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Abstract. In this paper, we will define some new class of locally closed sets

called binary α-locally closed sets, binary α-lc⋆, binary α-lc⋆⋆, binary α-dense
and binary α-submaximal in binary topological spaces and study some of their

characterizations and properties.

1. Introduction and preliminaries

In 1970 Levine [3] gives the concept and properties of generalized closed (briefly
g-closed) sets and the complement of g-closed set is said to be g-open set. Njasted
[11] introduced and studied the concept of α-sets. Later these sets are called as
α-open sets in 1983. Mashhours et.al [6] introduced and studied the concept of
α-closed sets, α-closure of set, α-continuous functions, α-open functions and α-
closed functions in topological spaces. Maki et.al [4, 5] introduced and studied
generalized α-closed sets and α-generalized closed sets. In 2011, S.Nithyanantha
Jothi and P.Thangavelu [8] introduced topology between two sets and also studied
some of their properties. Topology between two sets is the binary structure from X
to Y which is defined to be the ordered pairs (A,B) where A ⊆ X and B ⊆ Y . In
this paper, we will define some new class of locally closed sets called binary α-locally
closed sets, binary α-lc⋆, binary α-lc⋆⋆, binary α-dense and binary α-submaximal in
binary topological spaces and study some of their characterizations and properties.

Let X and Y be any two nonempty sets. A binary topology [8] from X to Y
is a binary structure M ⊆ P(X)× P(Y ) that satisfies the axioms namely

(1) (ϕ, ϕ) and (X,Y ) ∈ M,
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(2) (A1 ∩A2, B1 ∩B2) ∈ M whenever (A1, B1) ∈ M and (A2, B2) ∈ M, and
(3) If {(Aα, Bα) : α ∈ δ} is a family of members of M, then

(
⋃

α∈δ Aα,
⋃

α∈δ Bα) ∈ M.

If M is a binary topology from X to Y then the triplet (X,Y,M) is called a
binary topological space and the members of M are called the binary open subsets
of the binary topological space (X,Y,M). The elements of X × Y are called the
binary points of the binary topological space (X,Y,M). If Y = X then M is called
a binary topology onX in which case we write (X,M) as a binary topological space.

Definition 1.1. [8] Let X and Y be any two nonempty sets and let (A,B)
and (C,D) ∈ P(X)× P(Y ). We say that (A,B) ⊆ (C,D) if A ⊆ C and B ⊆ D.

Definition 1.2. [8] Let (X,Y,M) be a binary topological space and A ⊆ X,
B ⊆ Y . Then (A,B) is called binary closed in (X,Y,M) if (X\A, Y \B) ∈ M.

Proposition 1.1. [8] Let (X,Y,M) be a binary topological space and (A,B) ⊆
(X,Y ).

Let (A,B)1∗ = ∩{Aα : (Aα, Bα) is binary closed and (A,B) ⊆ (Aα, Bα)}
and (A,B)2∗ = ∩{Bα : (Aα, Bα) is binary closed and (A,B) ⊆ (Aα, Bα)}. Then
((A,B)1∗, (A,B)2∗) is binary closed and (A,B) ⊆ ((A,B)1∗, (A,B)2∗).

Proposition 1.2. [8] Let (X,Y,M) be a binary topological space and (A,B) ⊆
(X,Y ). Let (A,B)1∗ = ∪{Aα : (Aα, Bα) is binary open and (Aα, Bα) ⊆ (A,B)}
and (A,B)2∗ = ∪{Bα : (Aα, Bα) is binary open and (Aα, Bα) ⊆ (A,B)}.

Definition 1.3. [8] The ordered pair ((A,B)1∗, (A,B)2∗) is called the bi-
nary closure of (A,B), denoted by b-cl(A,B) in the binary space (X,Y,M) where
(A,B) ⊆ (X,Y ).

Definition 1.4. [8] The ordered pair ((A,B)1∗, (A,B)2∗) defined in proposi-
tion 1.2 is called the binary interior of of (A,B), denoted by b-int(A,B). Here
((A,B)1∗, (A,B)2∗) is binary open and ((A,B)1∗, (A,B)2∗) ⊆ (A,B).

Definition 1.5. A subset (A,B) of a binary topological space (X,Y,M) is
called

(1) a binary semi open set [10] if (A,B) ⊆ b-cl(b-int(A,B)).
(2) a binary pre open set [2] if (A,B) ⊆ b-int(b-cl(A,B)),

Definition 1.6. [9] A subset (A,B) of a binary topological space (X,Y,M) is
called a binary g-closed set if b-cl(A,B) ⊆ (U, V ) whenever (A,B) ⊆ (U, V ) and
(U, V ) is binary open.

