BULLETIN OF THE INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE

ISSN (p) 2303-4874, ISSN (o) 2303-4955 www.imvibl.org /JOURNALS / BULLETIN Bull. Int. Math. Virtual Inst., **13**(2)(2023), 219–232 DOI: 10.7251/BIMVI2302219L

> Former BULLETIN OF THE SOCIETY OF MATHEMATICIANS BANJA LUKA ISSN 0354-5792 (o), ISSN 1986-521X (p)

ON STRONGLY REGULAR GRAPHS WITH $m_2 = qm_3$ **AND** $m_3 = qm_2$ for q = 9, 10

Mirko Lepović

ABSTRACT. We say that a regular graph G of order n and degree $r \ge 1$ (which is not the complete graph) is strongly regular if there exist non-negative integers τ and θ such that $|S_i \cap S_j| = \tau$ for any two adjacent vertices i and j, and $|S_i \cap S_j| = \theta$ for any two distinct non-adjacent vertices i and j, where S_k denotes the neighborhood of the vertex k. Let $\lambda_1 = r$, λ_2 and λ_3 be the distinct eigenvalues of a connected strongly regular graph. Let $m_1 = 1$, m_2 and m_3 denote the multiplicity of r, λ_2 and λ_3 , respectively. We here describe the parameters n, r, τ and θ for strongly regular graphs with $m_2 = qm_3$ and $m_3 = qm_2$ for q = 9, 10.

1. Introduction

Let G be a simple graph of order n with vertex set $V(G) = \{1, 2, ..., n\}$. The spectrum of G consists of the eigenvalues $\lambda_1 \ge \lambda_2 \ge ... \ge \lambda_n$ of its (0,1) adjacency matrix A and is denoted by $\sigma(G)$. We say that a regular graph G of order n and degree $r \ge 1$ (which is not the complete graph K_n) is strongly regular if there exist non-negative integers τ and θ such that $|S_i \cap S_j| = \tau$ for any two adjacent vertices i and j, and $|S_i \cap S_j| = \theta$ for any two distinct non-adjacent vertices i and j, where $S_k \subseteq V(G)$ denotes the neighborhood of the vertex k. We know that a regular connected graph G is strongly regular if and only if it has exactly three distinct eigenvalues [1] (see also [3]). Let $\lambda_1 = r$, λ_2 and λ_3 denote the distinct eigenvalues of a connected strongly regular graph G. Let $m_1 = 1$, m_2 and m_3 denote the multiplicity of r, λ_2 and λ_3 . Further, let $\overline{r} = (n-1) - r$, $\overline{\lambda}_2 = -\lambda_3 - 1$ and $\overline{\lambda}_3 = -\lambda_2 - 1$ denote the distinct eigenvalues of the strongly regular graph \overline{G} .

Communicated by Dusko Bogdanic.

²⁰¹⁰ Mathematics Subject Classification. Primary 05C50.

Key words and phrases. Strongly regular graph, conference graph, integral graph.

where \overline{G} denotes the complement of G. Then $\overline{\tau} = n - 2r - 2 + \theta$ and $\overline{\theta} = n - 2r + \tau$ where $\overline{\tau} = \tau(\overline{G})$ and $\overline{\theta} = \theta(\overline{G})$.

REMARK 1.1. (i) if G is a disconnected strongly regular graph of degree r then $G = mK_{r+1}$, where mH denotes the m-fold union of the graph H; (ii) G is a disconnected strongly regular graph if and only if $\theta = 0$.

REMARK 1.2. (i) a strongly regular graph G of order n = 4k + 1 and degree r = 2k with $\tau = k - 1$ and $\theta = k$ is called a conference graph; (ii) a strongly regular graph is a conference graph if and only if $m_2 = m_3$ and (iii) if $m_2 \neq m_3$ then G is an integral¹ graph.

