BULLETIN OF THE INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE ISSN (p) 2303-4874, ISSN (o) 2303-4955 www.imvibl.org /JOURNALS / BULLETIN Bull. Int. Math. Virtual Inst., **13**(2)(2023), 239-247

Bull. Int. Math. Virtual Inst., **13**(2)(2023) DOI: 10.7251/BIMVI2302239S

> Former BULLETIN OF THE SOCIETY OF MATHEMATICIANS BANJA LUKA ISSN 0354-5792 (o), ISSN 1986-521X (p)

ON GENERALIZED (α, β) -DERIVATIONS IN d-ALGEBRAS

Aslıhan Şenbakar and Damla Yılmaz

ABSTRACT. In this paper, we introduce the notions of generalized (α, β) derivations on *d*-algebras. Also, the concepts of an α -ideal and *G*-invariant ideal are defined and relations among them are discussed. Moreover, some results regarding partial ordered edge *d*-algebras and generelized (α, β) -derivations are proved.

1. Introduction

Algebraic logic emerged as a subdiscipline of algebra in the nineteenth century. In the following years, studies on the relationship between logic and ordered systems such as Boolean algebras, lattice ordered groups, MV-algebras, etc. have been the subject of many researchers. For example, BCK-algebras and BCI-algebras are two classes of logic algebras introduced in 1966 ([4], [5]) and extensively investigated by many authors. It is known that BCK-algebras form a proper subclass of BCIalgebras. That is, every BCK-algebra is a BCI-algebra but not vice versa ([3]). One of the generalizations of BCK-algebras, *d*-algebras, was presented by Neggers and Kim ([10]). After that, *d*-subalgebra, *d*-ideal and some related concepts defined and relations among them investigated by Neggers, Jun and Kim ([11]).

In the theory of rings, the notion of derivation was given by Posner who establish two very striking results on derivations in prime rings ([12]). Jun and Xin ([6]) introduced the notion of derivations of BCI-algebras, which was motivated from a lot of work done on the notion of derivations on d-algebras ([7], [8] and their

²⁰¹⁰ Mathematics Subject Classification. Primary 03G25; Secondary 06A06, 06F35. Key words and phrases. d-algebras, generalized (α, β) -derivations, endomorphisms. Communicated by Dusko Bogdanic.

references). In BCI-algebras, (α, β) -derivations studied and obtained some properties by several authors ([2], [9]). Recently, Al-Omary has introduced the notion of (α, β) -derivations on *d*-algebras and investigate their relations ([1]).

This paper presents the notions of generalized (α, β) -derivations of *d*-algebras. Also, we obtain some results regarding partial ordered edge *d*-algebras and generalized (α, β) -derivations. Furthermore, we introduce the concepts of an α -ideal, *G*-invariant ideal and we investigate their relations.

2. Preliminaries

In this section, we introduce the definition of a d-algebra and properties that important for the study of d-algebras.

DEFINITION 2.1. [10] A non-empty set $\mathcal{A} = (\mathcal{A}; *, 0)$ of type (2,0) is called a d-algebra if for all $a, b \in \mathcal{A}$ the following conditions hold:

(1) a * a = 0, (2) 0 * a = 0, (3) a * b = 0 and b * a = 0 implies a = b.

PROPOSITION 2.1. [8] A d-algebra \mathcal{A} has the following properties: for all $a, b, c \in \mathcal{A}$

(1) a * (a * b) = b(2) (a * (a * b)) * b = 0(3) (a * b) * c = (a * c) * b(4) 0 * (a * b) = (0 * a) * (0 * b)(5) $a \leq b$ implies $a * c \leq b * c$ and $c * b \leq c * a$ (6) a * (a * (a * b)) = a * b(7) a * 0 = 0 implies a = 0(8) a * b = a * c implies b = c.

