ON STRONGLY REGULAR GRAPHS WITH $m_{2}=q m_{3}$ AND $m_{3}=q m_{2}$ for $q=9,10$

Mirko Lepović

Abstract

We say that a regular graph G of order n and degree $r \geqslant 1$ (which is not the complete graph) is strongly regular if there exist non-negative integers τ and θ such that $\left|S_{i} \cap S_{j}\right|=\tau$ for any two adjacent vertices i and j, and $\left|S_{i} \cap S_{j}\right|=\theta$ for any two distinct non-adjacent vertices i and j, where S_{k} denotes the neighborhood of the vertex k. Let $\lambda_{1}=r, \lambda_{2}$ and λ_{3} be the distinct eigenvalues of a connected strongly regular graph. Let $m_{1}=1, m_{2}$ and m_{3} denote the multiplicity of r, λ_{2} and λ_{3}, respectively. We here describe the parameters n, r, τ and θ for strongly regular graphs with $m_{2}=q m_{3}$ and $m_{3}=q m_{2}$ for $q=9,10$.

1. Introduction

Let G be a simple graph of order n with vertex set $V(G)=\{1,2, \ldots, n\}$. The spectrum of G consists of the eigenvalues $\lambda_{1} \geqslant \lambda_{2} \geqslant \ldots \geqslant \lambda_{n}$ of its $(0,1)$ adjacency matrix A and is denoted by $\sigma(G)$. We say that a regular graph G of order n and degree $r \geqslant 1$ (which is not the complete graph K_{n}) is strongly regular if there exist non-negative integers τ and θ such that $\left|S_{i} \cap S_{j}\right|=\tau$ for any two adjacent vertices i and j, and $\left|S_{i} \cap S_{j}\right|=\theta$ for any two distinct non-adjacent vertices i and j, where $S_{k} \subseteq V(G)$ denotes the neighborhood of the vertex k. We know that a regular connected graph G is strongly regular if and only if it has exactly three distinct eigenvalues [1] (see also [3]). Let $\lambda_{1}=r, \lambda_{2}$ and λ_{3} denote the distinct eigenvalues of a connected strongly regular graph G. Let $m_{1}=1, m_{2}$ and m_{3} denote the multiplicity of r, λ_{2} and λ_{3}. Further, let $\bar{r}=(n-1)-r, \bar{\lambda}_{2}=-\lambda_{3}-1$ and $\bar{\lambda}_{3}=-\lambda_{2}-1$ denote the distinct eigenvalues of the strongly regular graph \bar{G},

[^0]where \bar{G} denotes the complement of G. Then $\bar{\tau}=n-2 r-2+\theta$ and $\bar{\theta}=n-2 r+\tau$ where $\bar{\tau}=\tau(\bar{G})$ and $\bar{\theta}=\theta(\bar{G})$.

Remark 1.1. (i) if G is a disconnected strongly regular graph of degree r then $G=m K_{r+1}$, where $m H$ denotes the m-fold union of the graph H; (ii) G is a disconnected strongly regular graph if and only if $\theta=0$.

Remark 1.2. (i) a strongly regular graph G of order $n=4 k+1$ and degree $r=2 k$ with $\tau=k-1$ and $\theta=k$ is called a conference graph; (ii) a strongly regular graph is a conference graph if and only if $m_{2}=m_{3}$ and (iii) if $m_{2} \neq m_{3}$ then G is an integral ${ }^{1}$ graph.

We have recently started to investigate strongly regular graphs with $m_{2}=q m_{3}$ and $m_{3}=q m_{2}$, where q is a positive integer [4]. In the some work we have described the parameters n, r, τ and θ for strongly regular graphs with $m_{2}=q m_{3}$ and $m_{3}=q m_{2}$ for $q=2,3,4$. In particular, we have described in [5] the parameters n, r, τ and θ for strongly regular graphs with $m_{2}=q m_{3}$ and $m_{3}=q m_{2}$ for $q=5,6,7,8$. We now proceed to establish the parameters of strongly regular graphs with $m_{2}=q m_{3}$ and $m_{3}=q m_{2}$ for $q=9,10$, as follows. First,

Proposition 1.1 (Elzinga [2]). Let G be a connected or disconnected strongly regular graph of order n and degree r. Then

$$
\begin{equation*}
r^{2}-(\tau-\theta+1) r-(n-1) \theta=0 \tag{1.1}
\end{equation*}
$$

Proposition 1.2 (Elzinga [2]). Let G be a connected strongly regular graph of order n and degree r. Then

$$
\begin{equation*}
2 r+(\tau-\theta)\left(m_{2}+m_{3}\right)+\delta\left(m_{2}-m_{3}\right)=0 \tag{1.2}
\end{equation*}
$$

where $\delta=\lambda_{2}-\lambda_{3}$.
Remark 1.3 (Lepović [4]). Using the same procedure applied in [4] we can establish the parameters n, r, τ and θ for strongly regular graphs with $m_{2}=q m_{3}$ and $m_{3}=q m_{2}$ for any fixed value $q \in \mathbb{N}$, as follows. First, let $m_{3}=p, m_{2}=q p$ and $n=(q+1) p+1$ where $q \in \mathbb{N}$. Using (1.2) we obtain $r=p\left(\left|\lambda_{3}\right|-q \lambda_{2}\right)$. Let $\left|\lambda_{3}\right|-q \lambda_{2}=t$ where $t=1,2, \ldots, q$. Let $\lambda_{2}=k$ where k is a positive integer. Then (i) $\lambda_{3}=-(q k+t)$; (ii) $\tau-\theta=-((q-1) k+t)$; (iii) $\delta=(q+1) k+t$; (iv) $r=p t$ and (v) $\theta=p t-q k^{2}-k t$. Using (ii), (iv) and (v) we can easily see that (1.1) is reduced to

$$
\begin{equation*}
(p+1) t^{2}-((q+1) p+1) t+q(q+1) k^{2}+2 q k t=0 \tag{1.3}
\end{equation*}
$$

Second, let $m_{2}=p, m_{3}=q p$ and $n=(q+1) p+1$ where $q \in \mathbb{N}$. Using (1.2) we obtain $r=p\left(q\left|\lambda_{3}\right|-\lambda_{2}\right)$. Let $q\left|\lambda_{3}\right|-\lambda_{2}=t$ where $t=1,2, \ldots, q$. Let $\lambda_{3}=-k$ where k is a positive integer. Then (i) $\lambda_{2}=q k-t$; (ii) $\tau-\theta=(q-1) k-t$; (iii) $\delta=(q+1) k-t$; (iv) $r=p t$ and (v) $\theta=p t-q k^{2}+k t$. Using (ii), (iv) and (v) we can easily see that (1.1) is reduced to

$$
\begin{equation*}
(p+1) t^{2}-((q+1) p+1) t+q(q+1) k^{2}-2 q k t=0 \tag{1.4}
\end{equation*}
$$

[^1]Using (1.3) and (1.4) we can obtain for $t=1,2, \ldots, q$ the corresponding classes of strongly regular graphs with $m_{2}=q m_{3}$ and $m_{3}=q m_{2}$, respectively.

2. Main results

REMARK 2.1. Since $m_{2}(\bar{G})=m_{3}(G)$ and $m_{3}(\bar{G})=m_{2}(G)$ we note that if $m_{2}(G)=q m_{3}(G)$ then $m_{3}(\bar{G})=q m_{2}(\bar{G})$.

Remark 2.2. In Theorems 2.1 and 2.2 the complements of strongly regular graphs appear in pairs in $\left(k^{0}\right)$ and $\left(\bar{k}^{0}\right)$ classes, where k denotes the corresponding number of a class.

REMARK 2.3. $\overline{\alpha K_{\beta}}$ is a strongly regular graph of order $n=\alpha \beta$ and degree $r=(\alpha-1) \beta$ with $\tau=(\alpha-2) \beta$ and $\theta=(\alpha-1) \beta$. Its eigenvalues are $\lambda_{2}=0$ and $\lambda_{3}=-\beta$ with $m_{2}=\alpha(\beta-1)$ and $m_{3}=\alpha-1$.

