary α -closed, then $(A, B) \cap (C, D) \in B\alpha LC(X, Y)$.
- (8) If $(A, B) \in B\alpha LC^{\star\star}(X, Y)$ and (C, D) is binary α -open, then $(A, B) \cap (C, D) \in B\alpha LC(X, Y)$.
- (9) If $(A, B) \in B\alpha LC^{\star\star}(X, Y)$ and $(C, D) \in BGLC^{\star}(X, Y)$, then $(A, B) \cap (C, D) \in BGLSC(X, Y)$.

PROOF. Since $(X, Y, \mathcal{M}^{\alpha})$ is a binary topology, (1) to (8) hold. (9) Let $(A, B) = (E, F) \cap (G, H)$ where (E, F) is binary open and (G, H) is binary α -closed and let $(C, D) = (P, Q) \cap (U, V)$ where (P, Q) is binary g-open and (U, V) is binary closed. Now, $(A, B) \cap (C, D) = ((E, F) \cap (P, Q)) \cap ((G, H) \cap (U, V))$ where $(E, F) \cap (P, Q)$ is binary g-open and $(G, H) \cap (U, V)$ is binary α -closed and so binary semi-closed. Hence $(A, B) \cap (C, D) \in BGLSC(X, Y)$.

THEOREM 2.2. (1) $(A, B) \in B\alpha - LC(X, Y)$ if and only if there exists a binary α -open set (E, F) such that $(A, B) = (E, F) \cap b - \alpha cl(A, B)$.

- (2) $(A, B) \in B\alpha LC^*(X, Y)$ if and only if there exists a binary α -open set (E, F) such that $(A, B) = (E, F) \cap b cl(A, B)$.
- (3) $(A, B) \in B\alpha LC^{**}(X, Y)$ if and only if there exists a binary open set (E, F) such that $(A, B) = (E, F) \cap b \alpha cl(A, B)$.

PROOF. (1) (Necessity) Let $(A, B) \in B\alpha \text{-}LC(X, Y)$. Then $(A, B) = (E, F) \cap (G, H)$ where (E, F) is binary α -open and (G, H) is binary α -closed. As $(A, B) \subseteq (G, H)$, $b \text{-}\alpha cl(A, B) \subseteq (G, H)$ and so $(E, F) \cap b \text{-}\alpha cl(A, B) \subseteq (A, B)$. $(A, B) \subseteq (E, F)$ and $(A, B) \subseteq b \text{-}\alpha cl(A, B)$ implies $(A, B) \subseteq (E, F) \cap b \text{-}\alpha cl(A, B)$. Therefore $(A, B) = (E, F) \cap b \text{-}\alpha cl(A, B)$.

(Sufficiency) Let $(A, B) = (E, F) \cap b \text{-}\alpha cl(A, B)$ where (E, F) is binary α -open. By definition, $(A, B) \in B\alpha \text{-}LC(X, Y)$. Proofs of (2) and (3) are similar to (1). \Box PROPOSITION 2.6. For a subset (A, B) of (X, Y, \mathcal{M}) , the following are equivalent.

(1) (A, B) is binary α -locally closed

(2) $(A, B) = (U, V) \cap b \cdot \alpha cl(A, B)$ for some binary α -open set (U, V).

(3) $b - \alpha cl(A, B) - (A, B)$ is binary α -closed.

(4) $(A,B) \cup ((X,Y) - b \cdot \alpha cl(A,B))$ is binary α -open.

(5) $(A,B) \subseteq b \cdot \alpha int((A,B) \cup ((X,Y) - b \cdot \alpha cl(A,B))).$

PROOF. $(1) \Rightarrow (2)$ It follows from Theorem 2.2 (1).

 $(2) \Rightarrow (3) (A,B) = (U,V) \cap b - \alpha cl(A,B)$ implies $b - \alpha cl(A,B) - (A,B) = b - \alpha cl(A,B) \cap ((X,Y) - (U,V))$ which is binary α -closed since (X,Y) - (U,V) is so.