DEFINITION 2.2. [11] Suppose $\mathcal{A} = (\mathcal{A}; *, 0)$ be a d-algebra and $\emptyset \neq I \subseteq \mathcal{A}$. If $a * b \in I$ whenever $a, b \in I$, then I is called a d-subalgebra of \mathcal{A} . Also, I is called a d-ideal of \mathcal{A} if it satisfies:

(1) $a * b \in I$ and $b \in I$ imply $a \in I$

(2) $a \in I$ and $b \in \mathcal{A}$ imply $a * b \in I$, i.e., $I * \mathcal{A} \subseteq I$.

LEMMA 2.1. [11] If I is a d-ideal of a d-algebra \mathcal{A} , then $0 \in I$.

DEFINITION 2.3. [10] Let \mathcal{A} be a d-algebra and $a \in \mathcal{A}$. Define $a * \mathcal{A} = \{a * b | b \in \mathcal{A}\}$. If for any $a \in \mathcal{A}$, $a * \mathcal{A} = \{a, 0\}$, then \mathcal{A} is called an edge d-algebra.

LEMMA 2.2. [7] If \mathcal{A} is an edge d-algebra, then a * 0 = a for any $a \in \mathcal{A}$.

Notation: Let \mathcal{A} be a *d*-algebra and $a, b \in \mathcal{A}$. We write $a \wedge b = b * (b * a)$.

DEFINITION 2.4. [1] Let \mathcal{A} be a d-algebra, $\delta : \mathcal{A} \to \mathcal{A}$ be a mapping. If $\delta(a * b) = \delta(a) * \delta(b)$, then δ is called an endomorphism. Note that $\delta(0) = 0$.

REMARK 2.1. [1] If \mathcal{A} is an edge *d*-algebra and α is an endomorphism on \mathcal{A} , then $\alpha(a) * 0 = \alpha(a)$ for all $a \in \mathcal{A}$.

DEFINITION 2.5. [1] Let \mathcal{A} be a d-algebra. A map $d_{(\alpha,\beta)} : \mathcal{A} \to \mathcal{A}$ is called a leftright (α, β) -derivation of \mathcal{A} , if it satisfies the identity $d_{(\alpha,\beta)}(ab) = d_{(\alpha,\beta)}(a)\alpha(b) \land \beta(a)d_{(\alpha,\beta)}(b)$ for all $a, b \in \mathcal{A}$. If $d_{(\alpha,\beta)}$ satisfies $d_{(\alpha,\beta)}(ab) = \alpha(a)d_{(\alpha,\beta)}(b) \land d_{(\alpha,\beta)}(a)\beta(b)$ for all $a, b \in \mathcal{A}$, then $d_{(\alpha,\beta)}$ is called a right-left (α, β) -derivation of \mathcal{A} . Also, if $d_{(\alpha,\beta)}$ is a left-right and right-left (α,β) -derivation, then $d_{(\alpha,\beta)}$ is an (α,β) -derivation of \mathcal{A} .

THEOREM 2.1. [1] Suppose $(\mathcal{A}, *, 0)$ be a d-algebra.

(1) If $d_{(\alpha,\beta)}$ is a left-right (α,β) -derivation, then $d_{(\alpha,\beta)}$ is regular.

(2) If A is an edge d-algebra and $d_{(\alpha,\beta)}$ is a right-left (α,β) -derivation, then $d_{(\alpha,\beta)}$ is regular.

3. Generalized (α, β) -derivations on *d*-algebras

In this section, we introduce the notions of left generalized (α, β) -derivations and right generalized (α, β) -derivations of \mathcal{A} and investigate their basic properties. In what follows, α and β are endomorphisms of a *d*-algebra \mathcal{A} .

DEFINITION 3.1. Let \mathcal{A} be a d-algebra. A mapping $G : \mathcal{A} \to \mathcal{A}$ is called a left generalized (α, β) -derivation if there exists a left-right (α, β) -derivation $d_{(\alpha, \beta)}$ of \mathcal{A} such that

$$G(a * b) = (G(a) * \alpha(b)) \land (\beta(a) * d_{(\alpha,\beta)}(b))$$

for all $a, b \in \mathcal{A}$.