Proposition 2.1. Let G be a connected strongly regular graph of order n and degree r with $m_{2}=9 m_{3}$. Then G belongs to the class $\left(\overline{3}^{0}\right)$ or $\left(4^{0}\right)$ or $\left(\overline{5}^{0}\right)$ or $\left(6^{0}\right)$ or $\left(7^{0}\right)$ or $\left(8^{0}\right)$ or $\left(9^{0}\right)$ or $\left(\overline{10}^{0}\right)$ represented in Theorem 2.1.

Proof. Let $m_{3}=p, m_{2}=9 p$ and $n=10 p+1$ where $p \in \mathbb{N}$. Using (1.2) we obtain $r=p\left(\left|\lambda_{3}\right|-9 \lambda_{2}\right)$. Let $\left|\lambda_{3}\right|-9 \lambda_{2}=t$ where $t=1,2, \ldots, 9$. Let $\lambda_{2}=k$ where k is a positive integer. Then according to Remark 1.3 we have (i) $\lambda_{3}=-(9 k+t)$; (ii) $\tau-\theta=-(8 k+t)$; (iii) $\delta=10 k+t$; (iv) $r=p t$ and (v) $\theta=p t-9 k^{2}-k t$. In this case we can easily see that (1.3) is reduced to

$$
\begin{equation*}
(p+1) t^{2}-(10 p+1) t+90 k^{2}+18 k t=0 \tag{2.1}
\end{equation*}
$$

Case 1. $(t=1)$. Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=k$ and $\lambda_{3}=-(9 k+1), \tau-\theta=-(8 k+1), \delta=10 k+1, r=p$ and $\theta=p-9 k^{2}-k$. Using (2.1) we find that $p=2 k(5 k+1)$. So we obtain that G is a strongly regular graph of order $n=(10 k+1)^{2}$ and degree $r=2 k(5 k+1)$ with $\tau=k^{2}-7 k-1$ and $\theta=k(k+1)$.

CASE 2. $(t=2)$. Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=k$ and $\lambda_{3}=-(9 k+2), \tau-\theta=-(8 k+2), \delta=10 k+2, r=2 p$ and $\theta=2 p-9 k^{2}-2 k$. Using (2.1) we find that $8 p-1=9 k(5 k+2)$. Replacing k with $4 k+1$ we arrive at $p=90 k^{2}+54 k+8$. So we obtain that G is a strongly regular graph of order $n=9(10 k+3)^{2}$ and degree $r=2\left(90 k^{2}+54 k+8\right)$ with $\tau=36 k^{2}-4 k-5$ and $\theta=(2 k+1)(18 k+5)$.

CASE 3. $(t=3)$. Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=k$ and $\lambda_{3}=-(9 k+3), \tau-\theta=-(8 k+3), \delta=10 k+3, r=3 p$ and $\theta=3 p-9 k^{2}-3 k$. Using (2.1) we find that $7 p-2=6 k(5 k+3)$. Replacing k with $7 k-1$ we arrive at $p=210 k^{2}-42 k+2$. So we obtain that G is a strongly regular graph of order $n=21(10 k-1)^{2}$ and degree $r=3\left(210 k^{2}-42 k+2\right)$ with $\tau=189 k^{2}-77 k+5$ and $\theta=21 k(9 k-1)$.

CASE 4. ($t=4$). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=k$ and $\lambda_{3}=-(9 k+4), \tau-\theta=-(8 k+4), \delta=10 k+4, r=4 p$ and $\theta=4 p-9 k^{2}-4 k$. Using (2.1) we find that $4 p-2=3 k(5 k+4)$, a contradiction because $4 \nmid 15 k^{2}+12 k+2$.

CASE 5. $\left(t=5\right.$). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=k$ and $\lambda_{3}=-(9 k+5), \tau-\theta=-(8 k+5), \delta=10 k+5, r=5 p$ and $\theta=5 p-9 k^{2}-5 k$. Using (2.1) we find that $5 p-4=18 k(k+1)$. Replacing k with $5 k+1$ we arrive at $p=90 k^{2}+54 k+8$. So we obtain that G is a strongly regular graph of order $n=9(10 k+3)^{2}$ and degree $r=5\left(90 k^{2}+54 k+8\right)$ with $\tau=225 k^{2}+115 k+13$ and $\theta=(5 k+2)(45 k+13)$. Replacing k with $5 k-2$ we arrive at $p=90 k^{2}-54 k+8$. So we obtain that G is a strongly regular graph of order $n=9(10 k-3)^{2}$ and degree $r=5\left(90 k^{2}-54 k+8\right)$ with $\tau=225 k^{2}-155 k+25$ and $\theta=(5 k-1)(45 k-14)$.

CASE 6. ($t=6$). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=k$ and $\lambda_{3}=-(9 k+6), \tau-\theta=-(8 k+6), \delta=10 k+6, r=6 p$ and $\theta=6 p-9 k^{2}-6 k$. Using (2.1) we find that $4 p-5=3 k(5 k+6)$, a contradiction because $4 \nmid 15 k^{2}+18 k+5$.

Case 7. ($t=7$). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=k$ and $\lambda_{3}=-(9 k+7), \tau-\theta=-(8 k+7), \delta=10 k+7, r=7 p$ and $\theta=7 p-9 k^{2}-7 k$. Using (2.1) we find that $7 p-14=6 k(5 k+7)$. Replacing k with $7 k$ we arrive at $p=210 k^{2}+42 k+2$. So we obtain that G is a strongly regular graph of order $n=21(10 k+1)^{2}$ and degree $r=7\left(210 k^{2}+42 k+2\right)$ with $\tau=7\left(147 k^{2}+27 k+1\right)$ and $\theta=7(7 k+1)(21 k+2)$.

Case 8. ($t=8$). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=k$ and $\lambda_{3}=-(9 k+8), \tau-\theta=-(8 k+8), \delta=10 k+8, r=8 p$ and $\theta=8 p-9 k^{2}-8 k$. Using (2.1) we find that $8 p-28=9 k(5 k+8)$. Replacing k with $4 k-2$ we arrive at $p=90 k^{2}-54 k+8$. So we obtain that G is a strongly regular graph of order $n=9(10 k-3)^{2}$ and degree $r=8\left(90 k^{2}-54 k+8\right)$ with $\tau=4(4 k-1)(36 k-13)$ and $\theta=4(4 k-1)(36 k-11)$.

Case 9. ($t=9$). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=k$ and $\lambda_{3}=-(9 k+9), \tau-\theta=-(8 k+9), \delta=10 k+9, r=9 p$ and $\theta=9 p-9 k^{2}-9 k$. Using (2.1) we find that $p=2(k+1)(5 k+4)$. Replacing k with $k-1$ we arrive at $p=$ $2 k(5 k-1)$. So we obtain that G is a strongly regular graph of order $n=(10 k-1)^{2}$ and degree $r=18 k(5 k-1)$ with $\tau=81 k^{2}-17 k-1$ and $\theta=9 k(9 k-1)$.

Proposition 2.2. Let G be a connected strongly regular graph of order n and degree r with $m_{3}=9 m_{2}$. Then G belongs to the class $\left(3^{0}\right)$ or $\left(\overline{4}^{0}\right)$ or $\left(5^{0}\right)$ or $\left(\overline{6}^{0}\right)$ or $\left(\overline{7}^{0}\right)$ or $\left(\overline{8}^{0}\right)$ or $\left(\overline{9}^{0}\right)$ or $\left(10^{0}\right)$ represented in Theorem 2.1.