 $\begin{array}{l} (3) \Rightarrow (4) \ (A,B) \cup ((X,Y) - b \cdot \alpha cl(A,B)) = (X,Y) - (b \cdot \alpha cl(A,B) - (A,B)).\\ \text{By } (3) \ (A,B) \cup ((X,Y) - b \cdot \alpha cl(A,B)) \text{ is binary } \alpha \text{-open.} \end{array}$

 $\begin{array}{l} (4) \Rightarrow (5) \ (A,B) \cup ((X,Y) - b \cdot \alpha cl(A,B)) \text{ is binary } \alpha \text{-open implies } (A,B) \cup \\ ((X,Y) - b \cdot \alpha cl(A,B)) = b \cdot \alpha int((A,B) \cup ((X,Y) - b \cdot \alpha cl(A,B))). \text{ Thus } (5) \text{ holds.} \\ (5) \Rightarrow (1) \ (A,B) = b \cdot \alpha int((A,B) \cup ((X,Y) - b \cdot \alpha cl(A,B))) \cap b \cdot \alpha cl(A,B), \text{ so} \\ (A,B) \in B\alpha \cdot LC(X,Y). \end{array}$

DEFINITION 2.3. A subset (A, B) of (X, Y, \mathcal{M}) is called binary α -dense if b- $\alpha cl(A, B) = (X, B)$.

DEFINITION 2.4. A space (X, Y, \mathcal{M}) is called binary α -submaximal if every binary α -dense subset of (X, Y) is binary α -open in (X, Y).

EXAMPLE 2.2. Let $X = \{a, b\}, Y = \{1, 2\}$ and $\mathcal{M} = \{(\phi, \phi), (\phi, \{1\}), (\{a\}, \{1\}), (X, Y)\}$. Here binary α -dense subsets are $(\phi, \{1\}), (\phi, Y), (\{a\}, \{1\}), (\{a\}, Y), (\{b\}, \{1\}), (\{b\}, Y), (X, \{1\})$ and (X, Y). Then $B\alpha O(X, Y) = \{(\phi, \phi), (\phi, \{1\}), (\phi, Y), (\{a\}, \{1\}), (\{a\}, Y), (\{b\}, \{1\}), (\{b\}, Y), (X, \{1\}), (X, Y)\}$. Every binary α -dense subset is binary α -open and so (X, Y) is binary α -submaximal.

THEOREM 2.3. A space (X, Y, \mathcal{M}) is binary α -submaximal if an only if every subset of (X, Y, \mathcal{M}) is binary α -locally closed.

PROOF. (Necessity) Let $(A, B) \in \mathbb{P}(X, Y)$ and $(U, V) = (A, B) \cup ((X, Y) - b - \alpha cl(A, B))$. Then $b - \alpha cl(U, V) = (X, Y)$. That is, (U, V) is binary α -dense in (X, Y). By hypothesis (U, V) is binary α -open. By Proposition 2.6, (A, B) is binary α -lc. Hence $\mathbb{P}(X, Y) \subseteq B\alpha - LC(X, Y)$ and this implies $\mathbb{P}(X, Y) = B\alpha - LC(X, Y)$.

(Sufficiency) Let (A, B) be binary α -dense in (X, Y). Then $(A, B) \cup ((X, Y) - b - \alpha cl(A, B)) = (A, B)$. By hypothesis (A, B) is binary α -lc. Then $(A, B) \cup ((X, Y) - b - \alpha cl(A, B))$ is binary α -open by Proposition 2.6. That is, (X, Y, \mathcal{M}) is binary α -submaximal.

PROPOSITION 2.7. If (X, Y, \mathcal{M}) is binary submaximal, then it is binary α -submaximal.

PROOF. Let (A, B) be binary α -dense in (X, Y). Then (A, B) is binary dense and so binary open as (X, Y) is binary submaximal. Since every binary open set is

binary α -open, (A, B) is binary α -open and hence (X, Y) is binary α -submaximal.