If there exists a right-left (α, β) -derivation $d_{(\alpha,\beta)}$ of A and G satisfies the identity

$$G(a * b) = (\alpha(a) * G(b)) \land (d_{(\alpha,\beta)}(a) * \beta(b))$$

then G is called a right generalized (α, β) -derivation of A.

Clearly, the notion of left (resp. right) generalized (α, β) -derivation covers the concept of left-right (resp. right-left) (α, β) -derivation when $G = d_{(\alpha,\beta)}$. For simplicity of notations, we write ab instead of a * b.

EXAMPLE 3.1. Consider a d-algebra $\mathcal{A} = \{0, 1, 2, 3, 4\}$ with the following Cayley table: (\mathcal{A} is not a BCK-algebra, [11])

*	0	1	2	3	4
0	0	0	0	0	0
1	1	0	1	0	1
2	2	2	0	3	0
3	3	3	2	0	3
4	3	3	1	1	0

Define a map

$$d_{(\alpha,\beta)}: \mathcal{A} \to \mathcal{A}, a \mapsto \begin{cases} 0, & a = 0, 1, 2, 3\\ 1, & a = 4 \end{cases}$$

and define two endomorphisms

$$\alpha: \mathcal{A} \to \mathcal{A}, \ a \mapsto \begin{cases} 0, & a = 0, 1\\ 2, & a = 2, 3, 4 \end{cases}$$

and

$$\beta: \mathcal{A} \to \mathcal{A}, \ a \mapsto \begin{cases} 0, & a = 0, 1\\ 3, & a = 2, 3, 4 \end{cases}$$

Then, $d_{(\alpha,\beta)}$ is a left-right (α,β) -derivation. If we define a map

$$G: \mathcal{A} \to \mathcal{A}, \ a \longmapsto \begin{cases} 0, & a = 0, 1, 3, 4 \\ 2, & a = 2 \end{cases}$$

then G is a left generalized (α, β) -derivation of A. But G is not a right generalized (α, β) -derivation of A. Because G(20) = G(2) = 2, on the other hand $\alpha(2)G(0) \wedge d(2)\beta(0) = 0$.

EXAMPLE 3.2. Consider a d-algebra $\mathcal{A} = \{0, a, b, c\}$ with the following Cayley table:

*	0	a	b	c
0	0	0	0	0
a	a	0	0	b
b	b	b	0	0
c	c	c	a	0

Define a map

$$d_{(\alpha,\beta)}: \mathcal{A} \to \mathcal{A}, \ x \mapsto \begin{cases} 0, & x = 0, b \\ a, & x = a \\ c, & x = c \end{cases}$$

and define two endomorphisms

$$\alpha: \mathcal{A} \to \mathcal{A}, \ x \mapsto \begin{cases} 0, & x = 0 \\ b, & x = a, c \\ a, & x = b \end{cases}$$

and

$$\beta: \mathcal{A} \to \mathcal{A}, \ x \mapsto \begin{cases} 0, & x = 0 \\ a, & x = a \\ b, & x = b, c \end{cases}$$

Then, $d_{(\alpha,\beta)}$ is a right-left (α,β) -derivation. If we define a map

$$G: \mathcal{A} \to \mathcal{A}, \ x \longmapsto \begin{cases} 0, & x = 0, b \\ a, & x = a \\ c, & x = c \end{cases}$$

then G is a right generalized (α, β) -derivation of \mathcal{A} . Here, G is not a left generalized (α, β) -derivation of \mathcal{A} . G(ca) = G(c) = c, but $G(c)\alpha(a) \land \beta(c)d(a) = 0$.

DEFINITION 3.2. [1] Let G be a self map on a d-algebra \mathcal{A} . If G(0) = 0, then G is called regular.

EXAMPLE 3.3. The left generalized (α, β) -derivation G and the right generalized (α, β) -derivation G in Example 3.1 and Example 3.2 are regular.

LEMMA 3.1. Assume that \mathcal{A} is a d-algebra and $G : \mathcal{A} \to \mathcal{A}$ is a left generalized (α, β) -derivation. Hence, G is regular.

