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Abstract. The path energy is a recently conceived variant of graph energy,

equal to the sum of the absolute values of the eigenvalues of the path matrix
[Shikare et. al, 2018]. Two graphs having equal path energy are said to be

path-equienergetic. All trees of same order are mutually path-equienergetic.

Members of a large class of connected regular graphs of same order and degree
are mutually path-equienergetic. In this paper, we construct other types of

path-equienergetic graphs and explore their spectral properties.

1. Introduction

The energy of a graph (= sum of absolute values of the eigenvalues of the
adjacency matrix) was introduced in 1978 by one of the present authors [7, 9]. The
concept of equienergetic graphs was conceived by Balakrishnan [3] and Brankov et
al. [4], independently, in 2004. Since then, numerous methods for constructing
such graphs were discovered [9].

Motivated by the success of the theory of graph energy, a large number of
other graph energies were put forward, equal to the sum of absolute values of the
eigenvalues of some graph matrix. One of these is the path energy [14], based on
the concept of path matrix [11].

Definition 1.1. [11]. Let G be a simple graph with vertex set V(G) =
{v1, v2, . . . , vn}. The path matrix P = P(G) = (pij) is the square matrix of size n,
such that pij is equal to the number of vertex-disjoint paths from vi to vj if i ̸= j,
and pij = 0 if i = j.

Examples illustrating the construction of path matrices are found in [14, 11, 8].
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Definition 1.2. [14]. The path energy of a graph G is the sum of the absolute
values of eigenvalues of the path matrix P(G), and is denoted by PE(G).

For earlier works on path energy see [14, 13, 6, 8, 1, 2, 10].

Definition 1.3. The graphs G1 and G2 are said to be path-equienergetic if
PE(G1) = PE(G2).

In this paper we are concerned with path-equienergetic graphs. At the first
glance, this topic seems to be trivially simple, because of the following two results
(Theorems 1.1 and 1.2).

Denote by Kn the complete graph on n vertices, and by A(Kn) its adjacency
matrix. As well known [5], the spectrum of A(Kn) is {n− 1,−1, . . . ,−1}, and the
respective energy 2(n− 1).

Theorem 1.1. [14] Let T be a tree of order n. Then

P(T ) = A(Kn) .

Therefore, the spectrum of path matrix of any tree of order n is {n−1,−1, . . . ,−1},
and its path energy is equal to 2(n−1). Consequently, all n-vertex trees are mutually
path-equienergetic.

We say that a regular graph is nice if it is connected and if its edge-connectivity
is equal to its degree. Note that the majority of regular graphs encountered in graph
theory and its applications are nice.

Theorem 1.2. [1] Let R be a nice regular graph of order n and degree r. Then

P(R) = rA(Kn) .

Therefore, the spectrum of the path matrix of any nice regular graph of order n and
degree r is {r(n− 1),−r, . . . ,−r}, and its path energy is equal to 2r(n− 1). Conse-
quently, all n-vertex nice regular graphs of degree r are mutually path-equienergetic.

In what follows we describe path-equienergetic graphs different from those in
Theorems 1.1 and 1.2.

2. More path-equienergetic graphs

In [12], it was proven that all connected unicyclic graph of equal order and
girth are path-cospectral, thus being mutually path-equienergetic. Further, n-
vertex bicyclic graphs having the same structure of cycles were shown to be path-
equienergetic [12].

Theorems 1.1 and 1.2 imply the following corollaries.

Corollary 2.1.
(a) If F is an n-vertex forest with c components, then PE(F ) = 2(n− c).
(b) If R is an n-vertex regular graph of degree r with c components, all of which
being nice, then PE(R) = 2r(n− c).

Corollary 2.2. An n1-vertex tree and a nice regular graph of order n2 and
degree r are path-equienergetic if and only if r = (n1 − 1)/(n2 − 1).
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example 2.1. Denote by Pn and Cn be the path and cycle of order n. Then
P5 and C3, are path-equienergetic.

example 2.2. The complete graph on n vertices and a tree of order p are
path-equienergetic if and only if p = n2 − 2n+ 2.

The above examples show that path-equienergetic graphs need not be path-
cospectral.

It is known [14] that if the path energy is a rational number, then it is an even
integer.

example 2.3. A graph H with path energy 2k and any tree of order k + 1 are
path-equienergetic.

The following theorem provides a relation between path energy of a nice regular
graph and the path energy of its complement.

Theorem 2.1. Let R be a nice regular graph on n vertices and R its comple-
ment. If R is also nice, then

PE(R) + PE(R) = PE(Kn) .

Proof. Let R be r-regular. Then R is (n−r−1)-regular. Therefore, PE(R) =
2r(n− 1) and PE(G) = 2(n− r − 1)(n− 1). Then,

PE(R) + PE(R) = 2r(n− 1) + 2(n− r − 1)(n− 1) = 2(n− 1)2 = PE(Kn) .

□

Let G1 ∪ G2 denote the graph consisting of disconnected components G1 and
G2.

Corollary 2.3. For any regular graph R of order n, satisfying the conditions
of Theorem 2.1, PE(R ∪R) = PE(Kn).

Theorem 2.1 can be generalized.

Theorem 2.2. Let R1 and R2 be nice regular graphs of order n, of degree r1
and r2, respectively. Let r1 + r2 = n− 1. Then PE(R1 ∪R2) = PE(Kn).

The following theorem pertains to a class of non-regular graphs.

Theorem 2.3. Let R be a nice regular graph of order n and degree r. Let G
be a connected graph of degree n, with one vertex of degree greater than r and all
other vertices of degree r. Let the edge-connectivity of G be r (i.e., same as of R).
Then G and R are path-equienergetic.

Proof. Denote by p(x, y) the number of vertex-disjoint paths between the
vertices x and y. Recall that [11]

(2.1) p(x, y) ⩽ min{deg(x),deg(y)} .
Let w be the vertex of G whose degree is greater than r. Because of r-

connectivity of the graph G, in view of Theorem 1.2, for any two vertices u, v
different from w, p(u, v) = r.
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Consider now the element p(u,w) of the path matrix of G, where u is any other
vertex of G. Since deg(u) = r and deg(w) > r, by Eq. (2.1), p(u,w) ⩽ r.

Repeating an argument used in the proof of Theorem 8 in [1], since G is r-
connected, there are at least r internally disjoint paths between u and w, i.e.,
p(u,w) ⩾ r.

Therefore, p(u,w) = r. Therefore, all off-diagonal elements of P(G) are equal
to r, i.e., P(G) = rA(Kn). □

Corollary 2.4. (a) Any nice 3-regular graph on n vertices and the wheel Wn

on n vertices are path-equienergetic.
(b) The graph obtained by coalescing a vertex of the cycles Cn and Cm is path-
equienergetic with Cn+m−1.

3. Concluding remarks

All the path-equienergetic graphs having equal number of vertices, described
in the above parts of this paper, are path-cospectral. It would be of some interest
to seek for pairs of path-equienergetic non-path-cospectral graphs of equal order.

A trivial way to achieve this goal would be to find a pair of path-equienergetic
graphs G1, G2 of different order, say of n1 and n2 , n1 < n2 , and to add n2 − n1

isolated vertices to G1.
By computer search we checked for connected path-equienergetic non-path-

cospectral graphs of equal order n. Up to n = 5 no such graphs were found.

Conjecture 3.1. There exist pairs of connected path-equienergetic non-path-
cospectral graphs of equal order.
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