Proof. Let $m_{2}=p, m_{3}=9 p$ and $n=10 p+1$ where $p \in \mathbb{N}$. Using (1.2) we obtain $r=p\left(9\left|\lambda_{3}\right|-\lambda_{2}\right)$. Let $9\left|\lambda_{3}\right|-\lambda_{2}=t$ where $t=1,2, \ldots, 9$. Let $\lambda_{3}=-k$ where k is a positive integer. Then according to Remark 1.3 we have (i) $\lambda_{2}=9 k-t$; (ii) $\tau-\theta=8 k-t$; (iii) $\delta=10 k-t$; (iv) $r=p t$ and (v) $\theta=p t-9 k^{2}+k t$. In this case we can easily see that (1.4) is reduced to

$$
\begin{equation*}
(p+1) t^{2}-(10 p+1) t+90 k^{2}-18 k t=0 \tag{2.2}
\end{equation*}
$$

Case 1. ($t=1$). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=9 k-1$ and $\lambda_{3}=-k, \tau-\theta=8 k-1, \delta=10 k-1, r=p$ and $\theta=p-9 k^{2}+k$. Using (2.2) we find that $p=2 k(5 k-1)$. So we obtain that G is a strongly regular graph of order $n=(10 k-1)^{2}$ and degree $r=2 k(5 k-1)$ with $\tau=k^{2}+7 k-1$ and $\theta=k(k-1)$.

CASE 2. $(t=2)$. Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=9 k-2$ and $\lambda_{3}=-k, \tau-\theta=8 k-2, \delta=10 k-2, r=2 p$ and $\theta=2 p-9 k^{2}+2 k$.

Using (2.2) we find that $8 p-1=9 k(5 k-2)$. Replacing k with $4 k-1$ we arrive at $p=90 k^{2}-54 k+8$. So we obtain that G is a strongly regular graph of order $n=9(10 k-3)^{2}$ and degree $r=2\left(90 k^{2}-54 k+8\right)$ with $\tau=36 k^{2}+4 k-5$ and $\theta=(2 k-1)(18 k-5)$.

CASE 3. $(t=3)$. Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=9 k-3$ and $\lambda_{3}=-k, \tau-\theta=8 k-3, \delta=10 k-3, r=3 p$ and $\theta=3 p-9 k^{2}+3 k$. Using (2.2) we find that $7 p-2=6 k(5 k-3)$. Replacing k with $7 k+1$ we arrive at $p=210 k^{2}+42 k+2$. So we obtain that G is a strongly regular graph of order $n=21(10 k+1)^{2}$ and degree $r=3\left(210 k^{2}+42 k+2\right)$ with $\tau=189 k^{2}+77 k+5$ and $\theta=21 k(9 k+1)$.

Case 4. $(t=4)$. Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=9 k-4$ and $\lambda_{3}=-k, \tau-\theta=8 k-4, \delta=10 k-4, r=4 p$ and $\theta=4 p-9 k^{2}+4 k$. Using (2.2) we find that $4 p-2=3 k(5 k-4)$, a contradiction because $4 \nmid 15 k^{2}-12 k+2$.

Case 5. $\left(t=5\right.$). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=9 k-5$ and $\lambda_{3}=-k, \tau-\theta=8 k-5, \delta=10 k-5, r=5 p$ and $\theta=5 p-9 k^{2}+5 k$. Using (2.2) we find that $5 p-4=18 k(k-1)$. Replacing k with $5 k+2$ we arrive at $p=90 k^{2}+54 k+8$. So we obtain that G is a strongly regular graph of order $n=9(10 k+3)^{2}$ and degree $r=5\left(90 k^{2}+54 k+8\right)$ with $\tau=225 k^{2}+155 k+25$ and $\theta=(5 k+1)(45 k+14)$. Replacing k with $5 k-1$ we arrive at $p=90 k^{2}-54 k+8$. So we obtain that G is a strongly regular graph of order $n=9(10 k-3)^{2}$ and degree $r=5\left(90 k^{2}-54 k+8\right)$ with $\tau=225 k^{2}-115 k+13$ and $\theta=(5 k-2)(45 k-13)$.

CASE 6. $\left(t=6\right.$). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=9 k-6$ and $\lambda_{3}=-k, \tau-\theta=8 k-6, \delta=10 k-6, r=6 p$ and $\theta=6 p-9 k^{2}+6 k$. Using (2.2) we find that $4 p-5=3 k(5 k-6)$, a contradiction because $4 \nmid 15 k^{2}-18 k+5$.

CASE 7. ($t=7$). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=9 k-7$ and $\lambda_{3}=-k, \tau-\theta=8 k-7, \delta=10 k-7, r=7 p$ and $\theta=7 p-9 k^{2}+7 k$. Using (2.2) we find that $7 p-14=6 k(5 k-7)$. Replacing k with $7 k$ we arrive at $p=210 k^{2}-42 k+2$. So we obtain that G is a strongly regular graph of order $n=21(10 k-1)^{2}$ and degree $r=7\left(210 k^{2}-42 k+2\right)$ with $\tau=7\left(147 k^{2}-27 k+1\right)$ and $\theta=7(7 k-1)(21 k-2)$.

CASE 8. $(t=8)$. Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=9 k-8$ and $\lambda_{3}=-k, \tau-\theta=8 k-8, \delta=10 k-8, r=8 p$ and $\theta=8 p-9 k^{2}+8 k$. Using (2.2) we find that $8 p-28=9 k(5 k-8)$. Replacing k with $4 k+2$ we arrive at $p=90 k^{2}+54 k+8$. So we obtain that G is a strongly regular graph of order $n=9(10 k+3)^{2}$ and degree $r=8\left(90 k^{2}+54 k+8\right)$ with $\tau=4(4 k+1)(36 k+13)$ and $\theta=4(4 k+1)(36 k+11)$.

CASE 9. ($t=9$). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=9 k-9$ and $\lambda_{3}=-k, \tau-\theta=8 k-9, \delta=10 k-9, r=9 p$ and $\theta=9 p-9 k^{2}+9 k$. Using (2.2) we find that $p=2(k-1)(5 k-4)$. Replacing k with $k+1$ we arrive at $p=2 k(5 k+1)$. So we obtain that G is a strongly regular graph of order $n=(10 k+1)^{2}$ and degree $r=18 k(5 k+1)$ with $\tau=81 k^{2}+17 k-1$ and $\theta=9 k(9 k+1)$.

Remark 2.4. We note that $\overline{3 K_{7}}$ is a strongly regular graph with $m_{2}=9 m_{3}$. It is obtained from the class Theorem $2.1\left(\overline{10}^{0}\right)$ for $k=0$.

REmARK 2.5. We note that $\overline{9 K_{9}}$ is a strongly regular graph with $m_{2}=9 m_{3}$. It is obtained from the class Theorem $2.1\left(\overline{3}^{0}\right)$ for $k=1$.