PROOF. For any $a \in \mathcal{A}$, we have

$$G(0) = G(0a) = G(0)\alpha(a) \wedge \beta(0)d_{(\alpha,\beta)}(a)$$

= $G(0)\alpha(a) \wedge 0d_{(\alpha,\beta)}(a)$
= $G(0)\alpha(a) \wedge 0$
= $0(0G(0)\alpha(a)) = 0.$

LEMMA 3.2. Assume that \mathcal{A} is an edge d-algebra and $G : \mathcal{A} \to \mathcal{A}$ is a right generalized (α, β) -derivation. Thus, G is regular.

PROOF. Indeed, using Remark 2.1 and aa = 0, we get

$$G(0) = G(0a) = \alpha(0)G(a) \wedge d_{(\alpha,\beta)}(0)\beta(a)$$

= 0G(a) \langle d_{(\alpha,\beta)}(0)\beta(a) = 0 \langle d_{(\alpha,\beta)}(0)\beta(a)
= d_{(\alpha,\beta)}(0)\beta(a)(d_{(\alpha,\beta)}(0)\beta(a)0) = 0.

THEOREM 3.1. Assume that \mathcal{A} is an edge d-algebra.

(1) If G is a left generalized (α, β) -derivation of A, then $G(a) = G(a) \land \beta(a)$ for all $a \in A$.

(2) If G is a right generalized (α, β) -derivation of A, then $G(a) = \alpha(a) \wedge d_{(\alpha,\beta)}(a)$, for all $a \in A$.

PROOF. (1) Let G be a left generalized (α, β) -derivation of \mathcal{A} . Using Theorem 2.1(1), Lemma 2.2 and Remark 2.1, we have

$$G(a) = G(a0) = G(a)\alpha(0) \wedge \beta(a)d_{(\alpha,\beta)}(0)$$

= $G(a)0 \wedge \beta(a)0 = G(a) \wedge \beta(a).$

(2) Let G be a right generalized (α, β) -derivation of \mathcal{A} . Using Theorem 2.1(2), Lemma 2.2, Lemma 3.2 and Remark 2.1, we have

$$G(a) = G(a0) = \alpha(a)G(0) \wedge (d_{(\alpha,\beta)}(a)\beta(0))$$

= $\alpha(a)0 \wedge d_{(\alpha,\beta)}(a)0 = \alpha(a) \wedge d_{(\alpha,\beta)}(a).$

THEOREM 3.2. Let α, β be two endomorphisms and G be a self map on a dalgebra \mathcal{A} . If $G(a) = \alpha(a)$ for all $a \in \mathcal{A}$, then G is a left (or right) generalized (α, β) -derivation on \mathcal{A} . PROOF. Assume G be a self map on a d-algebra \mathcal{A} such that $G(a) = \alpha(a)$ for all $a \in \mathcal{A}$. Since a(ab) = b, we have

$$G(ab) = \alpha(ab) = \alpha(a)\alpha(b)$$

= $G(a)\alpha(b)$
= $(\beta(a)d_{(\alpha,\beta)}(b))((\beta(a)d_{(\alpha,\beta)}(b))(G(a)\alpha(b)))$
= $G(a)\alpha(b) \land \beta(a)d_{(\alpha,\beta)}(b).$

Similarly, it can be shown that G is a right generalized (α, β) -derivation on \mathcal{A} .

THEOREM 3.3. Assume that α, β are two endomorphisms and G is a self map on a d-algebra A. If $G(a) = \alpha(a)$, then G(ab) = G(a)G(b) for all $a, b \in A$.

PROOF. Since a(ab) = b, using Theorem 3.2, we have

$$G(ab) = G(a)\alpha(b) \wedge \beta(a)d_{(\alpha,\beta)}(b)$$

= $\alpha(a)\alpha(b) \wedge \beta(a)d_{(\alpha,\beta)}(b)$
= $\beta(a)d_{(\alpha,\beta)}(b)(\beta(a)d_{(\alpha,\beta)}(b)\alpha(a)\alpha(b))$
= $\alpha(a)\alpha(b) = G(a)G(b).$

If $G = d_{(\alpha,\beta)}$ is taken in the two theorems above, the Theorem 3.4. in [1] is obtained as a result.

