
BULLETIN OF THE INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE

ISSN (p) 2303-4874, ISSN (o) 2303-4955
www.imvibl.org /JOURNALS / BULLETIN
Bull. Int. Math. Virtual Inst., 13(2)(2023), 219–232

DOI: 10.7251/BIMVI2302219L

Former
BULLETIN OF THE SOCIETY OF MATHEMATICIANS BANJA LUKA

ISSN 0354-5792 (o), ISSN 1986-521X (p)

ON STRONGLY REGULAR GRAPHS WITH m2 = qm3

AND m3 = qm2 for q = 9, 10

Mirko Lepović

Abstract. We say that a regular graph G of order n and degree r ⩾ 1 (which

is not the complete graph) is strongly regular if there exist non-negative in-

tegers τ and θ such that |Si ∩ Sj | = τ for any two adjacent vertices i and j,
and |Si ∩ Sj | = θ for any two distinct non-adjacent vertices i and j, where

Sk denotes the neighborhood of the vertex k. Let λ1 = r, λ2 and λ3 be the

distinct eigenvalues of a connected strongly regular graph. Let m1 = 1, m2

and m3 denote the multiplicity of r, λ2 and λ3, respectively. We here describe

the parameters n, r, τ and θ for strongly regular graphs with m2 = qm3 and

m3 = qm2 for q = 9, 10.

1. Introduction

Let G be a simple graph of order n with vertex set V (G) = {1, 2, . . . , n}. The
spectrum of G consists of the eigenvalues λ1 ⩾ λ2 ⩾ . . . ⩾ λn of its (0,1) adjacency
matrix A and is denoted by σ(G). We say that a regular graph G of order n and
degree r ⩾ 1 (which is not the complete graph Kn) is strongly regular if there
exist non-negative integers τ and θ such that |Si ∩ Sj | = τ for any two adjacent
vertices i and j, and |Si ∩ Sj | = θ for any two distinct non-adjacent vertices i and
j, where Sk ⊆ V (G) denotes the neighborhood of the vertex k. We know that a
regular connected graph G is strongly regular if and only if it has exactly three
distinct eigenvalues [1] (see also [3]). Let λ1 = r, λ2 and λ3 denote the distinct
eigenvalues of a connected strongly regular graph G. Let m1 = 1, m2 and m3

denote the multiplicity of r, λ2 and λ3. Further, let r = (n− 1)− r, λ2 = −λ3 − 1
and λ3 = −λ2 − 1 denote the distinct eigenvalues of the strongly regular graph G,
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220 MIRKO LEPOVIĆ

where G denotes the complement of G. Then τ = n− 2r− 2+ θ and θ = n− 2r+ τ
where τ = τ(G) and θ = θ(G).

Remark 1.1. (i) if G is a disconnected strongly regular graph of degree r then
G = mKr+1, where mH denotes the m-fold union of the graph H; (ii) G is a
disconnected strongly regular graph if and only if θ = 0.

Remark 1.2. (i) a strongly regular graph G of order n = 4k + 1 and degree
r = 2k with τ = k−1 and θ = k is called a conference graph; (ii) a strongly regular
graph is a conference graph if and only if m2 = m3 and (iii) if m2 ̸= m3 then G is
an integral1 graph.

We have recently started to investigate strongly regular graphs with m2 = qm3

andm3 = qm2, where q is a positive integer [4]. In the some work we have described
the parameters n, r, τ and θ for strongly regular graphs with m2 = qm3 and
m3 = qm2 for q = 2, 3, 4. In particular, we have described in [5] the parameters
n, r, τ and θ for strongly regular graphs with m2 = qm3 and m3 = qm2 for
q = 5, 6, 7, 8. We now proceed to establish the parameters of strongly regular
graphs with m2 = qm3 and m3 = qm2 for q = 9, 10, as follows. First,

Proposition 1.1 (Elzinga [2]). Let G be a connected or disconnected strongly
regular graph of order n and degree r. Then

(1.1) r2 − (τ − θ + 1)r − (n− 1)θ = 0 .

Proposition 1.2 (Elzinga [2]). Let G be a connected strongly regular graph of
order n and degree r. Then

(1.2) 2r + (τ − θ)(m2 +m3) + δ(m2 −m3) = 0 ,

where δ = λ2 − λ3.

Remark 1.3 (Lepović [4]). Using the same procedure applied in [4] we can
establish the parameters n, r, τ and θ for strongly regular graphs with m2 = qm3

and m3 = qm2 for any fixed value q ∈ N, as follows. First, let m3 = p, m2 = qp
and n = (q + 1)p + 1 where q ∈ N. Using (1.2) we obtain r = p(|λ3| − qλ2). Let
|λ3| − qλ2 = t where t = 1, 2, . . . , q. Let λ2 = k where k is a positive integer. Then
(i) λ3 = − (qk + t); (ii) τ − θ = − ((q − 1)k + t); (iii) δ = (q + 1)k + t; (iv) r = pt
and (v) θ = pt − qk2 − kt. Using (ii), (iv) and (v) we can easily see that (1.1) is
reduced to

(1.3) (p+ 1)t2 −
(
(q + 1)p+ 1

)
t+ q(q + 1)k2 + 2qkt = 0 .

Second, let m2 = p, m3 = qp and n = (q + 1)p + 1 where q ∈ N. Using (1.2) we
obtain r = p(q|λ3| − λ2). Let q|λ3| − λ2 = t where t = 1, 2, . . . , q. Let λ3 = − k
where k is a positive integer. Then (i) λ2 = qk − t; (ii) τ − θ = (q − 1)k − t; (iii)
δ = (q + 1)k − t; (iv) r = pt and (v) θ = pt− qk2 + kt. Using (ii), (iv) and (v) we
can easily see that (1.1) is reduced to

(1.4) (p+ 1)t2 −
(
(q + 1)p+ 1

)
t+ q(q + 1)k2 − 2qkt = 0 .

1We say that a connected or disconnected graph G is integral if its spectrum σ(G) consists
only of integral values.
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Using (1.3) and (1.4) we can obtain for t = 1, 2, . . . , q the corresponding classes of
strongly regular graphs with m2 = qm3 and m3 = qm2, respectively.