LEMMA 2.1. Let (U, V) be binary open in (X, Y, \mathcal{M}) and $(E, F) \subseteq (U, V)$. If (E, F) is binary α -open in $((U, V), \mathcal{M}|(U, V))$, then (E, F) is binary α -open in (X, Y, \mathcal{M})

PROOF. Since (E, F) is binary α -open in $((U, V), \mathcal{M}|(U, V)), (E, F) \in (\mathcal{M}|(U, V))^{\alpha}$. But $(\mathcal{M}|(U, V))^{\alpha} = \mathcal{M}^{\alpha}|(U, V)$ as (U, V) is binary open in (X, Y) by 1.1. Hence $(E, F) \in \mathcal{M}^{\alpha}|(U, V)$ and so $(E, F) = (C, D) \cap (U, V)$ where (C, D) is binary α -open in (X, Y). Now openness of (U, V) implies $(E, F) \in \mathcal{M}^{\alpha}$.

PROPOSITION 2.8. Let (A, B) and (U, V) be subsets of (X, Y, \mathcal{M}) such that $(A, B) \subseteq (U, V)$ and (U, V) is binary open and binary α -closed in (X, Y). Then

(1) If $(A, B) \in B\alpha \text{-}LC((U, V), \mathcal{M}|(U, V))$, then $(A, B) \in B\alpha \text{-}LC(X, Y, \mathcal{M})$. (2) If $(A, B) \in B\alpha \text{-}LC^*((U, V), \mathcal{M}|(U, V))$, then $(A, B) \in B\alpha \text{-}LC^*(X, Y, \mathcal{M})$.

(3) If $(A, B) \in B\alpha \text{-}LC^{\star\star}((U, V), \mathcal{M}|(U, V))$, then $(A, B) \in B\alpha \text{-}LC^{\star\star}(X, Y, \mathcal{M})$.

PROOF. (1) Let $(A, B) \in B\alpha - LC((U, V), \mathcal{M}|(U, V))$. Then $(A, B) = (E, F) \cap (G, H)$ where (E, F) is binary α -open and (G, H) is binary α -closed in $((U, V), \mathcal{M}|(U, V))$. Then by Lemma 1.1(2) and Lemma 2.1, (E, F) is binary α -open and (G, H) is binary α -closed in (X, Y, \mathcal{M}) . So $(A, B) \in B\alpha - LC(X, Y, \mathcal{M})$.

(2) If $(A, B) \in B\alpha - LC^{\star}((U, V), \mathcal{M}|(U, V))$, then $(A, B) = (E, F) \cap b - cl_{(U,V)}(A, B)$ where (E, F) is binary α -open in $((U, V), \mathcal{M}|(U, V))$ by Theorem 2.2. But $b - cl_{(U,V)}(A, B) = b - cl(A, B) \cap (U, V)$, So $(A, B) = ((E, F) \cap (U, V)) \cap b - cl(A, B)$. By Lemma 2.1 and the fact that \mathcal{M}^{α} is a binary topology, $(E, F) \cap (U, V)$ is binary α -open in (X, Y). Hence $(A, B) \in B\alpha - LC^{\star}(X, Y, \mathcal{M})$.

(3) If $(A, B) \in B\alpha - LC^{**}((U, V), \mathcal{M}|(U, V))$. Then $(A, B) = (E, F) \cap (G, H)$ where (E, F) is binary open and (G, H) is binary α -closed in $((U, V), \mathcal{M}|(U, V))$. Then by Lemma 1.1(2), (E, F) is binary open and (G, H) is binary α -closed in (X, Y, \mathcal{M}) . So $(A, B) \in B\alpha - LC^{**}(X, Y, \mathcal{M})$.

DEFINITION 2.5. Let $(A, B), (C, D) \subseteq (X, Y)$. Then (A, B) and (C, D) are said to be binary α -separated if $(A, B) \cap b$ - $\alpha cl(C, D) = (\phi, \phi)$ and $(C, D) \cap b$ - $\alpha cl(A, B) = (\phi, \phi)$.