DEFINITION 3.3. [1] Let \mathcal{A} be a d-algebra and G_1 , G_2 be two self maps. We define $G_1 \circ G_2 : \mathcal{A} \to \mathcal{A}$ by $(G_1 \circ G_2)(a) = G_1(G_2(a))$ for all $a \in \mathcal{A}$.

THEOREM 3.4. [1] Let \mathcal{A} be a d-algebra and $d_{1_{(\alpha,\beta)}}$, $d_{2_{(\alpha,\beta)}}$ be two left-right (α,β) -derivations on \mathcal{A} such that $\alpha^2 = \alpha$. Then, $d_{1_{(\alpha,\beta)}} \circ d_{2_{(\alpha,\beta)}}$ is a left-right (α,β) -derivation on \mathcal{A} .

THEOREM 3.5. Let \mathcal{A} be a d-algebra and G_1, G_2 be two left generalized (α, β) derivations associated with $d_{1(\alpha,\beta)}, d_{2(\alpha,\beta)}$ respectively on \mathcal{A} such that $\alpha^2 = \alpha$. Then, $G_1 \circ G_2$ is a left generalized (α, β) -derivation associated with $d_{1(\alpha,\beta)} \circ d_{2(\alpha,\beta)}$ on \mathcal{A} .

PROOF. Let $a, b \in \mathcal{A}$. Since a(ab) = b, we have

$$\begin{aligned} (G_1 \circ G_2)(ab) &= G_1(G_2(ab)) \\ &= G_1(G_2(a)\alpha(b) \land \beta(a)d_{2_{(\alpha,\beta)}}(b)) \\ &= G_1(G_2(a)\alpha(b)) \\ &= G_1(G_2(a))\alpha^2(b) \land \beta(G_2(a))d_{1_{(\alpha,\beta)}}(\alpha(b)) \\ &= G_1(G_2(a))\alpha(b) \\ &= (\beta(a)(d_{1_{(\alpha,\beta)}} \circ d_{2_{(\alpha,\beta)}})(b))(\beta(a)(d_{1_{(\alpha,\beta)}} \circ d_{2_{(\alpha,\beta)}})(b)(G_1 \circ G_2)(a)\alpha(b)) \\ &= (G_1 \circ G_2)(a)\alpha(b) \land \beta(a)(d_{1_{(\alpha,\beta)}} \circ d_{2_{(\alpha,\beta)}})(b). \end{aligned}$$

DEFINITION 3.4. [1] Let \mathcal{A} be a d-algebra. Define a binary relation \leq on \mathcal{A} by $a \leq b$ iff ab = 0. Thus, (\mathcal{A}, \leq) is a partially ordered set.

LEMMA 3.3. Suppose that \mathcal{A} is an edge d-algebra with partial order \leq . If G is a right generalized (α, β) -derivation on \mathcal{A} , then $G(a) \leq \alpha(a)$ for all $a \in \mathcal{A}$.

PROOF. Let G be a right generalized (α, β) -derivation on \mathcal{A} . It follows from Theorem 3.1 (2) that

$$G(a) = \alpha(a) \wedge d_{(\alpha,\beta)}(a)$$

= $d_{(\alpha,\beta)}(a)(d_{(\alpha,\beta)}(a)\alpha(a))$

and so

$$G(a)\alpha(a) = (d_{(\alpha,\beta)}(a)(d_{(\alpha,\beta)}(a)\alpha(a)))\alpha(a).$$

Since $(a(ab))b = 0$, we have $G(a)\alpha(a) = 0$ and so $G(a) \leq \alpha(a)$.

LEMMA 3.4. Let \mathcal{A} be a d-algebra with partial order \leq and let G be a right generalized (α, β) -derivation on \mathcal{A} . Then, $G(ab) \leq \alpha(a)G(b)$ for all $a, b \in \mathcal{A}$.