2. Main results

Remark 2.1. Since m2(G) = m3(G) and m3(G) = m2(G) we note that if
m2(G) = qm3(G) then m3(G) = qm2(G).

Remark 2.2. In Theorems 2.1 and 2.2 the complements of strongly regular

graphs appear in pairs in (k0) and (k
0
) classes, where k denotes the corresponding

number of a class.

Remark 2.3. αKβ is a strongly regular graph of order n = αβ and degree
r = (α − 1)β with τ = (α − 2)β and θ = (α − 1)β. Its eigenvalues are λ2 = 0 and
λ3 = −β with m2 = α(β − 1) and m3 = α− 1.

Proposition 2.1. Let G be a connected strongly regular graph of order n and

degree r with m2 = 9m3. Then G belongs to the class (3
0
) or (40) or (5

0
) or (60)

or (70) or (80) or (90) or (10
0
) represented in Theorem 2.1.

Proof. Let m3 = p, m2 = 9p and n = 10p + 1 where p ∈ N. Using (1.2) we
obtain r = p(|λ3|−9λ2). Let |λ3|−9λ2 = t where t = 1, 2, . . . , 9. Let λ2 = k where
k is a positive integer. Then according to Remark 1.3 we have (i) λ3 = − (9k + t);
(ii) τ − θ = − (8k + t); (iii) δ = 10k + t; (iv) r = pt and (v) θ = pt− 9k2 − kt. In
this case we can easily see that (1.3) is reduced to

(2.1) (p+ 1)t2 − (10p+ 1)t+ 90k2 + 18kt = 0 .

Case 1. (t = 1). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = k and
λ3 = − (9k + 1), τ − θ = − (8k + 1), δ = 10k + 1, r = p and θ = p − 9k2 − k.
Using (2.1) we find that p = 2k(5k + 1). So we obtain that G is a strongly regular
graph of order n = (10k+ 1)2 and degree r = 2k(5k+ 1) with τ = k2 − 7k− 1 and
θ = k(k + 1).

Case 2. (t = 2). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = k and
λ3 = − (9k + 2), τ − θ = − (8k + 2), δ = 10k + 2, r = 2p and θ = 2p − 9k2 − 2k.
Using (2.1) we find that 8p − 1 = 9k(5k + 2). Replacing k with 4k + 1 we arrive
at p = 90k2 + 54k + 8. So we obtain that G is a strongly regular graph of order
n = 9(10k + 3)2 and degree r = 2(90k2 + 54k + 8) with τ = 36k2 − 4k − 5 and
θ = (2k + 1)(18k + 5).

Case 3. (t = 3). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = k and
λ3 = − (9k + 3), τ − θ = − (8k + 3), δ = 10k + 3, r = 3p and θ = 3p − 9k2 − 3k.
Using (2.1) we find that 7p − 2 = 6k(5k + 3). Replacing k with 7k − 1 we arrive
at p = 210k2 − 42k + 2. So we obtain that G is a strongly regular graph of order
n = 21(10k− 1)2 and degree r = 3(210k2 − 42k+ 2) with τ = 189k2 − 77k+ 5 and
θ = 21k(9k − 1).

Case 4. (t = 4). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = k and
λ3 = − (9k+4), τ−θ = − (8k+4), δ = 10k+4, r = 4p and θ = 4p−9k2−4k. Using
(2.1) we find that 4p− 2 = 3k(5k + 4), a contradiction because 4 ∤ 15k2 + 12k + 2.
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Case 5. (t = 5). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = k and
λ3 = − (9k + 5), τ − θ = − (8k + 5), δ = 10k + 5, r = 5p and θ = 5p − 9k2 − 5k.
Using (2.1) we find that 5p − 4 = 18k(k + 1). Replacing k with 5k + 1 we arrive
at p = 90k2 + 54k + 8. So we obtain that G is a strongly regular graph of order
n = 9(10k+ 3)2 and degree r = 5(90k2 + 54k+ 8) with τ = 225k2 + 115k+ 13 and
θ = (5k+2)(45k+13). Replacing k with 5k−2 we arrive at p = 90k2−54k+8. So
we obtain that G is a strongly regular graph of order n = 9(10k − 3)2 and degree
r = 5(90k2 − 54k + 8) with τ = 225k2 − 155k + 25 and θ = (5k − 1)(45k − 14).

Case 6. (t = 6). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = k and
λ3 = − (9k+6), τ−θ = − (8k+6), δ = 10k+6, r = 6p and θ = 6p−9k2−6k. Using
(2.1) we find that 4p− 5 = 3k(5k + 6), a contradiction because 4 ∤ 15k2 + 18k + 5.

Case 7. (t = 7). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = k and
λ3 = − (9k + 7), τ − θ = − (8k + 7), δ = 10k + 7, r = 7p and θ = 7p − 9k2 − 7k.
Using (2.1) we find that 7p − 14 = 6k(5k + 7). Replacing k with 7k we arrive at
p = 210k2 + 42k + 2. So we obtain that G is a strongly regular graph of order
n = 21(10k + 1)2 and degree r = 7(210k2 + 42k + 2) with τ = 7(147k2 + 27k + 1)
and θ = 7(7k + 1)(21k + 2).

Case 8. (t = 8). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = k and
λ3 = − (9k + 8), τ − θ = − (8k + 8), δ = 10k + 8, r = 8p and θ = 8p − 9k2 − 8k.
Using (2.1) we find that 8p − 28 = 9k(5k + 8). Replacing k with 4k − 2 we arrive
at p = 90k2 − 54k + 8. So we obtain that G is a strongly regular graph of order
n = 9(10k − 3)2 and degree r = 8(90k2 − 54k + 8) with τ = 4(4k − 1)(36k − 13)
and θ = 4(4k − 1)(36k − 11).