Theorem 2.1. Let G be a connected strongly regular graph of order n and degree r with $m_{2}=9 m_{3}$ or $m_{3}=9 m_{2}$. Then G is one of the following strongly regular graphs:
$\left(1^{0}\right) G$ is the strongly regular graph $\overline{3 K_{7}}$ of order $n=21$ and degree $r=14$ with $\tau=7$ and $\theta=14$. Its eigenvalues are $\lambda_{2}=0$ and $\lambda_{3}=-7$ with $m_{2}=18$ and $m_{3}=2$;
$\left(2^{0}\right) G$ is the strongly regular graph $\overline{9 K_{9}}$ of order $n=81$ and degree $r=72$ with $\tau=63$ and $\theta=72$. Its eigenvalues are $\lambda_{2}=0$ and $\lambda_{3}=-9$ with $m_{2}=72$ and $m_{3}=8 ;$
$\left(3^{0}\right) G$ is a strongly regular graph of order $n=(10 k-1)^{2}$ and degree $r=$ $2 k(5 k-1)$ with $\tau=k^{2}+7 k-1$ and $\theta=k(k-1)$, where $k \geqslant 2$. Its eigenvalues are $\lambda_{2}=9 k-1$ and $\lambda_{3}=-k$ with $m_{2}=2 k(5 k-1)$ and $m_{3}=18 k(5 k-1)$;
$\left(\overline{3}^{0}\right) G$ is a strongly regular graph of order $n=(10 k-1)^{2}$ and degree $r=$ $18 k(5 k-1)$ with $\tau=81 k^{2}-17 k-1$ and $\theta=9 k(9 k-1)$, where $k \geqslant 2$. Its eigenvalues are $\lambda_{2}=k-1$ and $\lambda_{3}=-9 k$ with $m_{2}=18 k(5 k-1)$ and $m_{3}=2 k(5 k-1) ;$
$\left(4^{0}\right) G$ is a strongly regular graph of order $n=(10 k+1)^{2}$ and degree $r=$ $2 k(5 k+1)$ with $\tau=k^{2}-7 k-1$ and $\theta=k(k+1)$, where $k \geqslant 8$. Its eigenvalues are $\lambda_{2}=k$ and $\lambda_{3}=-(9 k+1)$ with $m_{2}=18 k(5 k+1)$ and $m_{3}=2 k(5 k+1) ;$
$\left(\overline{4}^{0}\right) G$ is a strongly regular graph of order $n=(10 k+1)^{2}$ and degree $r=$ $18 k(5 k+1)$ with $\tau=81 k^{2}+17 k-1$ and $\theta=9 k(9 k+1)$, where $k \geqslant 8$. Its eigenvalues are $\lambda_{2}=9 k$ and $\lambda_{3}=-(k+1)$ with $m_{2}=2 k(5 k+1)$ and $m_{3}=18 k(5 k+1)$;
$\left(5^{0}\right) G$ is a strongly regular graph of order $n=9(10 k-3)^{2}$ and degree $r=$ $2\left(90 k^{2}-54 k+8\right)$ with $\tau=36 k^{2}+4 k-5$ and $\theta=(2 k-1)(18 k-5)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=36 k-11$ and $\lambda_{3}=-(4 k-1)$ with $m_{2}=90 k^{2}-54 k+8$ and $m_{3}=9\left(90 k^{2}-54 k+8\right) ;$
$\left(5^{0}\right) G$ is a strongly regular graph of order $n=9(10 k-3)^{2}$ and degree $r=$ $8\left(90 k^{2}-54 k+8\right)$ with $\tau=4(4 k-1)(36 k-13)$ and $\theta=4(4 k-1)(36 k-11)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=4 k-2$ and $\lambda_{3}=-(36 k-10)$ with $m_{2}=9\left(90 k^{2}-54 k+8\right)$ and $m_{3}=90 k^{2}-54 k+8 ;$
$\left(6^{0}\right) G$ is a strongly regular graph of order $n=9(10 k-3)^{2}$ and degree $r=$ $5\left(90 k^{2}-54 k+8\right)$ with $\tau=225 k^{2}-155 k+25$ and $\theta=(5 k-1)(45 k-14)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=5 k-2$ and $\lambda_{3}=-(45 k-13)$ with $m_{2}=9\left(90 k^{2}-54 k+8\right)$ and $m_{3}=90 k^{2}-54 k+8 ;$
$\left(\overline{6}^{0}\right) G$ is a strongly regular graph of order $n=9(10 k-3)^{2}$ and degree $r=$ $5\left(90 k^{2}-54 k+8\right)$ with $\tau=225 k^{2}-115 k+13$ and $\theta=(5 k-2)(45 k-13)$,

ON STRONGLY REGULAR GRAPHS WITH $m_{2}=q m_{3}$ AND $m_{3}=q m_{2}$ FOR $q=9,10 \quad 225$
where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=45 k-14$ and $\lambda_{3}=-(5 k-1)$ with $m_{2}=90 k^{2}-54 k+8$ and $m_{3}=9\left(90 k^{2}-54 k+8\right) ;$
$\left(7^{0}\right) G$ is a strongly regular graph of order $n=9(10 k+3)^{2}$ and degree $r=$ $2\left(90 k^{2}+54 k+8\right)$ with $\tau=36 k^{2}-4 k-5$ and $\theta=(2 k+1)(18 k+5)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=4 k+1$ and $\lambda_{3}=-(36 k+11)$ with $m_{2}=9\left(90 k^{2}+54 k+8\right)$ and $m_{3}=90 k^{2}+54 k+8 ;$
$\left(\overline{7}^{0}\right) G$ is a strongly regular graph of order $n=9(10 k+3)^{2}$ and degree $r=$ $8\left(90 k^{2}+54 k+8\right)$ with $\tau=4(4 k+1)(36 k+13)$ and $\theta=4(4 k+1)(36 k+11)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=36 k+10$ and $\lambda_{3}=-(4 k+2)$ with $m_{2}=90 k^{2}+54 k+8$ and $m_{3}=9\left(90 k^{2}+54 k+8\right) ;$
$\left(8^{0}\right) G$ is a strongly regular graph of order $n=9(10 k+3)^{2}$ and degree $r=$ $5\left(90 k^{2}+54 k+8\right)$ with $\tau=225 k^{2}+115 k+13$ and $\theta=(5 k+2)(45 k+13)$, where $k \geqslant 0$. Its eigenvalues are $\lambda_{2}=5 k+1$ and $\lambda_{3}=-(45 k+14)$ with $m_{2}=9\left(90 k^{2}+54 k+8\right)$ and $m_{3}=90 k^{2}+54 k+8$;
$\left(\overline{8}^{0}\right) G$ is a strongly regular graph of order $n=9(10 k+3)^{2}$ and degree $r=$ $5\left(90 k^{2}+54 k+8\right)$ with $\tau=225 k^{2}+155 k+25$ and $\theta=(5 k+1)(45 k+14)$, where $k \geqslant 0$. Its eigenvalues are $\lambda_{2}=45 k+13$ and $\lambda_{3}=-(5 k+2)$ with $m_{2}=90 k^{2}+54 k+8$ and $m_{3}=9\left(90 k^{2}+54 k+8\right) ;$
$\left(9^{0}\right) G$ is a strongly regular graph of order $n=21(10 k-1)^{2}$ and degree $r=$ $3\left(210 k^{2}-42 k+2\right)$ with $\tau=189 k^{2}-77 k+5$ and $\theta=21 k(9 k-1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=7 k-1$ and $\lambda_{3}=-(63 k-6)$ with $m_{2}=9\left(210 k^{2}-42 k+2\right)$ and $m_{3}=210 k^{2}-42 k+2$;
$\left(\overline{9}^{0}\right) G$ is a strongly regular graph of order $n=21(10 k-1)^{2}$ and degree $r=$ $7\left(210 k^{2}-42 k+2\right)$ with $\tau=7\left(147 k^{2}-27 k+1\right)$ and $\theta=7(7 k-1)(21 k-2)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=63 k-7$ and $\lambda_{3}=-7 k$ with $m_{2}=210 k^{2}-42 k+2$ and $m_{3}=9\left(210 k^{2}-42 k+2\right)$;
$\left(10^{0}\right) G$ is a strongly regular graph of order $n=21(10 k+1)^{2}$ and degree $r=$ $3\left(210 k^{2}+42 k+2\right)$ with $\tau=189 k^{2}+77 k+5$ and $\theta=21 k(9 k+1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=63 k+6$ and $\lambda_{3}=-(7 k+1)$ with $m_{2}=210 k^{2}+42 k+2$ and $m_{3}=9\left(210 k^{2}+42 k+2\right) ;$
$\left(\overline{10}^{0}\right) G$ is a strongly regular graph of order $n=21(10 k+1)^{2}$ and degree $r=$ $7\left(210 k^{2}+42 k+2\right)$ with $\tau=7\left(147 k^{2}+27 k+1\right)$ and $\theta=7(7 k+1)(21 k+2)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=7 k$ and $\lambda_{3}=-(63 k+7)$ with $m_{2}=9\left(210 k^{2}+42 k+2\right)$ and $m_{3}=210 k^{2}+42 k+2$;

Proof. First, according to Remark 2.3 we have $\alpha(\beta-1)=9(\alpha-1)$, from which we find that $\alpha=3, \beta=7$ or $\alpha=9, \beta=9$. In view of this we obtain the strongly regular graphs represented in Theorem $2.1\left(1^{0}\right),\left(2^{0}\right)$. Next, according to Proposition 2.1 it turns out that G belongs to the class $\left(\overline{3}^{0}\right)$ or $\left(4^{0}\right)$ or $\left(5^{0}\right)$ or $\left(6^{0}\right)$ or $\left(7^{0}\right)$ or $\left(8^{0}\right)$ or $\left(9^{0}\right)$ or $\left(\overline{10}^{0}\right)$ if $m_{2}=9 m_{3}$. According to Proposition 2.2 it turns
out that G belongs to the class $\left(3^{0}\right)$ or $\left(\overline{4}^{0}\right)$ or $\left(5^{0}\right)$ or $\left(\overline{6}^{0}\right)$ or $\left(\overline{7}^{0}\right)$ or $\left(\overline{8}^{0}\right)$ or $\left(\overline{9}^{0}\right)$ or $\left(10^{0}\right)$ if $m_{3}=9 m_{2}$.