Definition 1.7. [1] A subset (A,B) of a binary topological space (X,Y,M) is
called a binary α-open if (A,B) ⊆ b-int(b-cl(b-int(A,B))).

Lemma 1.1. (1) [8] Let ((K,L),M|(K,L)) be a subspace of (X,Y,M).
If (K,L) is binary open in (X,Y ), then Mα|(K,L) = (M|(K,L))α.

(2) [1] Let (A,B) ⊆ (C,D) ⊆ (X,Y ) and (C,D) be binary α-closed in (X,Y ).
Then (A,B) is binary α-closed in (C,D) implies (A,B) is binary α-closed
in (X,Y ).
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(3) [1] If (A,B) ⊆ (C,D) ⊆ (X,Y ) and (C,D) is binary closed in (X,Y ),
then (A,B) is binary α-open in (X,Y ) implies (A,B) is binary α-open in
(C,D).

Definition 1.8. [7] A subset (A,B) of a binary topological space (X,Y,M) is
called

(1) binary locally closed if (A,B) = (E,F ) ∩ (G,H) where (E,F ) is binary
open and (G,H) is binary closed in (X,Y ).

(2) binary generalized locally closed (briefly bglc) if (A,B) = (E,F )∩ (G,H)
where (E,F ) is binary g-open and (G,H) is binary g-closed in (X,Y ).

2. Binary α-locally closed sets

Definition 2.1. A subset (A,B) of (X,Y ) is called binary α-locally closed
(briefly bα-lc) if (A,B) = (E,F )∩ (G,H) where (E,F ) is binary α-open in (X,Y )
and (G,H) is binary α-closed in (X,Y ).

The set of all binary α-locally closed sets of (X,Y,M) is denoted by Bα-
LC(X,Y,M) (or Bα-LC(X,Y ) if there is no chance of confusion). This set co-
incides with the set of all binary locally closed sets in (X,Y,Mα). Every binary
α-open set (resp. binary α-closed set) is bα-lc.

Remark 2.1. Every binary locally closed set is binary α-locally closed but not
conversely.

example 2.1. Let X = {a, b}, Y = {1, 2} and M = {(ϕ, ϕ), (ϕ, {1}), ({a}, {1}),
({b}, {1}), (X, {1}), (X,Y )}. Then BLC(X,Y ) = {(ϕ, ϕ), (ϕ, {1}), (ϕ, {2}), (ϕ, Y ),
({a}, ϕ), ({a}, {1}), ({a}, {2}), ({b}, ϕ), ({b}, {1}), ({b}, {2}), ({b}, Y ), (X, {1}),
(X, {2}), (X,Y )} and BαLC(X,Y ) = P(X). Then the subset ({a}, Y ) is binary
α-locally closed but not binary locally closed in (X,Y,M).

Proposition 2.1. Let (X,Y,M) be a binary α-space. Then

(1) Bα-LC(X,Y ) = BLC(X,Y )
(2) Bα-LC(X,Y ) ⊆ BGLC(X,Y )
(3) Bα-LC(X,Y ) ⊆ BGLSC(X,Y ).

Proof. (1) Since every binary α-open set is binary open and every binary
α-closed set is binary closed in (X,Y ), Bα-LC(X,Y ) ⊆ BLC(X,Y ) and hence
Bα-LC(X,Y ) = BLC(X,Y ).

(2) and (3) SinceBLC(X,Y )⊆BGLC(X,Y ) andBLC(X,Y )⊆BGLSC(X,Y )
for any space (X,Y ), the proof follows from (1). □

Corollary 2.1. If BSO(X,Y ) = M, then Bα-LC(X,Y ) ⊆ BGLSC(X,Y ) ⊆
BGLC(X,Y ).

Proof. BSO(X,Y ) = M implies (X,Y ) is an binary α-space. Hence by
Proposition 2.1(3)Bα-LC(X,Y )⊆BGLSC(X,Y ). Let (A,B)⊆BGLSC(X,Y,M).
Then (A,B) = (E,F )∩ (G,H) where (E,F ) is binary g-open and (G,H) is binary
semi-closed. Since BSO(X,Y ) = M, (G,H) is binary closed and hence binary
g-closed. Thus (A,B) ∈ BGLC(X,Y,M). □
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Proposition 2.2. If BGO(X,Y ) = Mα, then

(1) Bα-LC(X,Y ) = BGLC(X,Y )
(2) BGLSC(X,Y ) = Bα-LC(X,Y ).