Case 9. (t = 9). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = k and
λ3 = − (9k+9), τ−θ = − (8k+9), δ = 10k+9, r = 9p and θ = 9p−9k2−9k. Using
(2.1) we find that p = 2(k + 1)(5k + 4). Replacing k with k − 1 we arrive at p =
2k(5k−1). So we obtain that G is a strongly regular graph of order n = (10k−1)2

and degree r = 18k(5k − 1) with τ = 81k2 − 17k − 1 and θ = 9k(9k − 1). □

Proposition 2.2. Let G be a connected strongly regular graph of order n and

degree r with m3 = 9m2. Then G belongs to the class (30) or (4
0
) or (50) or (6

0
)

or (7
0
) or (8

0
) or (9

0
) or (100) represented in Theorem 2.1.

Proof. Let m2 = p, m3 = 9p and n = 10p + 1 where p ∈ N. Using (1.2) we
obtain r = p(9|λ3| − λ2). Let 9|λ3| − λ2 = t where t = 1, 2, . . . , 9. Let λ3 = − k
where k is a positive integer. Then according to Remark 1.3 we have (i) λ2 = 9k−t;
(ii) τ − θ = 8k − t; (iii) δ = 10k − t; (iv) r = pt and (v) θ = pt− 9k2 + kt. In this
case we can easily see that (1.4) is reduced to

(2.2) (p+ 1)t2 − (10p+ 1)t+ 90k2 − 18kt = 0 .

Case 1. (t = 1). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = 9k− 1 and
λ3 = − k, τ − θ = 8k − 1, δ = 10k − 1, r = p and θ = p− 9k2 + k. Using (2.2) we
find that p = 2k(5k − 1). So we obtain that G is a strongly regular graph of order
n = (10k − 1)2 and degree r = 2k(5k − 1) with τ = k2 + 7k − 1 and θ = k(k − 1).

Case 2. (t = 2). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = 9k − 2
and λ3 = − k, τ − θ = 8k − 2, δ = 10k − 2, r = 2p and θ = 2p − 9k2 + 2k.
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Using (2.2) we find that 8p − 1 = 9k(5k − 2). Replacing k with 4k − 1 we arrive
at p = 90k2 − 54k + 8. So we obtain that G is a strongly regular graph of order
n = 9(10k − 3)2 and degree r = 2(90k2 − 54k + 8) with τ = 36k2 + 4k − 5 and
θ = (2k − 1)(18k − 5).

Case 3. (t = 3). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = 9k − 3
and λ3 = − k, τ − θ = 8k − 3, δ = 10k − 3, r = 3p and θ = 3p − 9k2 + 3k.
Using (2.2) we find that 7p − 2 = 6k(5k − 3). Replacing k with 7k + 1 we arrive
at p = 210k2 + 42k + 2. So we obtain that G is a strongly regular graph of order
n = 21(10k+ 1)2 and degree r = 3(210k2 + 42k+ 2) with τ = 189k2 + 77k+ 5 and
θ = 21k(9k + 1).

Case 4. (t = 4). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = 9k− 4 and
λ3 = − k, τ − θ = 8k − 4, δ = 10k − 4, r = 4p and θ = 4p− 9k2 + 4k. Using (2.2)
we find that 4p− 2 = 3k(5k − 4), a contradiction because 4 ∤ 15k2 − 12k + 2.

Case 5. (t = 5). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = 9k − 5
and λ3 = − k, τ − θ = 8k − 5, δ = 10k − 5, r = 5p and θ = 5p − 9k2 + 5k.
Using (2.2) we find that 5p − 4 = 18k(k − 1). Replacing k with 5k + 2 we arrive
at p = 90k2 + 54k + 8. So we obtain that G is a strongly regular graph of order
n = 9(10k+ 3)2 and degree r = 5(90k2 + 54k+ 8) with τ = 225k2 + 155k+ 25 and
θ = (5k+1)(45k+14). Replacing k with 5k−1 we arrive at p = 90k2−54k+8. So
we obtain that G is a strongly regular graph of order n = 9(10k − 3)2 and degree
r = 5(90k2 − 54k + 8) with τ = 225k2 − 115k + 13 and θ = (5k − 2)(45k − 13).

Case 6. (t = 6). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = 9k− 6 and
λ3 = − k, τ − θ = 8k − 6, δ = 10k − 6, r = 6p and θ = 6p− 9k2 + 6k. Using (2.2)
we find that 4p− 5 = 3k(5k − 6), a contradiction because 4 ∤ 15k2 − 18k + 5.

Case 7. (t = 7). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = 9k − 7
and λ3 = − k, τ − θ = 8k − 7, δ = 10k − 7, r = 7p and θ = 7p − 9k2 + 7k.
Using (2.2) we find that 7p − 14 = 6k(5k − 7). Replacing k with 7k we arrive at
p = 210k2 − 42k + 2. So we obtain that G is a strongly regular graph of order
n = 21(10k − 1)2 and degree r = 7(210k2 − 42k + 2) with τ = 7(147k2 − 27k + 1)
and θ = 7(7k − 1)(21k − 2).

Case 8. (t = 8). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = 9k − 8
and λ3 = − k, τ − θ = 8k − 8, δ = 10k − 8, r = 8p and θ = 8p − 9k2 + 8k.
Using (2.2) we find that 8p − 28 = 9k(5k − 8). Replacing k with 4k + 2 we arrive
at p = 90k2 + 54k + 8. So we obtain that G is a strongly regular graph of order
n = 9(10k + 3)2 and degree r = 8(90k2 + 54k + 8) with τ = 4(4k + 1)(36k + 13)
and θ = 4(4k + 1)(36k + 11).

Case 9. (t = 9). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = 9k− 9 and
λ3 = − k, τ −θ = 8k−9, δ = 10k−9, r = 9p and θ = 9p−9k2+9k. Using (2.2) we
find that p = 2(k− 1)(5k− 4). Replacing k with k+1 we arrive at p = 2k(5k+1).
So we obtain that G is a strongly regular graph of order n = (10k+1)2 and degree
r = 18k(5k + 1) with τ = 81k2 + 17k − 1 and θ = 9k(9k + 1). □

Remark 2.4. We note that 3K7 is a strongly regular graph with m2 = 9m3.

It is obtained from the class Theorem 2.1 (10
0
) for k = 0.
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Remark 2.5. We note that 9K9 is a strongly regular graph with m2 = 9m3.