Proposition 2.3. Let G be a connected strongly regular graph of order n and degree r with $m_{2}=10 m_{3}$. Then G belongs to the class $\left(\overline{4}^{0}\right)$ or $\left(5^{0}\right)$ or $\left(6^{0}\right)$ or $\left(\overline{7}^{0}\right)$ or $\left(8^{0}\right)$ or $\left(\overline{9}^{0}\right)$ or $\left(10^{0}\right)$ or $\left(\overline{11}^{0}\right)$ or $\left(\overline{12}^{0}\right)$ or $\left(13^{0}\right)$ represented in Theorem 2.2.

Proof. Let $m_{3}=p, m_{2}=10 p$ and $n=11 p+1$ where $p \in \mathbb{N}$. Using (1.2) we obtain $r=p\left(\left|\lambda_{3}\right|-10 \lambda_{2}\right)$. Let $\left|\lambda_{3}\right|-10 \lambda_{2}=t$ where $t=1,2, \ldots, 10$. Let $\lambda_{2}=k$ where k is a positive integer. Then according to Remark 1.3 we have (i) $\lambda_{3}=-(10 k+t)$; (ii) $\tau-\theta=-(9 k+t)$; (iii) $\delta=11 k+t$; (iv) $r=p t$ and (v) $\theta=p t-10 k^{2}-k t$. In this case we can easily see that (1.3) is reduced to

$$
\begin{equation*}
(p+1) t^{2}-(11 p+1) t+110 k^{2}+20 k t=0 . \tag{2.3}
\end{equation*}
$$

CASE 1. ($t=1$). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=k$ and $\lambda_{3}=-(10 k+1), \tau-\theta=-(9 k+1), \delta=11 k+1, r=p$ and $\theta=p-10 k^{2}-k$. Using (2.3) we find that $p=k(11 k+2)$. So we obtain that G is a strongly regular graph of order $n=(11 k+1)^{2}$ and degree $r=k(11 k+2)$ with $\tau=k^{2}-8 k-1$ and $\theta=k(k+1)$.

Case 2. ($t=2$). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=k$ and $\lambda_{3}=-(10 k+2), \tau-\theta=-(9 k+2), \delta=11 k+2, r=2 p$ and $\theta=2 p-10 k^{2}-2 k$. Using (2.3) we find that $9 p-1=5 k(11 k+4)$. Replacing k with $3 k-1$ we arrive at $p=55 k^{2}-30 k+4$. So we obtain that G is a strongly regular graph of order $n=5(11 k-3)^{2}$ and degree $r=2\left(55 k^{2}-30 k+4\right)$ with $\tau=20 k^{2}-33 k+7$ and $\theta=2 k(10 k-3)$.

Case 3. ($t=3$). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=k$ and $\lambda_{3}=-(10 k+3), \tau-\theta=-(9 k+3), \delta=11 k+3, r=3 p$ and $\theta=3 p-10 k^{2}-3 k$. Using (2.3) we find that $12 p-3=5 k(11 k+6)$. Replacing k with $6 k-3$ we arrive at $p=165 k^{2}-150 k+34$. So we obtain that G is a strongly regular graph of order $n=15(11 k-5)^{2}$ and degree $r=3\left(165 k^{2}-150 k+34\right)$ with $\tau=3\left(45 k^{2}-54 k+15\right)$ and $\theta=3(3 k-1)(15 k-7)$.

Case 4. $(t=4)$. Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=k$ and $\lambda_{3}=-(10 k+4), \tau-\theta=-(9 k+4), \delta=11 k+4, r=4 p$ and $\theta=4 p-10 k^{2}-4 k$. Using (2.3) we find that $14 p-6=5 k(11 k+8)$. Replacing k with $14 k+6$ we arrive at $p=770 k^{2}+700 k+159$. So we obtain that G is a strongly regular graph of order $n=70(11 k+5)^{2}$ and degree $r=4\left(770 k^{2}+700 k+159\right)$ with $\tau=2\left(560 k^{2}+469 k+97\right)$ and $\theta=28(2 k+1)(20 k+9)$.

CASE 5. ($t=5$). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=k$ and $\lambda_{3}=-(10 k+5), \tau-\theta=-(9 k+5), \delta=11 k+5, r=5 p$ and $\theta=5 p-10 k^{2}-5 k$. Using (2.3) we find that $3 p-2=k(11 k+10)$. Replacing k with $3 k-1$ we arrive at $p=33 k^{2}-12 k+1$. So we obtain that G is a strongly regular graph of order $n=3(11 k-2)^{2}$ and degree $r=5\left(33 k^{2}-12 k+1\right)$ with $\tau=75 k^{2}-42 k+4$ and $\theta=15 k(5 k-1)$.

CASE 6. ($t=6$). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=k$ and $\lambda_{3}=-(10 k+6), \tau-\theta=-(9 k+6), \delta=11 k+6, r=6 p$ and $\theta=6 p-10 k^{2}-6 k$. Using (2.3) we find that $3 p-3=k(11 k+12)$. Replacing k with $3 k$ we arrive
at $p=33 k^{2}+12 k+1$. So we obtain that G is a strongly regular graph of order $n=3(11 k+2)^{2}$ and degree $r=6\left(33 k^{2}+12 k+1\right)$ with $\tau=27 k(4 k+1)$ and $\theta=6(3 k+1)(6 k+1)$.

CASE 7. ($t=7$). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=k$ and $\lambda_{3}=-(10 k+7), \tau-\theta=-(9 k+7), \delta=11 k+7, r=7 p$ and $\theta=7 p-10 k^{2}-7 k$. Using (2.3) we find that $14 p-21=5 k(11 k+14)$. Replacing k with $14 k-7$ we arrive at $p=770 k^{2}-700 k+159$. So we obtain that G is a strongly regular graph of order $n=70(11 k-5)^{2}$ and degree $r=7\left(770 k^{2}-700 k+159\right)$ with $\tau=14\left(245 k^{2}-226 k+52\right)$ and $\theta=14(7 k-3)(35 k-16)$.

CASE 8. ($t=8$). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=k$ and $\lambda_{3}=-(10 k+8), \tau-\theta=-(9 k+8), \delta=11 k+8, r=8 p$ and $\theta=8 p-10 k^{2}-8 k$. Using (2.3) we find that $12 p-28=5 k(11 k+16)$. Replacing k with $6 k+2$ we arrive at $p=165 k^{2}+150 k+34$. So we obtain that G is a strongly regular graph of order $n=15(11 k+5)^{2}$ and degree $r=8\left(165 k^{2}+150 k+34\right)$ with $\tau=2\left(480 k^{2}+429 k+95\right)$ and $\theta=24(2 k+1)(20 k+9)$.

Case 9. $(t=9)$. Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=k$ and $\lambda_{3}=-(10 k+9), \tau-\theta=-(9 k+9), \delta=11 k+9, r=9 p$ and $\theta=9 p-10 k^{2}-9 k$. Using (2.3) we find that $9 p-36=5 k(11 k+18)$. Replacing k with $3 k$ we arrive at $p=55 k^{2}+30 k+4$. So we obtain that G is a strongly regular graph of order $n=5(11 k+3)^{2}$ and degree $r=9\left(55 k^{2}+30 k+4\right)$ with $\tau=27(3 k+1)(5 k+1)$ and $\theta=9(3 k+1)(15 k+4)$.