Proof. proof (1)It follows from definitions and hypothesis.
(2) Let (A,B) ∈ BGLSC(X,Y ). Then (A,B) = (E,F )∩ (G,H) where (E,F )

is binary g-open and (G,H) is binary semi-closed. By hypothesis, (E,F ) is binary
α-open and hence binary semi-open. Therefore (A,B) ∈ BSLC(X,Y ) = Bα-
LC(X,Y ). □

Definition 2.2. A subset (A,B) of (X,Y,M) is called

(1) binary α-lc⋆ if (A,B) = (E,F )∩ (G,H) where (E,F ) is binary α-open in
(X,Y ) and (G,H) is binary closed in (X,Y ).

(2) binary α-lc⋆⋆ if (A,B) = (E,F ) ∩ (G,H) where (E,F ) is binary open in
(X,Y ) and (G,H) is binary α-closed in (X,Y ).

The class of all binary α-lc⋆ (resp. binary α-lc⋆⋆) sets is denoted by Bα-LC⋆(X,Y )
(resp. Bα-LC⋆⋆(X,Y )). Every binary α-lc⋆ set is binary α-lc. Also every binary
α-lc⋆⋆ set is binary α-lc.

Proposition 2.3. If BSO(X,Y ) = M, then Bα-LC(X,Y ) = Bα-LC⋆(X,Y ) =
Bα-LC⋆⋆(X,Y ).

Proof. Since M ⊆ Mα ⊆ BSO(X,Y ) for any space (X,Y ), by hypothesis
Mα = M. That is, (X,Y ) is a binary α-space and hence Bα-LC(X,Y ) = Bα-
LC⋆(X,Y ) = Bα-LC⋆⋆(X,Y ). □

The hypothesis in Proposition 2.3 can still be weakened as follows.

Proposition 2.4. If BSO(X,Y ) ⊆ BLC(X,Y ), then Bα-LC(X,Y ) = Bα-
LC⋆(X,Y ) = Bα-LC⋆⋆(X,Y ).

Proof. Let (A,B) ∈ Bα-LC(X,Y ). Then (A,B) = (E,F ) ∩ (G,H) where
(E,F ) is binary α-open and (G,H) is binary α-closed. Since Mα ⊆ BSO(X,Y ),
(G,H) is binary semi-closed. BSO(X,Y ) ⊆ BLC(X,Y ) implies BSC(X,Y ) ⊆
BLC(X,Y ),

Therefore (G,H) is binary locally closed. Let (G,H) = (P,Q) ∩ (U, V ) where
(P,Q) is binary open and (U, V ) is binary closed. Hence (A,B) = ((E,F )∩(P,Q))∩
(U, V ) where (E,F ) ∩ (P,Q) is binary α-open and (U, V ) is binary closed. Hence
(A,B) ∈ Bα-LC⋆(X,Y ). For any space (X,Y ), Bα-LC⋆(X,Y ) ⊆ Bα-LC(X,Y ).
Thus Bα-LC(X,Y ) = Bα-LC⋆(X,Y ).

Let (C,D) ∈ Bα-LC(X,Y ), then (C,D) = (E,F ) ∩ (G,H) where (E,F ) is
binary α-open and (G,H) is binary α-closed. BSO(X,Y ) ⊆ BLC(X,Y ) implies
Mα ⊆ BLC(X,Y ) and so (E,F ) is binary locally closed. Let (E,F ) = (P,Q) ∩
(U, V ) where (P,Q) is binary open and (U, V ) is binary closed. Hence (C,D) =
(P,Q)∩ ((U, V )∩ (G,H)) where (U, V )∩ (G,H) is binary α-closed. Then (C,D) ∈
Bα-LC⋆⋆(X,Y ). That is, Bα-LC(X,Y ) ⊆ Bα-LC⋆⋆(X,Y ). For any space (X,Y ),
Bα-LC⋆⋆(X,Y ) ⊆ Bα-LC(X,Y ). Thus Bα-LC(X,Y ) = Bα-LC⋆⋆(X,Y ). □



BINARY α-LOCALLY CLOSED SETS IN BINARY TOPOLOGICAL SPACES 267

Proposition 2.5. If (A,B) ⊆ (X,Y ) is binary pre open and binary α-locally
closed, then it is binary semi-open.