It is obtained from the class Theorem 2.1 (3
0
) for k = 1.

Theorem 2.1. Let G be a connected strongly regular graph of order n and
degree r with m2 = 9m3 or m3 = 9m2. Then G is one of the following strongly
regular graphs:

(10) G is the strongly regular graph 3K7 of order n = 21 and degree r = 14
with τ = 7 and θ = 14. Its eigenvalues are λ2 = 0 and λ3 = −7 with
m2 = 18 and m3 = 2 ;

(20) G is the strongly regular graph 9K9 of order n = 81 and degree r = 72
with τ = 63 and θ = 72. Its eigenvalues are λ2 = 0 and λ3 = −9 with
m2 = 72 and m3 = 8 ;

(30) G is a strongly regular graph of order n = (10k − 1)2 and degree r =
2k(5k − 1) with τ = k2 + 7k − 1 and θ = k(k − 1), where k ⩾ 2. Its
eigenvalues are λ2 = 9k − 1 and λ3 = − k with m2 = 2k(5k − 1) and
m3 = 18k(5k − 1);

(3
0
) G is a strongly regular graph of order n = (10k − 1)2 and degree r =
18k(5k − 1) with τ = 81k2 − 17k − 1 and θ = 9k(9k − 1), where k ⩾ 2.
Its eigenvalues are λ2 = k − 1 and λ3 = − 9k with m2 = 18k(5k − 1) and
m3 = 2k(5k − 1);

(40) G is a strongly regular graph of order n = (10k + 1)2 and degree r =
2k(5k + 1) with τ = k2 − 7k − 1 and θ = k(k + 1), where k ⩾ 8. Its
eigenvalues are λ2 = k and λ3 = − (9k + 1) with m2 = 18k(5k + 1) and
m3 = 2k(5k + 1);

(4
0
) G is a strongly regular graph of order n = (10k + 1)2 and degree r =
18k(5k + 1) with τ = 81k2 + 17k − 1 and θ = 9k(9k + 1), where k ⩾ 8.
Its eigenvalues are λ2 = 9k and λ3 = − (k+1) with m2 = 2k(5k+1) and
m3 = 18k(5k + 1);

(50) G is a strongly regular graph of order n = 9(10k − 3)2 and degree r =
2(90k2 − 54k + 8) with τ = 36k2 + 4k − 5 and θ = (2k − 1)(18k − 5),
where k ∈ N. Its eigenvalues are λ2 = 36k − 11 and λ3 = − (4k − 1) with
m2 = 90k2 − 54k + 8 and m3 = 9(90k2 − 54k + 8);

(5
0
) G is a strongly regular graph of order n = 9(10k − 3)2 and degree r =
8(90k2−54k+8) with τ = 4(4k−1)(36k−13) and θ = 4(4k−1)(36k−11),
where k ∈ N. Its eigenvalues are λ2 = 4k − 2 and λ3 = − (36k − 10) with
m2 = 9(90k2 − 54k + 8) and m3 = 90k2 − 54k + 8;

(60) G is a strongly regular graph of order n = 9(10k − 3)2 and degree r =
5(90k2− 54k+8) with τ = 225k2− 155k+25 and θ = (5k− 1)(45k− 14),
where k ∈ N. Its eigenvalues are λ2 = 5k − 2 and λ3 = − (45k − 13) with
m2 = 9(90k2 − 54k + 8) and m3 = 90k2 − 54k + 8;

(6
0
) G is a strongly regular graph of order n = 9(10k − 3)2 and degree r =
5(90k2− 54k+8) with τ = 225k2− 115k+13 and θ = (5k− 2)(45k− 13),
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where k ∈ N. Its eigenvalues are λ2 = 45k − 14 and λ3 = − (5k − 1) with
m2 = 90k2 − 54k + 8 and m3 = 9(90k2 − 54k + 8);

(70) G is a strongly regular graph of order n = 9(10k + 3)2 and degree r =
2(90k2 + 54k + 8) with τ = 36k2 − 4k − 5 and θ = (2k + 1)(18k + 5),
where k ∈ N. Its eigenvalues are λ2 = 4k + 1 and λ3 = − (36k + 11) with
m2 = 9(90k2 + 54k + 8) and m3 = 90k2 + 54k + 8;

(7
0
) G is a strongly regular graph of order n = 9(10k + 3)2 and degree r =
8(90k2+54k+8) with τ = 4(4k+1)(36k+13) and θ = 4(4k+1)(36k+11),
where k ∈ N. Its eigenvalues are λ2 = 36k + 10 and λ3 = − (4k + 2) with
m2 = 90k2 + 54k + 8 and m3 = 9(90k2 + 54k + 8);

(80) G is a strongly regular graph of order n = 9(10k + 3)2 and degree r =
5(90k2+54k+8) with τ = 225k2+115k+13 and θ = (5k+2)(45k+13),
where k ⩾ 0. Its eigenvalues are λ2 = 5k + 1 and λ3 = − (45k + 14) with
m2 = 9(90k2 + 54k + 8) and m3 = 90k2 + 54k + 8;

(8
0
) G is a strongly regular graph of order n = 9(10k + 3)2 and degree r =
5(90k2+54k+8) with τ = 225k2+155k+25 and θ = (5k+1)(45k+14),
where k ⩾ 0. Its eigenvalues are λ2 = 45k + 13 and λ3 = − (5k + 2) with
m2 = 90k2 + 54k + 8 and m3 = 9(90k2 + 54k + 8);

(90) G is a strongly regular graph of order n = 21(10k − 1)2 and degree r =
3(210k2 − 42k + 2) with τ = 189k2 − 77k + 5 and θ = 21k(9k − 1), where
k ∈ N. Its eigenvalues are λ2 = 7k − 1 and λ3 = − (63k − 6) with
m2 = 9(210k2 − 42k + 2) and m3 = 210k2 − 42k + 2;

(9
0
) G is a strongly regular graph of order n = 21(10k − 1)2 and degree r =
7(210k2−42k+2) with τ = 7(147k2−27k+1) and θ = 7(7k−1)(21k−2),
where k ∈ N. Its eigenvalues are λ2 = 63k − 7 and λ3 = − 7k with
m2 = 210k2 − 42k + 2 and m3 = 9(210k2 − 42k + 2);