CASE 10. ($t=10$). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=k$ and $\lambda_{3}=-(10 k+10), \tau-\theta=-(9 k+10), \delta=11 k+10, r=10 p$ and $\theta=10 p-10 k^{2}-10 k$. Using (2.3) we find that $p=(k+1)(11 k+9)$. Replacing k with $k-1$ we arrive at $p=k(11 k-2)$. So we obtain that G is a strongly regular graph of order $n=(11 k-1)^{2}$ and degree $r=10 k(11 k-2)$ with $\tau=100 k^{2}-19 k-1$ and $\theta=10 k(10 k-1)$.

Proposition 2.4. Let G be a connected strongly regular graph of order n and degree r with $m_{3}=10 m_{2}$. Then G belongs to the class $\left(4^{0}\right)$ or $\left(\overline{5}^{0}\right)$ or $\left(\overline{6}^{0}\right)$ or $\left(7^{0}\right)$ or $\left(\overline{8}^{0}\right)$ or $\left(9^{0}\right)$ or $\left(\overline{10}^{0}\right)$ or $\left(11^{0}\right)$ or $\left(12^{0}\right)$ or $\left(\overline{13}^{0}\right)$ represented in Theorem 2.2.

Proof. Let $m_{2}=p, m_{3}=10 p$ and $n=11 p+1$ where $p \in \mathbb{N}$. Using (1.2) we obtain $r=p\left(10\left|\lambda_{3}\right|-\lambda_{2}\right)$. Let $10\left|\lambda_{3}\right|-\lambda_{2}=t$ where $t=1,2, \ldots, 10$. Let $\lambda_{3}=-k$ where k is a positive integer. Then according to Remark 1.3 we have (i) $\lambda_{2}=10 k-t$; (ii) $\tau-\theta=9 k-t$; (iii) $\delta=11 k-t$; (iv) $r=p t$ and (v) $\theta=p t-10 k^{2}+k t$. In this case we can easily see that (1.4) is reduced to

$$
\begin{equation*}
(p+1) t^{2}-(11 p+1) t+110 k^{2}-20 k t=0 \tag{2.4}
\end{equation*}
$$

Case 1. $(t=1)$. Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=10 k-1$ and $\lambda_{3}=-k, \tau-\theta=9 k-1, \delta=11 k-1, r=p$ and $\theta=p-10 k^{2}+k$. Using (2.4) we find that $p=k(11 k-2)$. So we obtain that G is a strongly regular graph of order $n=(11 k-1)^{2}$ and degree $r=k(11 k-2)$ with $\tau=k^{2}+8 k-1$ and $\theta=k(k-1)$.

CASE 2. $(t=2)$. Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=10 k-2$ and $\lambda_{3}=-k, \tau-\theta=9 k-2, \delta=11 k-2, r=2 p$ and $\theta=2 p-10 k^{2}+2 k$. Using (2.4) we find that $9 p-1=5 k(11 k-4)$. Replacing k with $3 k+1$ we arrive
at $p=55 k^{2}+30 k+4$. So we obtain that G is a strongly regular graph of order $n=5(11 k+3)^{2}$ and degree $r=2\left(55 k^{2}+30 k+4\right)$ with $\tau=20 k^{2}+33 k+7$ and $\theta=2 k(10 k+3)$.

Case 3. $\left(t=3\right.$). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=10 k-3$ and $\lambda_{3}=-k, \tau-\theta=9 k-3, \delta=11 k-3, r=3 p$ and $\theta=3 p-10 k^{2}+3 k$. Using (2.4) we find that $12 p-3=5 k(11 k-6)$. Replacing k with $6 k+3$ we arrive at $p=165 k^{2}+150 k+34$. So we obtain that G is a strongly regular graph of order $n=15(11 k+5)^{2}$ and degree $r=3\left(165 k^{2}+150 k+34\right)$ with $\tau=3\left(45 k^{2}+54 k+15\right)$ and $\theta=3(3 k+1)(15 k+7)$.

CASE 4. $\left(t=4\right.$). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=10 k-4$ and $\lambda_{3}=-k, \tau-\theta=9 k-4, \delta=11 k-4, r=4 p$ and $\theta=4 p-10 k^{2}+4 k$. Using (2.4) we find that $14 p-6=5 k(11 k-8)$. Replacing k with $14 k-6$ we arrive at $p=770 k^{2}-700 k+159$. So we obtain that G is a strongly regular graph of order $n=70(11 k-5)^{2}$ and degree $r=4\left(770 k^{2}-700 k+159\right)$ with $\tau=2\left(560 k^{2}-469 k+97\right)$ and $\theta=28(2 k-1)(20 k-9)$.

Case 5. $\left(t=5\right.$). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=10 k-5$ and $\lambda_{3}=-k, \tau-\theta=9 k-5, \delta=11 k-5, r=5 p$ and $\theta=5 p-10 k^{2}+5 k$. Using (2.4) we find that $3 p-2=k(11 k-10)$. Replacing k with $3 k+1$ we arrive at $p=33 k^{2}+12 k+1$. So we obtain that G is a strongly regular graph of order $n=3(11 k+2)^{2}$ and degree $r=5\left(33 k^{2}+12 k+1\right)$ with $\tau=75 k^{2}+42 k+4$ and $\theta=15 k(5 k+1)$.

CASE 6. $\left(t=6\right.$). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=10 k-6$ and $\lambda_{3}=-k, \tau-\theta=9 k-6, \delta=11 k-6, r=6 p$ and $\theta=6 p-10 k^{2}+6 k$. Using (2.4) we find that $3 p-3=k(11 k-12)$. Replacing k with $3 k$ we arrive at $p=33 k^{2}-12 k+1$. So we obtain that G is a strongly regular graph of order $n=3(11 k-2)^{2}$ and degree $r=6\left(33 k^{2}-12 k+1\right)$ with $\tau=27 k(4 k-1)$ and $\theta=6(3 k-1)(6 k-1)$.

Case 7. $\left(t=7\right.$). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=10 k-7$ and $\lambda_{3}=-k, \tau-\theta=9 k-7, \delta=11 k-7, r=7 p$ and $\theta=7 p-10 k^{2}+7 k$. Using (2.4) we find that $14 p-21=5 k(11 k-14)$. Replacing k with $14 k+7$ we arrive at $p=770 k^{2}+700 k+159$. So we obtain that G is a strongly regular graph of order $n=70(11 k+5)^{2}$ and degree $r=7\left(770 k^{2}+700 k+159\right)$ with $\tau=14\left(245 k^{2}+226 k+52\right)$ and $\theta=14(7 k+3)(35 k+16)$.

CASE 8. ($t=8$). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=10 k-8$ and $\lambda_{3}=-k, \tau-\theta=9 k-8, \delta=11 k-8, r=8 p$ and $\theta=8 p-10 k^{2}+8 k$. Using (2.4) we find that $12 p-28=5 k(11 k-16)$. Replacing k with $6 k-2$ we arrive at $p=165 k^{2}-150 k+34$. So we obtain that G is a strongly regular graph of order $n=15(11 k-5)^{2}$ and degree $r=8\left(165 k^{2}-150 k+34\right)$ with $\tau=2\left(480 k^{2}-429 k+95\right)$ and $\theta=24(2 k-1)(20 k-9)$.

Case 9. $\left(t=9\right.$). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=10 k-9$ and $\lambda_{3}=-k, \tau-\theta=9 k-9, \delta=11 k-9, r=9 p$ and $\theta=9 p-10 k^{2}+9 k$. Using (2.4) we find that $9 p-36=5 k(11 k-18)$. Replacing k with $3 k$ we arrive at $p=55 k^{2}-30 k+4$. So we obtain that G is a strongly regular graph of order $n=5(11 k-3)^{2}$ and degree $r=9\left(55 k^{2}-30 k+4\right)$ with $\tau=27(3 k-1)(5 k-1)$ and $\theta=9(3 k-1)(15 k-4)$.