PROOF. We have

$$\begin{aligned} G(ab) &= \alpha(a)G(b) \wedge d_{(\alpha,\beta)}(a)\beta(b) \\ &= (d_{(\alpha,\beta)}(a)\beta(b))((d_{(\alpha,\beta)}(a)\beta(b))(\alpha(a)G(b))). \end{aligned}$$

Since (a(ab))b = 0, we get

$$G(ab)(\alpha(a)G(b)) = (d_{(\alpha,\beta)}(a)\beta(b))((d_{(\alpha,\beta)}(a)\beta(b))(\alpha(a)G(b)))(\alpha(a)G(b))$$

= 0

and this completes the proof.

LEMMA 3.5. Assume that \mathcal{A} is an edge d-algebra with partial order \leq and G is a right generalized (α, β) -derivation on \mathcal{A} .

(1) For all $a \in A$, $G(G(a)) \leq \alpha(G(a))$.

(2) If $\alpha(a) = 0$ for all $a \in A$, then

$$G^{-1}(0) = \{ a \in \mathcal{A} | G(a) = 0 \}$$

is a d-subalgebra of A.

PROOF. (1) Assume that G is a right generalized (α, β) -derivation on \mathcal{A} . By Theorem 3.1 (2), we have

$$G(G(a)) = \alpha(G(a)) \wedge d_{(\alpha,\beta)}(G(a))$$

= $d_{(\alpha,\beta)}(G(a))(d_{(\alpha,\beta)}(G(a))\alpha(G(a))).$

Multiplying both sides from the right by $\alpha(G(a))$, we get $G(G(a))\alpha(G(a)) = 0$ and so we have required result.

(2) By Lemma 3.2, we have G is a regular. Hence, $G^{-1}(0) \neq \emptyset$. Let $a, b \in G^{-1}(0)$. By Lemma 3.4, we have $G(ab) \leq \alpha(a)G(b) = 0$, since $\alpha(a) = 0 = G(b)$. Hence, G(ab) = 0 and so $ab \in G^{-1}(0)$. Therefore, $G^{-1}(0)$ is a d-subalgebra of A.

THEOREM 3.6. Assume that \mathcal{A} is an edge d-algebra with partial order \leq and G is a right generalized (α, β) -derivation on \mathcal{A} such that $\alpha^2 = \alpha$. Then,

$$G^{n}(G^{n-1}(...(G^{2}(G(a))))...) \leq \alpha(a)$$

for all $a \in \mathcal{A}$.

PROOF. Let's prove the theorem using the mathematical induction method. Let n = 1. By Lemma 3.3, we have $G(a) \leq \alpha(a)$. Assume that

$$G^{n}(G^{n-1}(...(G^{2}(G(a))))...) \leq \alpha(a)$$

for any $n \in \mathbb{N}$. Let $\nabla_n = G^n(G^{n-1}(...(G^2(G(a))))...)$, that is $\nabla_n \leq \alpha(a)$. Hence,

$$G^{n+1}(\nabla_n) = G^{n+1}(\nabla_n 0)$$

= $\alpha(\nabla_n)G^{n+1}(0) \wedge d^{n+1}_{(\alpha,\beta)}(\nabla_n)\beta(0)$
= $\alpha(\nabla_n) \wedge d^{n+1}_{(\alpha,\beta)}(\nabla_n)$
= $d^{n+1}_{(\alpha,\beta)}(\nabla_n)(d^{n+1}_{(\alpha,\beta)}(\nabla_n)\alpha(\nabla_n))$

which implies that

$$G^{n+1}(\nabla_n)\alpha(\nabla_n) = ((d^{n+1}_{(\alpha,\beta)}(\nabla_n)(d^{n+1}_{(\alpha,\beta)}(\nabla_n)\alpha(\nabla_n))\alpha(\nabla_n) = 0,$$

since (a(ab))b = 0. Thus, $G^{n+1}(\nabla_n) \leq \alpha(\nabla_n) \leq \alpha(a)$. This completes the proof.