We have recently started to investigate strongly regular graphs with $m_2 = qm_3$ and $m_3 = qm_2$, where q is a positive integer [4]. In the some work we have described the parameters n, r, τ and θ for strongly regular graphs with $m_2 = qm_3$ and $m_3 = qm_2$ for q = 2, 3, 4. In particular, we have described in [5] the parameters n, r, τ and θ for strongly regular graphs with $m_2 = qm_3$ and $m_3 = qm_2$ for q = 5, 6, 7, 8. We now proceed to establish the parameters of strongly regular graphs with $m_2 = qm_3$ and $m_3 = qm_2$ for q = 9, 10, as follows. First,

PROPOSITION 1.1 (Elzinga [2]). Let G be a connected or disconnected strongly regular graph of order n and degree r. Then

(1.1)
$$r^2 - (\tau - \theta + 1)r - (n - 1)\theta = 0.$$

PROPOSITION 1.2 (Elzinga [2]). Let G be a connected strongly regular graph of order n and degree r. Then

(1.2)
$$2r + (\tau - \theta)(m_2 + m_3) + \delta(m_2 - m_3) = 0,$$

where $\delta = \lambda_2 - \lambda_3$.

REMARK 1.3 (Lepović [4]). Using the same procedure applied in [4] we can establish the parameters n, r, τ and θ for strongly regular graphs with $m_2 = qm_3$ and $m_3 = qm_2$ for any fixed value $q \in \mathbb{N}$, as follows. First, let $m_3 = p, m_2 = qp$ and n = (q+1)p+1 where $q \in \mathbb{N}$. Using (1.2) we obtain $r = p(|\lambda_3| - q\lambda_2)$. Let $|\lambda_3| - q\lambda_2 = t$ where $t = 1, 2, \ldots, q$. Let $\lambda_2 = k$ where k is a positive integer. Then (i) $\lambda_3 = -(qk+t)$; (ii) $\tau - \theta = -((q-1)k+t)$; (iii) $\delta = (q+1)k+t$; (iv) r = ptand (v) $\theta = pt - qk^2 - kt$. Using (ii), (iv) and (v) we can easily see that (1.1) is reduced to

(1.3)
$$(p+1)t^2 - ((q+1)p+1)t + q(q+1)k^2 + 2qkt = 0.$$

Second, let $m_2 = p$, $m_3 = qp$ and n = (q+1)p+1 where $q \in \mathbb{N}$. Using (1.2) we obtain $r = p(q|\lambda_3| - \lambda_2)$. Let $q|\lambda_3| - \lambda_2 = t$ where $t = 1, 2, \ldots, q$. Let $\lambda_3 = -k$ where k is a positive integer. Then (i) $\lambda_2 = qk - t$; (ii) $\tau - \theta = (q-1)k - t$; (iii) $\delta = (q+1)k - t$; (iv) r = pt and (v) $\theta = pt - qk^2 + kt$. Using (ii), (iv) and (v) we can easily see that (1.1) is reduced to

(1.4)
$$(p+1)t^2 - ((q+1)p+1)t + q(q+1)k^2 - 2qkt = 0.$$

¹We say that a connected or disconnected graph G is integral if its spectrum $\sigma(G)$ consists only of integral values.

Using (1.3) and (1.4) we can obtain for t = 1, 2, ..., q the corresponding classes of strongly regular graphs with $m_2 = qm_3$ and $m_3 = qm_2$, respectively.

2. Main results

REMARK 2.1. Since $m_2(\overline{G}) = m_3(G)$ and $m_3(\overline{G}) = m_2(G)$ we note that if $m_2(G) = qm_3(G)$ then $m_3(\overline{G}) = qm_2(\overline{G})$.

REMARK 2.2. In Theorems 2.1 and 2.2 the complements of strongly regular graphs appear in pairs in (k^0) and (\overline{k}^0) classes, where k denotes the corresponding number of a class.

REMARK 2.3. $\overline{\alpha K_{\beta}}$ is a strongly regular graph of order $n = \alpha\beta$ and degree $r = (\alpha - 1)\beta$ with $\tau = (\alpha - 2)\beta$ and $\theta = (\alpha - 1)\beta$. Its eigenvalues are $\lambda_2 = 0$ and $\lambda_3 = -\beta$ with $m_2 = \alpha(\beta - 1)$ and $m_3 = \alpha - 1$.