PROPOSITION 2.9. Let $(A, B), (C, D) \in B\alpha - LC(X, Y, \mathcal{M})$. If (A, B) and (C, D) are binary α -separated then $(A, B) \cup (C, D) \in B\alpha - LC(X, Y, \mathcal{M})$.

PROOF. As $(A, B), (C, D) \in B\alpha - LC(X, Y, \mathcal{M})$, by Theorem 2.2, there exists binary α -open sets (E, F) and (G, H) of (X, Y) such that $(A, B) = (E, F) \cap b - \alpha cl(A, B)$ and $(C, D) = (G, H) \cap b - \alpha cl(C, D)$. Put $(U, V) = (E, F) \cap ((X, Y) - b - \alpha cl(C, D))$) and $(P, Q) = (J, K) \cap ((X, Y) - b - \alpha cl(A, B))$. Then $(A, B) = (U, V) \cap b - \alpha cl(A, B)$ and $(C, D) = (P, Q) \cap b - \alpha cl(C, D)$ hold and $(U, V) \cap b - \alpha cl(C, D) = (\phi, \phi)$ and $(P, Q) \cap b - \alpha cl(A, B) = (\phi, \phi)$. Since \mathcal{M}^{α} is a binary topology, (U, V) and (P, Q) are binary α -open sets of (X, Y). Also $(U, V) \cup (P, Q)$ is binary α -open. Now $((U, V) \cup (P, Q)) \cap b - \alpha cl((A, B) \cup (C, D)) = (A, B) \cup (C, D)$. Hence $(A, B) \cup (C, D) \in B\alpha - LC(X, Y, \mathcal{M})$.

References

- 1. Carlos Granados, On binary α -open sets and binary α - ω -open sets in binary topological spaces, South Asian Journal of Mathematics, **11**(1)(2021), 1–11.
- S.Jayalakshmi and A.Manonmani, Binary regular beta closed sets and binary regular beta open sets in binary topological spaces, *The International Journal of Analytical and Experimental* Modal Analysis, 12(4)(2020), 494–497.
- 3. N. Levine, Generalized closed sets in topology, Rent. Circ. Mat. Palermo, 19(2)(1970), 89–96.
- H. Maki, R. Devi, and K. Balachandran, Generalized α-closed sets in topology, Bull. Fukuoka Univ, Ed., Part (III), 42(1993), 13–21.
- 5. H. Maki, R. Devi, and K. Balachandran, Associate topologies of generalized α-closed sets and α-generalized closed sets, *Mem. Fac. Kochi Univ. Ser. A. Math.*, **15**(1994), 51–63.
- A. S. Mashhour, M. E. Abd El-Monsef, and S. N. EL-Deeb, α-Open mappings, Acta. Math. Hungar., 41(1983), 213–218.
- 7. O.Nethaji and R. Premkumar, Locally closed sets and *g*-locally closed sets in binary toplogical spcaes, (Communicated).
- S. Nithyanantha Jothi and P.Thangavelu, Topology between two sets, Journal of Mathematical Sciences & Computer Applications, 1(3)(2011), 95–107.
- S. Nithyanantha Jothi and P. Thangavelu, Generalized binary closed sets in binary topological spaces, Ultra Scientist, 26(1)(A)(2014), 25–30.
- S. Nithyanantha Jothi, Binary semi open sets in binary topological spaces, International Journal of Mathematical Archieve, 7(9)(2016), 73-76.
- 11. O. Njastad, On some classes of nearly open sets, Pacific. J. Math., 15(1965), 961-970.

Received by editors 1.5.2023; Revised version 19.7.2023; Available online 25.9.2023.

Ochanan Nethaji, PG and Research Department of Mathematics, Kamaraj College, Thoothukudi - 628 003, Tamil Nadu, India.

Email address: jionetha@yahoo.com

RAJENDRAN PREMKUMAR, DEPARTMENT OF MATHEMATICS, ARUL ANANDAR COLLEGE, KARUMATHUR - 625 514, MADURAI, TAMIL NADU, INDIA.

Email address: prem.rpk27@gmail.com