Proof. As (A,B) ∈ Bα-LC(X,Y ), (A,B) is a binary δ-set. That is, b-
int(b-cl(A,B)) ⊆ b-cl(b-int(A,B)). As (A,B) is binary pre open (A,B) ⊆ b-
int(b-cl(A,B)). That is, (A,B) ⊆ b-cl(b-int(A,B)). Hence (A,B) is binary semi-
open. □

Theorem 2.1. Let (A,B) and (C,D) be subsets of (X,Y,M).

(1) If (A,B), (C,D) ∈ Bα-LC(X,Y ), then (A,B) ∩ (C,D) ∈ Bα-LC(X,Y ).
(2) If (A,B), (C,D) ∈ Bα-LC⋆(X,Y ), then (A,B)∩(C,D) ∈ Bα-LC⋆(X,Y ).
(3) If (A,B), (C,D) ∈ Bα-LC⋆⋆(X,Y ), then (A,B)∩(C,D) ∈ Bα-LC⋆⋆(X,Y ).
(4) If (A,B) ∈ Bα-LC(X,Y ) and (C,D) is binary α-open (resp. binary α-

closed), then (A,B) ∩ (C,D) ∈ Bα-LC(X,Y ).
(5) If (A,B) ∈ Bα-LC⋆(X,Y ) and (C,D) is binary α-open (resp. closed),

then (A,B) ∩ (C,D) ∈ Bα-LC⋆(X,Y ).
(6) If (A,B) ∈ Bα-LC⋆⋆(X,Y ) and (C,D) is binary α-closed (resp. open),

then (A,B) ∩ (C,D) ∈ Bα-LC⋆⋆(X,Y ).
(7) If (A,B) ∈ Bα-LC⋆(X,Y ) and (C,D) is binary α-closed, then (A,B) ∩

(C,D) ∈ Bα-LC(X,Y ).
(8) If (A,B) ∈ Bα-LC⋆⋆(X,Y ) and (C,D) is binary α-open, then (A,B) ∩

(C,D) ∈ Bα-LC(X,Y ).
(9) If (A,B) ∈ Bα-LC⋆⋆(X,Y ) and (C,D) ∈ BGLC⋆(X,Y ), then (A,B) ∩

(C,D) ∈ BGLSC(X,Y ).

Proof. Since (X,Y,Mα) is a binary topology, (1) to (8) hold. (9) Let (A,B) =
(E,F ) ∩ (G,H) where (E,F ) is binary open and (G,H) is binary α-closed and let
(C,D) = (P,Q)∩ (U, V ) where (P,Q) is binary g-open and (U, V ) is binary closed.
Now, (A,B)∩ (C,D) = ((E,F )∩ (P,Q))∩ ((G,H)∩ (U, V )) where (E,F )∩ (P,Q)
is binary g-open and (G,H) ∩ (U, V ) is binary α-closed and so binary semi-closed.
Hence (A,B) ∩ (C,D) ∈ BGLSC(X,Y ). □

Theorem 2.2. (1) (A,B) ∈ Bα-LC(X,Y ) if and only if there exists a
binary α-open set (E,F ) such that (A,B) = (E,F ) ∩ b-αcl(A,B).

(2) (A,B) ∈ Bα-LC⋆(X,Y ) if and only if there exists a binary α-open set
(E,F ) such that (A,B) = (E,F ) ∩ b-cl(A,B).

(3) (A,B) ∈ Bα-LC⋆⋆(X,Y ) if and only if there exists a binary open set
(E,F ) such that (A,B) = (E,F ) ∩ b-αcl(A,B).

Proof. (1) (Necessity) Let (A,B) ∈ Bα-LC(X,Y ). Then (A,B) = (E,F ) ∩
(G,H) where (E,F ) is binary α-open and (G,H) is binary α-closed. As (A,B) ⊆
(G,H), b-αcl(A,B) ⊆ (G,H) and so (E,F ) ∩ b-αcl(A,B) ⊆ (A,B). (A,B) ⊆
(E,F ) and (A,B) ⊆ b-αcl(A,B) implies (A,B) ⊆ (E,F ) ∩ b-αcl(A,B). Therefore
(A,B) = (E,F ) ∩ b-αcl(A,B).

(Sufficiency) Let (A,B) = (E,F )∩ b-αcl(A,B) where (E,F ) is binary α-open.
By definition, (A,B) ∈ Bα-LC(X,Y ). Proofs of (2) and (3) are similar to (1). □
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Proposition 2.6. For a subset (A,B) of (X,Y,M), the following are equiva-
lent.