(100) G is a strongly regular graph of order n = 21(10k + 1)2 and degree r =
3(210k2 + 42k + 2) with τ = 189k2 + 77k + 5 and θ = 21k(9k + 1), where
k ∈ N. Its eigenvalues are λ2 = 63k + 6 and λ3 = − (7k + 1) with
m2 = 210k2 + 42k + 2 and m3 = 9(210k2 + 42k + 2);

(10
0
) G is a strongly regular graph of order n = 21(10k + 1)2 and degree r =
7(210k2+42k+2) with τ = 7(147k2+27k+1) and θ = 7(7k+1)(21k+2),
where k ∈ N. Its eigenvalues are λ2 = 7k and λ3 = − (63k + 7) with
m2 = 9(210k2 + 42k + 2) and m3 = 210k2 + 42k + 2;

Proof. First, according to Remark 2.3 we have α(β − 1) = 9(α − 1), from
which we find that α = 3, β = 7 or α = 9, β = 9. In view of this we obtain the
strongly regular graphs represented in Theorem 2.1 (10), (20). Next, according to

Proposition 2.1 it turns out that G belongs to the class (3
0
) or (40) or (5

0
) or (60)

or (70) or (80) or (90) or (10
0
) if m2 = 9m3. According to Proposition 2.2 it turns
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out that G belongs to the class (30) or (4
0
) or (50) or (6

0
) or (7

0
) or (8

0
) or (9

0
)

or (100) if m3 = 9m2. □

Proposition 2.3. Let G be a connected strongly regular graph of order n and

degree r with m2 = 10m3. Then G belongs to the class (4
0
) or (50) or (60) or (7

0
)

or (80) or (9
0
) or (100) or (11

0
) or (12

0
) or (130) represented in Theorem 2.2.

Proof. Let m3 = p, m2 = 10p and n = 11p + 1 where p ∈ N. Using (1.2)
we obtain r = p(|λ3| − 10λ2). Let |λ3| − 10λ2 = t where t = 1, 2, . . . , 10. Let
λ2 = k where k is a positive integer. Then according to Remark 1.3 we have (i)
λ3 = − (10k + t); (ii) τ − θ = − (9k + t); (iii) δ = 11k + t; (iv) r = pt and (v)
θ = pt− 10k2 − kt. In this case we can easily see that (1.3) is reduced to

(2.3) (p+ 1)t2 − (11p+ 1)t+ 110k2 + 20kt = 0 .

Case 1. (t = 1). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = k and
λ3 = − (10k + 1), τ − θ = − (9k + 1), δ = 11k + 1, r = p and θ = p − 10k2 − k.
Using (2.3) we find that p = k(11k + 2). So we obtain that G is a strongly regular
graph of order n = (11k+ 1)2 and degree r = k(11k+ 2) with τ = k2 − 8k− 1 and
θ = k(k + 1).

Case 2. (t = 2). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = k and
λ3 = − (10k + 2), τ − θ = − (9k + 2), δ = 11k + 2, r = 2p and θ = 2p− 10k2 − 2k.
Using (2.3) we find that 9p − 1 = 5k(11k + 4). Replacing k with 3k − 1 we arrive
at p = 55k2 − 30k + 4. So we obtain that G is a strongly regular graph of order
n = 5(11k − 3)2 and degree r = 2(55k2 − 30k + 4) with τ = 20k2 − 33k + 7 and
θ = 2k(10k − 3).

Case 3. (t = 3). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = k and
λ3 = − (10k + 3), τ − θ = − (9k + 3), δ = 11k + 3, r = 3p and θ = 3p− 10k2 − 3k.
Using (2.3) we find that 12p− 3 = 5k(11k + 6). Replacing k with 6k − 3 we arrive
at p = 165k2 − 150k+34. So we obtain that G is a strongly regular graph of order
n = 15(11k− 5)2 and degree r = 3(165k2 − 150k+34) with τ = 3(45k2 − 54k+15)
and θ = 3(3k − 1)(15k − 7).

Case 4. (t = 4). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = k and
λ3 = − (10k + 4), τ − θ = − (9k + 4), δ = 11k + 4, r = 4p and θ = 4p− 10k2 − 4k.
Using (2.3) we find that 14p− 6 = 5k(11k+8). Replacing k with 14k+6 we arrive
at p = 770k2+700k+159. So we obtain that G is a strongly regular graph of order
n = 70(11k+5)2 and degree r = 4(770k2+700k+159) with τ = 2(560k2+469k+97)
and θ = 28(2k + 1)(20k + 9).

Case 5. (t = 5). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = k and
λ3 = − (10k + 5), τ − θ = − (9k + 5), δ = 11k + 5, r = 5p and θ = 5p− 10k2 − 5k.
Using (2.3) we find that 3p − 2 = k(11k + 10). Replacing k with 3k − 1 we arrive
at p = 33k2 − 12k + 1. So we obtain that G is a strongly regular graph of order
n = 3(11k − 2)2 and degree r = 5(33k2 − 12k + 1) with τ = 75k2 − 42k + 4 and
θ = 15k(5k − 1).

Case 6. (t = 6). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = k and
λ3 = − (10k + 6), τ − θ = − (9k + 6), δ = 11k + 6, r = 6p and θ = 6p− 10k2 − 6k.
Using (2.3) we find that 3p − 3 = k(11k + 12). Replacing k with 3k we arrive
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at p = 33k2 + 12k + 1. So we obtain that G is a strongly regular graph of order
n = 3(11k + 2)2 and degree r = 6(33k2 + 12k + 1) with τ = 27k(4k + 1) and
θ = 6(3k + 1)(6k + 1).

Case 7. (t = 7). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = k and
λ3 = − (10k + 7), τ − θ = − (9k + 7), δ = 11k + 7, r = 7p and θ = 7p− 10k2 − 7k.
Using (2.3) we find that 14p−21 = 5k(11k+14). Replacing k with 14k−7 we arrive
at p = 770k2−700k+159. So we obtain that G is a strongly regular graph of order
n = 70(11k−5)2 and degree r = 7(770k2−700k+159) with τ = 14(245k2−226k+52)
and θ = 14(7k − 3)(35k − 16).