Case 10. ($t=10$). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=10 k-10$ and $\lambda_{3}=-k, \tau-\theta=9 k-10, \delta=11 k-10, r=10 p$ and $\theta=10 p-10 k^{2}+10 k$. Using (2.4) we find that $p=(k-1)(11 k-9)$. Replacing k with $k+1$ we arrive at $p=k(11 k+2)$. So we obtain that G is a strongly regular graph of order $n=(11 k+1)^{2}$ and degree $r=10 k(11 k+2)$ with $\tau=100 k^{2}+19 k-1$ and $\theta=10 k(10 k+1)$.

REmARK 2.6. We note that the complete bipartite graph $K_{6,6}$ is a strongly regular graph with $m_{2}=10 m_{3}$. It is obtained from the class Theorem $2.2\left(\overline{7}^{0}\right)$ for $k=0$.

REmARK 2.7. We note that $\overline{5 K_{9}}$ is a strongly regular graph with $m_{2}=10 m_{3}$. It is obtained from the class Theorem $2.2\left(\overline{9}^{0}\right)$ for $k=0$.

REmARK 2.8. We note that $\overline{10 K_{10}}$ is a strongly regular graph with $m_{2}=10 m_{3}$. It is obtained from the class Theorem $2.2\left(\overline{4}^{0}\right)$ for $k=1$.

THEOREM 2.2. Let G be a connected strongly regular graph of order n and degree r with $m_{2}=10 m_{3}$ or $m_{3}=10 m_{2}$. Then G is one of the following strongly regular graphs:
$\left(1^{0}\right) G$ is the complete bipartite graph $K_{6,6}$ of order $n=12$ and degree $r=6$ with $\tau=0$ and $\theta=6$. Its eigenvalues are $\lambda_{2}=0$ and $\lambda_{3}=-6$ with $m_{2}=10$ and $m_{3}=1$;
$\left(2^{0}\right) G$ is the strongly regular graph $\overline{5 K_{9}}$ of order $n=45$ and degree $r=36$ with $\tau=27$ and $\theta=36$. Its eigenvalues are $\lambda_{2}=0$ and $\lambda_{3}=-9$ with $m_{2}=40$ and $m_{3}=4 ;$
$\left(3^{0}\right) G$ is the strongly regular graph $\overline{10 K_{10}}$ of order $n=100$ and degree $r=90$ with $\tau=80$ and $\theta=90$. Its eigenvalues are $\lambda_{2}=0$ and $\lambda_{3}=-10$ with $m_{2}=90$ and $m_{3}=9 ;$
$\left(4^{0}\right) G$ is a strongly regular graph of order $n=(11 k-1)^{2}$ and degree $r=$ $k(11 k-2)$ with $\tau=k^{2}+8 k-1$ and $\theta=k(k-1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=10 k-1$ and $\lambda_{3}=-k$ with $m_{2}=k(11 k-2)$ and $m_{3}=10 k(11 k-2) ;$
$\left(\overline{4}^{0}\right) G$ is a strongly regular graph of order $n=(11 k-1)^{2}$ and degree $r=$ $10 k(11 k-2)$ with $\tau=100 k^{2}-19 k-1$ and $\theta=10 k(10 k-1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=k-1$ and $\lambda_{3}=-10 k$ with $m_{2}=10 k(11 k-2)$ and $m_{3}=k(11 k-2)$;
$\left(5^{0}\right) G$ is a strongly regular graph of order $n=(11 k+1)^{2}$ and degree $r=$ $k(11 k+2)$ with $\tau=k^{2}-8 k-1$ and $\theta=k(k+1)$, where $k \geqslant 9$. Its eigenvalues are $\lambda_{2}=k$ and $\lambda_{3}=-(10 k+1)$ with $m_{2}=10 k(11 k+2)$ and $m_{3}=k(11 k+2) ;$
$\left(\overline{5}^{0}\right) G$ is a strongly regular graph of order $n=(11 k+1)^{2}$ and degree $r=$ $10 k(11 k+2)$ with $\tau=100 k^{2}+19 k-1$ and $\theta=10 k(10 k+1)$, where $k \geqslant 9$. Its eigenvalues are $\lambda_{2}=10 k$ and $\lambda_{3}=-(k+1)$ with $m_{2}=k(11 k+2)$ and $m_{3}=10 k(11 k+2)$;
$\left(6^{0}\right) G$ is a strongly regular graph of order $n=3(11 k-2)^{2}$ and degree $r=$ $5\left(33 k^{2}-12 k+1\right)$ with $\tau=75 k^{2}-42 k+4$ and $\theta=15 k(5 k-1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=3 k-1$ and $\lambda_{3}=-(30 k-5)$ with $m_{2}=10\left(33 k^{2}-12 k+1\right)$ and $m_{3}=33 k^{2}-12 k+1$;
$\left(\overline{6}^{0}\right) G$ is a strongly regular graph of order $n=3(11 k-2)^{2}$ and degree $r=$ $6\left(33 k^{2}-12 k+1\right)$ with $\tau=27 k(4 k-1)$ and $\theta=6(3 k-1)(6 k-1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=30 k-6$ and $\lambda_{3}=-3 k$ with $m_{2}=33 k^{2}-12 k+1$ and $m_{3}=10\left(33 k^{2}-12 k+1\right) ;$
$\left(7^{0}\right) G$ is a strongly regular graph of order $n=3(11 k+2)^{2}$ and degree $r=$ $5\left(33 k^{2}+12 k+1\right)$ with $\tau=75 k^{2}+42 k+4$ and $\theta=15 k(5 k+1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=30 k+5$ and $\lambda_{3}=-(3 k+1)$ with $m_{2}=33 k^{2}+12 k+1$ and $m_{3}=10\left(33 k^{2}+12 k+1\right) ;$
$\left(\overline{7}^{0}\right) G$ is a strongly regular graph of order $n=3(11 k+2)^{2}$ and degree $r=$ $6\left(33 k^{2}+12 k+1\right)$ with $\tau=27 k(4 k+1)$ and $\theta=6(3 k+1)(6 k+1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=3 k$ and $\lambda_{3}=-(30 k+6)$ with $m_{2}=10\left(33 k^{2}+12 k+1\right)$ and $m_{3}=33 k^{2}+12 k+1 ;$
$\left(8^{0}\right) G$ is a strongly regular graph of order $n=5(11 k-3)^{2}$ and degree $r=$ $2\left(55 k^{2}-30 k+4\right)$ with $\tau=20 k^{2}-33 k+7$ and $\theta=2 k(10 k-3)$, where $k \geqslant 2$. Its eigenvalues are $\lambda_{2}=3 k-1$ and $\lambda_{3}=-(30 k-8)$ with $m_{2}=10\left(55 k^{2}-30 k+4\right)$ and $m_{3}=55 k^{2}-30 k+4$;
$\left(\overline{8}^{0}\right) G$ is a strongly regular graph of order $n=5(11 k-3)^{2}$ and degree $r=$ $9\left(55 k^{2}-30 k+4\right)$ with $\tau=27(3 k-1)(5 k-1)$ and $\theta=9(3 k-1)(15 k-4)$, where $k \geqslant 2$. Its eigenvalues are $\lambda_{2}=30 k-9$ and $\lambda_{3}=-3 k$ with $m_{2}=55 k^{2}-30 k+4$ and $m_{3}=10\left(55 k^{2}-30 k+4\right) ;$
$\left(9^{0}\right) G$ is a strongly regular graph of order $n=5(11 k+3)^{2}$ and degree $r=$ $2\left(55 k^{2}+30 k+4\right)$ with $\tau=20 k^{2}+33 k+7$ and $\theta=2 k(10 k+3)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=30 k+8$ and $\lambda_{3}=-(3 k+1)$ with $m_{2}=55 k^{2}+30 k+4$ and $m_{3}=10\left(55 k^{2}+30 k+4\right) ;$
$\left(\overline{9}^{0}\right) G$ is a strongly regular graph of order $n=5(11 k+3)^{2}$ and degree $r=$ $9\left(55 k^{2}+30 k+4\right)$ with $\tau=27(3 k+1)(5 k+1)$ and $\theta=9(3 k+1)(15 k+4)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=3 k$ and $\lambda_{3}=-(30 k+9)$ with $m_{2}=10\left(55 k^{2}+30 k+4\right)$ and $m_{3}=55 k^{2}+30 k+4 ;$
$\left(10^{0}\right) G$ is a strongly regular graph of order $n=15(11 k-5)^{2}$ and degree $r=$ $3\left(165 k^{2}-150 k+34\right)$ with $\tau=3\left(45 k^{2}-54 k+15\right)$ and $\theta=3(3 k-1)(15 k-7)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=6 k-3$ and $\lambda_{3}=-(60 k-27)$ with $m_{2}=10\left(165 k^{2}-150 k+34\right)$ and $m_{3}=165 k^{2}-150 k+34 ;$
$\left(\overline{10}^{0}\right) G$ is a strongly regular graph of order $n=15(11 k-5)^{2}$ and degree $r=$ $8\left(165 k^{2}-150 k+34\right)$ with $\tau=2\left(480 k^{2}-429 k+95\right)$ and $\theta=24(2 k-1)(20 k-$ $9)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=60 k-28$ and $\lambda_{3}=-(6 k-2)$ with $m_{2}=165 k^{2}-150 k+34$ and $m_{3}=10\left(165 k^{2}-150 k+34\right)$;
$\left(11^{0}\right) G$ is a strongly regular graph of order $n=15(11 k+5)^{2}$ and degree $r=$ $3\left(165 k^{2}+150 k+34\right)$ with $\tau=3\left(45 k^{2}+54 k+15\right)$ and $\theta=3(3 k+1)(15 k+7)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=60 k+27$ and $\lambda_{3}=-(6 k+3)$ with $m_{2}=165 k^{2}+150 k+34$ and $m_{3}=10\left(165 k^{2}+150 k+34\right) ;$
$\left(\overline{11}^{0}\right) G$ is a strongly regular graph of order $n=15(11 k+5)^{2}$ and degree $r=$ $8\left(165 k^{2}+150 k+34\right)$ with $\tau=2\left(480 k^{2}+429 k+95\right)$ and $\theta=24(2 k+1)(20 k+$ $9)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=6 k+2$ and $\lambda_{3}=-(60 k+28)$ with $m_{2}=10\left(165 k^{2}+150 k+34\right)$ and $m_{3}=165 k^{2}+150 k+34$;
$\left(12^{0}\right) G$ is a strongly regular graph of order $n=70(11 k-5)^{2}$ and degree $r=$ $4\left(770 k^{2}-700 k+159\right)$ with $\tau=2\left(560 k^{2}-469 k+97\right)$ and $\theta=28(2 k-$ 1) $(20 k-9)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=140 k-64$ and $\lambda_{3}=$ $-(14 k-6)$ with $m_{2}=770 k^{2}-700 k+159$ and $m_{3}=10\left(770 k^{2}-700 k+159\right)$;
$\left(\overline{12}^{0}\right) G$ is a strongly regular graph of order $n=70(11 k-5)^{2}$ and degree $r=$ $7\left(770 k^{2}-700 k+159\right)$ with $\tau=14\left(245 k^{2}-226 k+52\right)$ and $\theta=14(7 k-$ $3)(35 k-16)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=14 k-7$ and $\lambda_{3}=$ $-(140 k-63)$ with $m_{2}=10\left(770 k^{2}-700 k+159\right)$ and $m_{3}=770 k^{2}-700 k+$ 159 ;
$\left(13^{0}\right) G$ is a strongly regular graph of order $n=70(11 k+5)^{2}$ and degree $r=$ $4\left(770 k^{2}+700 k+159\right)$ with $\tau=2\left(560 k^{2}+469 k+97\right)$ and $\theta=28(2 k+$ 1) $(20 k+9)$, where $k \geqslant 0$. Its eigenvalues are $\lambda_{2}=14 k+6$ and $\lambda_{3}=$ $-(140 k+64)$ with $m_{2}=10\left(770 k^{2}+700 k+159\right)$ and $m_{3}=770 k^{2}+$ $700 k+159$;
$\left(\overline{13}^{0}\right) G$ is a strongly regular graph of order $n=70(11 k+5)^{2}$ and degree $r=$ $7\left(770 k^{2}+700 k+159\right)$ with $\tau=14\left(245 k^{2}+226 k+52\right)$ and $\theta=14(7 k+$ $3)(35 k+16)$, where $k \geqslant 0$. Its eigenvalues are $\lambda_{2}=140 k+63$ and $\lambda_{3}=$ $-(14 k+7)$ with $m_{2}=770 k^{2}+700 k+159$ and $m_{3}=10\left(770 k^{2}+700 k+159\right)$.
Proof. First, according to Remark 2.3 we have $\alpha(\beta-1)=10(\alpha-1)$, from which we find that $\alpha=2, \beta=6$ or $\alpha=5, \beta=9$ or $\alpha=10, \beta=10$. In view of this we obtain the strongly regular graphs represented in Theorem $2.2\left(1^{0}\right),\left(2^{0}\right),\left(3^{0}\right)$. Next, according to Proposition 2.3 it turns out that G belongs to the class $\left(\overline{4}^{0}\right)$ or $\left(5^{0}\right)$ or $\left(6^{0}\right)$ or $\left(\overline{7}^{0}\right)$ or $\left(8^{0}\right)$ or $\left(\overline{9}^{0}\right)$ or $\left(10^{0}\right)$ or $\left(\overline{11}^{0}\right)$ or $\left(\overline{12}^{0}\right)$ or $\left(13^{0}\right)$ if $m_{2}=10 m_{3}$. According to Proposition 2.4 it turns out that G belongs to the class $\left(4^{0}\right)$ or $\left(5^{0}\right)$ or $\left(\overline{6}^{0}\right)$ or $\left(7^{0}\right)$ or $\left(\overline{8}^{0}\right)$ or $\left(9^{0}\right)$ or $\left(\overline{10}^{0}\right)$ or $\left(11^{0}\right)$ or $\left(12^{0}\right)$ or $\left(\overline{13}^{0}\right)$ if $m_{3}=10 m_{2}$.