(1) (A,B) is binary α-locally closed
(2) (A,B) = (U, V ) ∩ b-αcl(A,B) for some binary α-open set (U, V ).
(3) b-αcl(A,B)− (A,B) is binary α-closed.
(4) (A,B) ∪ ((X,Y )− b-αcl(A,B)) is binary α-open.
(5) (A,B) ⊆ b-αint((A,B) ∪ ((X,Y )− b-αcl(A,B))).

Proof. (1) ⇒ (2) It follows from Theorem 2.2 (1).
(2) ⇒ (3) (A,B) = (U, V ) ∩ b-αcl(A,B) implies b-αcl(A,B) − (A,B) = b-

αcl(A,B) ∩ ((X,Y ) − (U, V )) which is binary α-closed since (X,Y ) − (U, V ) is
so.

(3) ⇒ (4) (A,B) ∪ ((X,Y ) − b-αcl(A,B)) = (X,Y ) − (b-αcl(A,B) − (A,B)).
By (3) (A,B) ∪ ((X,Y )− b-αcl(A,B)) is binary α-open.

(4) ⇒ (5) (A,B) ∪ ((X,Y ) − b-αcl(A,B)) is binary α-open implies (A,B) ∪
((X,Y )− b-αcl(A,B)) = b-αint((A,B) ∪ ((X,Y )− b-αcl(A,B))). Thus (5) holds.

(5) ⇒ (1) (A,B) = b-αint((A,B) ∪ ((X,Y ) − b-αcl(A,B))) ∩ b-αcl(A,B), so
(A,B) ∈ Bα-LC(X,Y ). □

Definition 2.3. A subset (A,B) of (X,Y,M) is called binary α-dense if b-
αcl(A,B) = (X,B).

Definition 2.4. A space (X,Y,M) is called binary α-submaximal if every
binary α-dense subset of (X,Y ) is binary α-open in (X,Y ).

example 2.2. Let X = {a, b}, Y = {1, 2} and M = {(ϕ, ϕ), (ϕ, {1}), ({a}, {1}),
(X,Y )}. Here binary α-dense subsets are (ϕ, {1}), (ϕ, Y ), ({a}, {1}), ({a}, Y ),
({b}, {1}), ({b}, Y ), (X, {1}) and (X,Y ). Then BαO(X,Y ) = {(ϕ, ϕ), (ϕ, {1}),
(ϕ, Y ), ({a}, {1}), ({a}, Y ), ({b}, {1}), ({b}, Y ), (X, {1}), (X,Y )}. Every binary
α-dense subset is binary α-open and so (X,Y ) is binary α-submaximal.

Theorem 2.3. A space (X,Y,M) is binary α-submaximal if an only if every
subset of (X,Y,M) is binary α-locally closed.

Proof. (Necessity) Let (A,B) ∈ P(X,Y ) and (U, V ) = (A,B) ∪ ((X,Y ) − b-
αcl(A,B)). Then b-αcl(U, V ) = (X,Y ). That is, (U, V ) is binary α-dense in (X,Y ).
By hypothesis (U, V ) is binary α-open. By Proposition 2.6, (A,B) is binary α-lc.
Hence P(X,Y ) ⊆ Bα-LC(X,Y ) and this implies P(X,Y ) = Bα-LC(X,Y ).

(Sufficiency) Let (A,B) be binary α-dense in (X,Y ). Then (A,B)∪((X,Y )−b-
αcl(A,B)) = (A,B). By hypothesis (A,B) is binary α-lc. Then (A,B)∪((X,Y )−b-
αcl(A,B)) is binary α-open by Proposition 2.6. That is, (X,Y,M) is binary α-
submaximal. □

Proposition 2.7. If (X,Y,M) is binary submaximal, then it is binary α-
submaximal.