DEFINITION 3.5. Let G be a generalized (α, β) -derivation of a d-algebra \mathcal{A} . We say that a d-ideal I of \mathcal{A} is an α -ideal (resp. β -ideal) if $\alpha(I) \subseteq I$ (resp. $\beta(I) \subseteq I$).

DEFINITION 3.6. Let G be a generalized (α, β) -derivation of a d-algebra \mathcal{A} . We say that a d-ideal I of \mathcal{A} is G-invariant if $G(I) \subseteq I$.

EXAMPLE 3.4. Let G be a left generalized (α, β) -derivation on \mathcal{A} which described in Example 3.1 and $I = \{0, 1\}$. Then, I is both an α -ideal and β -ideal. Moreover, it is a G-invariant of \mathcal{A} .

EXAMPLE 3.5. Let G be a right generalized (α, β) -derivation on \mathcal{A} which described in Example 3.2 and $I = \{0, b\}$. It is clear that I is a β -ideal, but I is not an α -ideal. Also, I is a G-invariant of \mathcal{A} .

THEOREM 3.7. Suppose that \mathcal{A} is an edge d-algebra, I is a d-ideal of \mathcal{A} and G is a right generalized (α, β) -derivation of \mathcal{A} . Then, G is regular iff every α -ideal of A is G-invariant.

PROOF. Suppose that I is an α -ideal of \mathcal{A} and G is regular. Let $b \in G(I)$. Then, we have b = G(a) for some $a \in I$. By Lemma 3.3, we have $G(a) \leq \alpha(a)$, that is $G(a)\alpha(a) = 0 \in I$. Hence, $\alpha(a) \in \alpha(I) \subseteq I$ which implies that $b \in I$. Thus, $G(I) \subseteq I$ which implies that I is a G-invariant. Now, assume that every α -ideal of \mathcal{A} is G-invariant. The ideal $\{0\}$ is both α -ideal and G-invariant. Thus, we have $G(0) \subseteq \{0\}$ and so G(0) = 0. It implies that G is regular.

References

- R. M. Al-Omary, On (α, β)-derivations in d-algebras, Bollettino dell'Unione Matematica Italiana, 12.4 (2019), 549–556.
- [2] A. M. Al-Roqi, On generalized (α, β)-derivations in BCI-algebras, Journal of applied mathematics and informatics, **32(1,2)** (2014), 27–38.
- [3] Q. P. Hu, On some classes of BCI-algebras, Math. Japon. 29 (1984), 251-253.
- [4] Y. Imai and K. Iséki, On axiom systems of propositional calculi, I. Proceedings of the Japan Academy, 41(6) (1965), 436–439.
- [5] K. Iséki, An algebra related with a propositional calculus, Proceedings of the Japan Academy, 42(1) (1966), 26–29.
- [6] Y. B. Jun and X. L. Xin, On derivations of BCI-algebras, Information Sciences, 159(3-4) (2004), 167176.
- [7] N. Kandaraj and M. Chandramouleeswaran, On Left derivations of d-algebras, Int. J. Math. Arch., 3(11) (2012), 39613966.
- [8] N. Kandaraj, Derivations on d algebras.
- [9] G. Muhiuddin and A. M. Al-Roqi, On left (θ, φ)-derivations in BCI-algebras, Journal of the Egyptian Mathematical Society, 22(2) (2014), 157–161.
- [10] J. Neggers and H. S. Kim, On d-algebras, Mathematica Slovaca, 49(1) (1999), 19-26.
- [11] J. Neggers, Y. B. Jun, and H. S. Kim, On d-ideals in d-algebras, Mathematica Slovaca, 49(3) (1999), 243–251.
- [12] E. C. Posner, *Derivation in prime rings*, Proc. Am. Math. Soc. 8 (1957), 1093–1100.

Aslihan Şenbakar, Department of Mathematics, Erzurum Technical University, Erzurum, Turkey

Email address: senbakar90gmail.com

DAMLA YILMAZ, DEPARTMENT OF MATHEMATICS, ERZURUM TECHNICAL UNIVERSITY, ERZURUM, TURKEY

Email address: damla.yilmaz@erzurum.edu.tr