Case 8. (t = 8). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = k and
λ3 = − (10k + 8), τ − θ = − (9k + 8), δ = 11k + 8, r = 8p and θ = 8p− 10k2 − 8k.
Using (2.3) we find that 12p−28 = 5k(11k+16). Replacing k with 6k+2 we arrive
at p = 165k2 +150k+34. So we obtain that G is a strongly regular graph of order
n = 15(11k+5)2 and degree r = 8(165k2+150k+34) with τ = 2(480k2+429k+95)
and θ = 24(2k + 1)(20k + 9).

Case 9. (t = 9). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = k and
λ3 = − (10k + 9), τ − θ = − (9k + 9), δ = 11k + 9, r = 9p and θ = 9p− 10k2 − 9k.
Using (2.3) we find that 9p − 36 = 5k(11k + 18). Replacing k with 3k we arrive
at p = 55k2 + 30k + 4. So we obtain that G is a strongly regular graph of order
n = 5(11k+3)2 and degree r = 9(55k2 +30k+4) with τ = 27(3k+1)(5k+1) and
θ = 9(3k + 1)(15k + 4).

Case 10. (t = 10). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = k and
λ3 = − (10k+10), τ−θ = − (9k+10), δ = 11k+10, r = 10p and θ = 10p−10k2−10k.
Using (2.3) we find that p = (k + 1)(11k + 9). Replacing k with k − 1 we arrive
at p = k(11k − 2). So we obtain that G is a strongly regular graph of order
n = (11k − 1)2 and degree r = 10k(11k − 2) with τ = 100k2 − 19k − 1 and
θ = 10k(10k − 1). □

Proposition 2.4. Let G be a connected strongly regular graph of order n and

degree r with m3 = 10m2. Then G belongs to the class (40) or (5
0
) or (6

0
) or (70)

or (8
0
) or (90) or (10

0
) or (110) or (120) or (13

0
) represented in Theorem 2.2.

Proof. Let m2 = p, m3 = 10p and n = 11p+ 1 where p ∈ N. Using (1.2) we
obtain r = p(10|λ3| − λ2). Let 10|λ3| − λ2 = t where t = 1, 2, . . . , 10. Let λ3 = − k
where k is a positive integer. Then according to Remark 1.3 we have (i) λ2 = 10k−t;
(ii) τ − θ = 9k − t; (iii) δ = 11k − t; (iv) r = pt and (v) θ = pt− 10k2 + kt. In this
case we can easily see that (1.4) is reduced to

(2.4) (p+ 1)t2 − (11p+ 1)t+ 110k2 − 20kt = 0 .

Case 1. (t = 1). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = 10k−1 and
λ3 = − k, τ − θ = 9k − 1, δ = 11k − 1, r = p and θ = p− 10k2 + k. Using (2.4) we
find that p = k(11k − 2). So we obtain that G is a strongly regular graph of order
n = (11k − 1)2 and degree r = k(11k − 2) with τ = k2 + 8k − 1 and θ = k(k − 1).

Case 2. (t = 2). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = 10k − 2
and λ3 = − k, τ − θ = 9k − 2, δ = 11k − 2, r = 2p and θ = 2p − 10k2 + 2k.
Using (2.4) we find that 9p − 1 = 5k(11k − 4). Replacing k with 3k + 1 we arrive
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at p = 55k2 + 30k + 4. So we obtain that G is a strongly regular graph of order
n = 5(11k + 3)2 and degree r = 2(55k2 + 30k + 4) with τ = 20k2 + 33k + 7 and
θ = 2k(10k + 3).

Case 3. (t = 3). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = 10k − 3
and λ3 = − k, τ − θ = 9k − 3, δ = 11k − 3, r = 3p and θ = 3p− 10k2 + 3k. Using
(2.4) we find that 12p − 3 = 5k(11k − 6). Replacing k with 6k + 3 we arrive at
p = 165k2 + 150k + 34. So we obtain that G is a strongly regular graph of order
n = 15(11k+5)2 and degree r = 3(165k2 +150k+34) with τ = 3(45k2 +54k+15)
and θ = 3(3k + 1)(15k + 7).

Case 4. (t = 4). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = 10k − 4
and λ3 = − k, τ − θ = 9k − 4, δ = 11k − 4, r = 4p and θ = 4p− 10k2 + 4k. Using
(2.4) we find that 14p − 6 = 5k(11k − 8). Replacing k with 14k − 6 we arrive at
p = 770k2 − 700k + 159. So we obtain that G is a strongly regular graph of order
n = 70(11k−5)2 and degree r = 4(770k2−700k+159) with τ = 2(560k2−469k+97)
and θ = 28(2k − 1)(20k − 9).

Case 5. (t = 5). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = 10k − 5
and λ3 = − k, τ − θ = 9k − 5, δ = 11k − 5, r = 5p and θ = 5p − 10k2 + 5k.
Using (2.4) we find that 3p − 2 = k(11k − 10). Replacing k with 3k + 1 we arrive
at p = 33k2 + 12k + 1. So we obtain that G is a strongly regular graph of order
n = 3(11k + 2)2 and degree r = 5(33k2 + 12k + 1) with τ = 75k2 + 42k + 4 and
θ = 15k(5k + 1).

Case 6. (t = 6). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = 10k−6 and
λ3 = − k, τ−θ = 9k−6, δ = 11k−6, r = 6p and θ = 6p−10k2+6k. Using (2.4) we
find that 3p−3 = k(11k−12). Replacing k with 3k we arrive at p = 33k2−12k+1.
So we obtain that G is a strongly regular graph of order n = 3(11k−2)2 and degree
r = 6(33k2 − 12k + 1) with τ = 27k(4k − 1) and θ = 6(3k − 1)(6k − 1).