References

1. D. Cvetković, M. Doob, and H. Sachs. Spectra of graphs - Theory and applications, 3rd revised and enlarged edition, J.A. Barth Verlag, Heidelberg - Leipzig, 1995.
2. R. J. Elzinga. Strongly regular graphs: values of λ and μ for which there are only finitely many feasible (v, k, λ, μ), Electronic Journal of Linear Algebra ISSN 1081-3810, A publication of the International Linear Algebra Society, Volume 10, pp. 232-239, October 2003.
3. C. Godsil and G. Royle. Algebraic Graph Theory, Springer-Verlag, New York, 2001.
4. M. Lepović. On strongly regular graphs with $m_{2}=q m_{3}$ and $m_{3}=q m_{2}$, Serdica Math. J. 37 (2011), 1001-1012.
5. M. Lepović. On strongly regular graphs with $m_{2}=q m_{3}$ and $m_{3}=q m_{2}$ for $q=5,6,7,8$, Sarajevo Journal of Mathematics, Vol. 16 (28), No. 2, (2019), 209-225. DOI:10.5644/SJM.15.02.06 Received by editors 25.2.2023; Revised version 9.7.2023; Available online 20.9.2023.

Mirko Lepović, Tihomira Vuksanovića 32, 34000 Kragujevac, Serbia.
Email address: lepovic@kg.ac.rs

[^0]: 2010 Mathematics Subject Classification. Primary 05C50.
 Key words and phrases. Strongly regular graph, conference graph, integral graph.
 Communicated by Dusko Bogdanic.

[^1]: ${ }^{1}$ We say that a connected or disconnected graph G is integral if its spectrum $\sigma(G)$ consists only of integral values.

