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ON RELATIONS BETWEEN ATOM-BOND
SUM-CONNECTIVITY INDEX AND OTHER

CONNECTIVITY INDICES

Zhen Lin

Abstract. In 2022, the atom-bond sum-connectivity index is introduced by

Ali, Furtula, Redžepović and Gutman inspired by the Randić index, the sum-

connectivity index and the atom-bond-connectivity index. Recently, the ex-
treme values of the new index for a graph class is widely studied. In this paper,

we pay more attention to the mathematical relations between the atom-bond

sum-connectivity index and some other connectivity indices.

1. Introduction

In chemical graph theory, the topological index of a graph, also called molec-
ular structure descriptor, is often used to predict the physico-chemical properties
and biological activities of molecules. In particular, a large number of degree-based
topological indices have been introduced and extensively studied [9] in mathemat-
ical chemistry.

Let G be a simple connected undirected graph with the vertex set V (G) and
edge set E(G). For v ∈ V (G), dv denotes the degree of vertex v in G. The minimum
and the maximum degree of G are denoted by δ and ∆, respectively. A pendant
vertex is a vertex of degree one and a quasi-pendant vertex is a vertex adjacent to
a pendant vertex.

The Randić index [8], also called the connectivity index or the branching index,
is one of the most famous and important degree-based topological indices, and
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defined as

R(G) =
∑

uv∈E(G)

1√
dudv

.

The harmonic index [6], the sum-connectivity index [10] and the atom-bond-
connectivity index [5] are the class of successful variants of the connectivity index,
and defined as

H(G) =
∑

uv∈E(G)

2

du + dv
,

SCI(G) =
∑

uv∈E(G)

1√
du + dv

,

ABC(G) =
∑

uv∈E(G)

√
du + dv − 2

dudv
.

In 2022, Ali, Furtula, Redžepović and Gutman [1] proposed a novel degree-
based topological index called the atom-bond sum-connectivity index (ABS index
for short) based on the above connectivity index, which is defined as

ABS(G) =
∑

uv∈E(G)

√
du + dv − 2

du + dv
=

∑
uv∈E(G)

√
1− 2

du + dv
.

Recently, the extreme values of the ABS index is widely studied, see [2, 3, 4, 7].
A natural problem is the mathematical relationship between these connectivity
indices. For a connected graph G with n ⩾ 4 vertices, it is not difficult to find that

H(G) ⩽ R(G), (as mean value inequality),

R(G) ⩽ SCI(G), for δ ⩾ 2,

SCI(G) < ABC(G),

ABC(G) ⩽ ABS(G), for δ ⩾ 2.

In this paper, the mathematical relations between the ABS index and other con-
nectivity indices are investigated.

2. Main results

Theorem 2.1. Let G be a connected graph with the maximum degree ∆ and
the minimum degree δ. Then√

δ(δ − 1)R(G) ⩽ ABS(G) ⩽
√

∆(∆− 1)R(G)

with equality if and only if G is regular.

Proof. Let f(x, y) = xy − 2xy
x+y . Then we have

∂f(x, y)

∂x
=

y(x2 + y2 + 2xy − 2y)

(x+ y)2
> 0,

∂f(x, y)

∂y
=

x(x2 + y2 + 2xy − 2x)

(x+ y)2
> 0.
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This implies that f(x, y) is increasing for both x ⩾ 1 and y ⩾ 1. Thus we have√
δ(δ − 1) ⩽

√
dudv

(
1− 2

du + dv

)
⩽

√
∆(∆− 1),

that is, √
δ(δ − 1)√
dudv

⩽

√
1− 2

du + dv
⩽

√
∆(∆− 1)√
dudv

for δ ⩽ du ⩽ ∆ and δ ⩽ dv ⩽ ∆. Further, we have√
δ(δ − 1)R(G) ⩽ ABS(G) ⩽

√
∆(∆− 1)R(G)

with equality if and only if G is regular. This completes the proof. □

Theorem 2.2. Let G be a connected graph. If the degree of quasi-pendant
vertices of G is greater than or equal to three, then ABS(G) > R(G).

Proof. Let g(x, y) = x2y + xy2 − 2xy − x− y for x ⩾ 1 and y ⩾ 1. Then we
have

∂g(x, y)

∂x
= 2(xy − 1) + (y − 1)2 > 0,

∂g(x, y)

∂y
= 2(xy − 1) + (x− 1)2 > 0

for x ̸= 1 and y ̸= 1. Thus g(x, y) is increasing for x ̸= 1 and y ̸= 1. Since

g(1, 3) = 3, g(2, 2) = 4,

we have

g(1, y) ⩾ g(1, 3) > 0, g(x, y) ⩾ g(2, 2) > 0

for x ⩾ 2 and y ⩾ 3. Further, we have

g(du, dv) = d2udv + dud
2
v − 2dudv − du − dv > 0,

that is,

1− 2

du + dv
>

1

dudv
for du ⩾ 2 and dv ⩾ 3. This means that if the degree of quasi-pendant vertices of
G is greater than or equal to three, then

ABS(G) > R(G).

This completes the proof. □

Corollary 2.1. Let G be a connected graph. If the degree of quasi-pendant
vertices of G is greater than or equal to three, then ABS(G) > H(G).

Theorem 2.3. Let G be a connected graph with the maximum degree ∆ and
the minimum degree δ. Then√

δ(δ − 1)H(G) ⩽ ABS(G) ⩽
√

∆(∆− 1)H(G)

with equality if and only if G is regular.
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Proof. Let h(x) = 1
x2 − 1

x . Then h′(x) = x−2
x3 . This implies that h(x) is

decreasing for x < 2. For uv ∈ E(G), we have

h

(
1

δ

)
⩽ h

(
2

du + dv

)
⩽ h

(
1

∆

)
,

that is,

(δ2 − δ)

(
2

du + dv

)2

⩽ 1− 2

du + dv
⩽ (∆2 −∆)

(
2

du + dv

)2

for δ ⩽ du ⩽ ∆ and δ ⩽ dv ⩽ ∆. Further, we have√
δ(δ − 1)H(G) ⩽ ABS(G) ⩽

√
∆(∆− 1)H(G)

with equality if and only if G is regular. This completes the proof. □

By Theorems 2.1 and 2.3, we have

Theorem 2.4. Let G be a connected graph with the maximum degree ∆ and
the minimum degree δ. Then√

δ(δ − 1)R(G) ⩽ ABS(G) ⩽
√

∆(∆− 1)H(G)

with equality if and only if G is regular.
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