Case 7. (t = 7). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = 10k − 7
and λ3 = − k, τ − θ = 9k − 7, δ = 11k − 7, r = 7p and θ = 7p− 10k2 + 7k. Using
(2.4) we find that 14p− 21 = 5k(11k − 14). Replacing k with 14k + 7 we arrive at
p = 770k2 + 700k + 159. So we obtain that G is a strongly regular graph of order
n = 70(11k+5)2 and degree r = 7(770k2+700k+159) with τ = 14(245k2+226k+52)
and θ = 14(7k + 3)(35k + 16).

Case 8. (t = 8). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = 10k − 8
and λ3 = − k, τ − θ = 9k − 8, δ = 11k − 8, r = 8p and θ = 8p− 10k2 + 8k. Using
(2.4) we find that 12p − 28 = 5k(11k − 16). Replacing k with 6k − 2 we arrive at
p = 165k2 − 150k + 34. So we obtain that G is a strongly regular graph of order
n = 15(11k−5)2 and degree r = 8(165k2−150k+34) with τ = 2(480k2−429k+95)
and θ = 24(2k − 1)(20k − 9).

Case 9. (t = 9). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = 10k − 9
and λ3 = − k, τ − θ = 9k − 9, δ = 11k − 9, r = 9p and θ = 9p − 10k2 + 9k.
Using (2.4) we find that 9p − 36 = 5k(11k − 18). Replacing k with 3k we arrive
at p = 55k2 − 30k + 4. So we obtain that G is a strongly regular graph of order
n = 5(11k− 3)2 and degree r = 9(55k2 − 30k+4) with τ = 27(3k− 1)(5k− 1) and
θ = 9(3k − 1)(15k − 4).
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Case 10. (t = 10). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = 10k−10
and λ3 = − k, τ − θ = 9k − 10, δ = 11k − 10, r = 10p and θ = 10p − 10k2 + 10k.
Using (2.4) we find that p = (k − 1)(11k − 9). Replacing k with k + 1 we arrive
at p = k(11k + 2). So we obtain that G is a strongly regular graph of order
n = (11k + 1)2 and degree r = 10k(11k + 2) with τ = 100k2 + 19k − 1 and
θ = 10k(10k + 1). □

Remark 2.6. We note that the complete bipartite graph K6,6 is a strongly

regular graph with m2 = 10m3. It is obtained from the class Theorem 2.2 (7
0
) for

k = 0.

Remark 2.7. We note that 5K9 is a strongly regular graph with m2 = 10m3.

It is obtained from the class Theorem 2.2 (9
0
) for k = 0.

Remark 2.8. We note that 10K10 is a strongly regular graph with m2 = 10m3.

It is obtained from the class Theorem 2.2 (4
0
) for k = 1.

Theorem 2.2. Let G be a connected strongly regular graph of order n and
degree r with m2 = 10m3 or m3 = 10m2. Then G is one of the following strongly
regular graphs:

(10) G is the complete bipartite graph K6,6 of order n = 12 and degree r = 6
with τ = 0 and θ = 6. Its eigenvalues are λ2 = 0 and λ3 = −6 with
m2 = 10 and m3 = 1 ;

(20) G is the strongly regular graph 5K9 of order n = 45 and degree r = 36
with τ = 27 and θ = 36. Its eigenvalues are λ2 = 0 and λ3 = −9 with
m2 = 40 and m3 = 4 ;

(30) G is the strongly regular graph 10K10 of order n = 100 and degree r = 90
with τ = 80 and θ = 90. Its eigenvalues are λ2 = 0 and λ3 = −10 with
m2 = 90 and m3 = 9 ;

(40) G is a strongly regular graph of order n = (11k − 1)2 and degree r =
k(11k − 2) with τ = k2 + 8k − 1 and θ = k(k − 1), where k ∈ N. Its
eigenvalues are λ2 = 10k − 1 and λ3 = − k with m2 = k(11k − 2) and
m3 = 10k(11k − 2) ;

(4
0
) G is a strongly regular graph of order n = (11k − 1)2 and degree r =
10k(11k−2) with τ = 100k2−19k−1 and θ = 10k(10k−1), where k ∈ N.
Its eigenvalues are λ2 = k − 1 and λ3 = − 10k with m2 = 10k(11k − 2)
and m3 = k(11k − 2) ;

(50) G is a strongly regular graph of order n = (11k + 1)2 and degree r =
k(11k + 2) with τ = k2 − 8k − 1 and θ = k(k + 1), where k ⩾ 9. Its
eigenvalues are λ2 = k and λ3 = − (10k+1) with m2 = 10k(11k+2) and
m3 = k(11k + 2) ;

(5
0
) G is a strongly regular graph of order n = (11k + 1)2 and degree r =
10k(11k+2) with τ = 100k2+19k−1 and θ = 10k(10k+1), where k ⩾ 9.
Its eigenvalues are λ2 = 10k and λ3 = − (k + 1) with m2 = k(11k + 2)
and m3 = 10k(11k + 2) ;
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(60) G is a strongly regular graph of order n = 3(11k − 2)2 and degree r =
5(33k2 − 12k + 1) with τ = 75k2 − 42k + 4 and θ = 15k(5k − 1), where
k ∈ N. Its eigenvalues are λ2 = 3k − 1 and λ3 = − (30k − 5) with
m2 = 10(33k2 − 12k + 1) and m3 = 33k2 − 12k + 1 ;

(6
0
) G is a strongly regular graph of order n = 3(11k − 2)2 and degree r =
6(33k2 − 12k + 1) with τ = 27k(4k − 1) and θ = 6(3k − 1)(6k − 1),
where k ∈ N. Its eigenvalues are λ2 = 30k − 6 and λ3 = − 3k with
m2 = 33k2 − 12k + 1 and m3 = 10(33k2 − 12k + 1) ;

(70) G is a strongly regular graph of order n = 3(11k + 2)2 and degree r =
5(33k2 + 12k + 1) with τ = 75k2 + 42k + 4 and θ = 15k(5k + 1), where
k ∈ N. Its eigenvalues are λ2 = 30k + 5 and λ3 = − (3k + 1) with
m2 = 33k2 + 12k + 1 and m3 = 10(33k2 + 12k + 1) ;