Proof. Let (A,B) be binary α-dense in (X,Y ). Then (A,B) is binary dense
and so binary open as (X,Y ) is binary submaximal. Since every binary open set is
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binary α-open, (A,B) is binary α-open and hence (X,Y ) is binary α-submaximal.
□

Lemma 2.1. Let (U, V ) be binary open in (X,Y,M) and (E,F ) ⊆ (U, V ). If
(E,F ) is binary α-open in ((U, V ),M|(U, V )), then (E,F ) is binary α-open in
(X,Y,M)

Proof.Since(E,F ) is binary α-open in ((U, V ),M|(U, V )),(E,F )∈(M|(U, V ))α.
But (M|(U, V ))α = Mα|(U, V ) as (U, V ) is binary open in (X,Y ) by 1.1. Hence
(E,F ) ∈ Mα|(U, V ) and so (E,F ) = (C,D)∩(U, V ) where (C,D) is binary α-open
in (X,Y ). Now openness of (U, V ) implies (E,F ) ∈ Mα. □

Proposition 2.8. Let (A,B) and (U, V ) be subsets of (X,Y,M) such that
(A,B) ⊆ (U, V ) and (U, V ) is binary open and binary α-closed in (X,Y ). Then

(1) If (A,B) ∈ Bα-LC((U, V ),M|(U, V )), then (A,B) ∈ Bα-LC(X,Y,M).
(2) If (A,B) ∈ Bα-LC⋆((U, V ),M|(U, V )), then (A,B) ∈ Bα-LC⋆(X,Y,M).
(3) If (A,B) ∈ Bα-LC⋆⋆((U, V ),M|(U, V )), then (A,B) ∈ Bα-LC⋆⋆(X,Y,M).

Proof. , (1) Let (A,B) ∈ Bα-LC((U, V ),M|(U, V )). Then (A,B) = (E,F )∩
(G,H) where (E,F ) is binary α-open and (G,H) is binary α-closed in
((U, V ),M|(U, V )). Then by Lemma 1.1(2) and Lemma 2.1, (E,F ) is binary α-
open and (G,H) is binary α-closed in (X,Y,M). So (A,B) ∈ Bα-LC(X,Y,M).

(2) If (A,B) ∈ Bα-LC⋆((U, V ),M|(U, V )), then (A,B) = (E,F )∩b-cl(U,V )(A,B)
where (E,F ) is binary α-open in ((U, V ),M|(U, V )) by Theorem 2.2. But b-
cl(U,V )(A,B) = b-cl(A,B) ∩ (U, V ), So (A,B) = ((E,F ) ∩ (U, V )) ∩ b-cl(A,B).
By Lemma 2.1 and the fact that Mα is a binary topology, (E,F )∩ (U, V ) is binary
α-open in (X,Y ). Hence (A,B) ∈ Bα-LC⋆(X,Y,M).

(3) If (A,B) ∈ Bα-LC⋆⋆((U, V ),M|(U, V )). Then (A,B) = (E,F ) ∩ (G,H)
where (E,F ) is binary open and (G,H) is binary α-closed in ((U, V ),M|(U, V )).
Then by Lemma 1.1(2), (E,F ) is binary open and (G,H) is binary α-closed in
(X,Y,M). So (A,B) ∈ Bα-LC⋆⋆(X,Y,M). □

Definition 2.5. Let (A,B), (C,D) ⊆ (X,Y ). Then (A,B) and (C,D) are said
to be binary α-separated if (A,B)∩b-αcl(C,D) = (ϕ, ϕ) and (C,D)∩b-αcl(A,B) =
(ϕ, ϕ).

Proposition 2.9. Let (A,B), (C,D) ∈ Bα-LC(X,Y,M). If (A,B) and (C,D)
are binary α-separated then (A,B) ∪ (C,D) ∈ Bα-LC(X,Y,M).

Proof. As (A,B), (C,D) ∈ Bα-LC(X,Y,M), by Theorem 2.2, there exists
binary α-open sets (E,F ) and (G,H) of (X,Y ) such that (A,B) = (E,F ) ∩ b-
αcl(A,B) and (C,D) = (G,H) ∩ b-αcl(C,D). Put (U, V ) = (E,F ) ∩ ((X,Y ) − b-
αcl(C,D))) and (P,Q) = (J,K)∩((X,Y )−b-αcl(A,B)). Then (A,B) = (U, V )∩b-
αcl(A,B) and (C,D) = (P,Q)∩ b-αcl(C,D) hold and (U, V )∩ b-αcl(C,D) = (ϕ, ϕ)
and (P,Q) ∩ b-αcl(A,B) = (ϕ, ϕ). Since Mα is a binary topology, (U, V ) and
(P,Q) are binary α-open sets of (X,Y ). Also (U, V )∪(P,Q) is binary α-open. Now
((U, V )∪(P,Q))∩b-αcl((A,B)∪(C,D)) = (A,B)∪(C,D). Hence (A,B)∪(C,D) ∈
Bα-LC(X,Y,M). □
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