(7
0
) G is a strongly regular graph of order n = 3(11k + 2)2 and degree r =
6(33k2 + 12k + 1) with τ = 27k(4k + 1) and θ = 6(3k + 1)(6k + 1),
where k ∈ N. Its eigenvalues are λ2 = 3k and λ3 = − (30k + 6) with
m2 = 10(33k2 + 12k + 1) and m3 = 33k2 + 12k + 1 ;

(80) G is a strongly regular graph of order n = 5(11k − 3)2 and degree r =
2(55k2 − 30k + 4) with τ = 20k2 − 33k + 7 and θ = 2k(10k − 3), where
k ⩾ 2. Its eigenvalues are λ2 = 3k − 1 and λ3 = − (30k − 8) with
m2 = 10(55k2 − 30k + 4) and m3 = 55k2 − 30k + 4 ;

(8
0
) G is a strongly regular graph of order n = 5(11k − 3)2 and degree r =
9(55k2− 30k+4) with τ = 27(3k− 1)(5k− 1) and θ = 9(3k− 1)(15k− 4),
where k ⩾ 2. Its eigenvalues are λ2 = 30k − 9 and λ3 = − 3k with
m2 = 55k2 − 30k + 4 and m3 = 10(55k2 − 30k + 4) ;

(90) G is a strongly regular graph of order n = 5(11k + 3)2 and degree r =
2(55k2 + 30k + 4) with τ = 20k2 + 33k + 7 and θ = 2k(10k + 3), where
k ∈ N. Its eigenvalues are λ2 = 30k + 8 and λ3 = − (3k + 1) with
m2 = 55k2 + 30k + 4 and m3 = 10(55k2 + 30k + 4) ;

(9
0
) G is a strongly regular graph of order n = 5(11k + 3)2 and degree r =
9(55k2+30k+4) with τ = 27(3k+1)(5k+1) and θ = 9(3k+1)(15k+4),
where k ∈ N. Its eigenvalues are λ2 = 3k and λ3 = − (30k + 9) with
m2 = 10(55k2 + 30k + 4) and m3 = 55k2 + 30k + 4 ;

(100) G is a strongly regular graph of order n = 15(11k − 5)2 and degree r =
3(165k2−150k+34) with τ = 3(45k2−54k+15) and θ = 3(3k−1)(15k−7),
where k ∈ N. Its eigenvalues are λ2 = 6k − 3 and λ3 = − (60k − 27) with
m2 = 10(165k2 − 150k + 34) and m3 = 165k2 − 150k + 34 ;

(10
0
) G is a strongly regular graph of order n = 15(11k − 5)2 and degree r =
8(165k2−150k+34) with τ = 2(480k2−429k+95) and θ = 24(2k−1)(20k−
9), where k ∈ N. Its eigenvalues are λ2 = 60k − 28 and λ3 = − (6k − 2)
with m2 = 165k2 − 150k + 34 and m3 = 10(165k2 − 150k + 34) ;
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(110) G is a strongly regular graph of order n = 15(11k + 5)2 and degree r =
3(165k2+150k+34) with τ = 3(45k2+54k+15) and θ = 3(3k+1)(15k+7),
where k ∈ N. Its eigenvalues are λ2 = 60k + 27 and λ3 = − (6k + 3) with
m2 = 165k2 + 150k + 34 and m3 = 10(165k2 + 150k + 34) ;

(11
0
) G is a strongly regular graph of order n = 15(11k + 5)2 and degree r =
8(165k2+150k+34) with τ = 2(480k2+429k+95) and θ = 24(2k+1)(20k+
9), where k ∈ N. Its eigenvalues are λ2 = 6k + 2 and λ3 = − (60k + 28)
with m2 = 10(165k2 + 150k + 34) and m3 = 165k2 + 150k + 34 ;

(120) G is a strongly regular graph of order n = 70(11k − 5)2 and degree r =
4(770k2 − 700k + 159) with τ = 2(560k2 − 469k + 97) and θ = 28(2k −
1)(20k − 9), where k ∈ N. Its eigenvalues are λ2 = 140k − 64 and λ3 =
− (14k−6) with m2 = 770k2−700k+159 and m3 = 10(770k2−700k+159) ;

(12
0
) G is a strongly regular graph of order n = 70(11k − 5)2 and degree r =
7(770k2 − 700k + 159) with τ = 14(245k2 − 226k + 52) and θ = 14(7k −
3)(35k − 16), where k ∈ N. Its eigenvalues are λ2 = 14k − 7 and λ3 =
− (140k−63) with m2 = 10(770k2−700k+159) and m3 = 770k2−700k+
159 ;

(130) G is a strongly regular graph of order n = 70(11k + 5)2 and degree r =
4(770k2 + 700k + 159) with τ = 2(560k2 + 469k + 97) and θ = 28(2k +
1)(20k + 9), where k ⩾ 0. Its eigenvalues are λ2 = 14k + 6 and λ3 =
− (140k + 64) with m2 = 10(770k2 + 700k + 159) and m3 = 770k2 +
700k + 159 ;

(13
0
) G is a strongly regular graph of order n = 70(11k + 5)2 and degree r =
7(770k2 + 700k + 159) with τ = 14(245k2 + 226k + 52) and θ = 14(7k +
3)(35k + 16), where k ⩾ 0. Its eigenvalues are λ2 = 140k + 63 and λ3 =
− (14k+7) with m2 = 770k2+700k+159 and m3 = 10(770k2+700k+159) .

Proof. First, according to Remark 2.3 we have α(β − 1) = 10(α − 1), from
which we find that α = 2, β = 6 or α = 5, β = 9 or α = 10, β = 10. In view of this
we obtain the strongly regular graphs represented in Theorem 2.2 (10), (20), (30).

Next, according to Proposition 2.3 it turns out that G belongs to the class (4
0
) or

(50) or (60) or (7
0
) or (80) or (9

0
) or (100) or (11

0
) or (12

0
) or (130) if m2 = 10m3.

According to Proposition 2.4 it turns out that G belongs to the class (40) or (5
0
)

or (6
0
) or (70) or (8

0
) or (90) or (10

0
) or (110) or (120) or (13

0
) if m3 = 10m2. □
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