PROPOSITION 2.1. Let G be a connected strongly regular graph of order n and degree r with $m_2 = 9m_3$. Then G belongs to the class $(\overline{3}^0)$ or (4^0) or $(\overline{5}^0)$ or (6^0) or (7^0) or (8^0) or (9^0) or $(\overline{10}^0)$ represented in Theorem 2.1.

PROOF. Let $m_3 = p$, $m_2 = 9p$ and n = 10p + 1 where $p \in \mathbb{N}$. Using (1.2) we obtain $r = p(|\lambda_3| - 9\lambda_2)$. Let $|\lambda_3| - 9\lambda_2 = t$ where $t = 1, 2, \ldots, 9$. Let $\lambda_2 = k$ where k is a positive integer. Then according to Remark 1.3 we have (i) $\lambda_3 = -(9k + t)$; (ii) $\tau - \theta = -(8k + t)$; (iii) $\delta = 10k + t$; (iv) r = pt and (v) $\theta = pt - 9k^2 - kt$. In this case we can easily see that (1.3) is reduced to

(2.1)
$$(p+1)t^2 - (10p+1)t + 90k^2 + 18kt = 0.$$

CASE 1. (t = 1). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = k$ and $\lambda_3 = -(9k + 1)$, $\tau - \theta = -(8k + 1)$, $\delta = 10k + 1$, r = p and $\theta = p - 9k^2 - k$. Using (2.1) we find that p = 2k(5k + 1). So we obtain that G is a strongly regular graph of order $n = (10k + 1)^2$ and degree r = 2k(5k + 1) with $\tau = k^2 - 7k - 1$ and $\theta = k(k + 1)$.

CASE 2. (t = 2). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = k$ and $\lambda_3 = -(9k+2), \tau - \theta = -(8k+2), \delta = 10k+2, r = 2p$ and $\theta = 2p - 9k^2 - 2k$. Using (2.1) we find that 8p - 1 = 9k(5k+2). Replacing k with 4k + 1 we arrive at $p = 90k^2 + 54k + 8$. So we obtain that G is a strongly regular graph of order $n = 9(10k+3)^2$ and degree $r = 2(90k^2 + 54k + 8)$ with $\tau = 36k^2 - 4k - 5$ and $\theta = (2k+1)(18k+5)$.

CASE 3. (t = 3). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = k$ and $\lambda_3 = -(9k+3), \tau - \theta = -(8k+3), \delta = 10k+3, r = 3p$ and $\theta = 3p - 9k^2 - 3k$. Using (2.1) we find that 7p - 2 = 6k(5k+3). Replacing k with 7k - 1 we arrive at $p = 210k^2 - 42k + 2$. So we obtain that G is a strongly regular graph of order $n = 21(10k - 1)^2$ and degree $r = 3(210k^2 - 42k + 2)$ with $\tau = 189k^2 - 77k + 5$ and $\theta = 21k(9k - 1)$.

CASE 4. (t = 4). Using (i), (ii), (ii), (iv) and (v) we find that $\lambda_2 = k$ and $\lambda_3 = -(9k+4), \tau - \theta = -(8k+4), \delta = 10k+4, r = 4p$ and $\theta = 4p - 9k^2 - 4k$. Using (2.1) we find that 4p - 2 = 3k(5k+4), a contradiction because $4 \nmid 15k^2 + 12k + 2$.

CASE 5. (t = 5). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = k$ and $\lambda_3 = -(9k+5)$, $\tau - \theta = -(8k+5)$, $\delta = 10k+5$, r = 5p and $\theta = 5p - 9k^2 - 5k$. Using (2.1) we find that 5p - 4 = 18k(k+1). Replacing k with 5k + 1 we arrive at $p = 90k^2 + 54k + 8$. So we obtain that G is a strongly regular graph of order $n = 9(10k+3)^2$ and degree $r = 5(90k^2 + 54k + 8)$ with $\tau = 225k^2 + 115k + 13$ and $\theta = (5k+2)(45k+13)$. Replacing k with 5k - 2 we arrive at $p = 90k^2 - 54k + 8$. So we obtain that G is a strongly regular graph of order $n = 9(10k-3)^2$ and degree $r = 5(90k^2 - 54k + 8)$ with $\tau = 225k^2 - 155k + 25$ and $\theta = (5k-1)(45k-14)$.

CASE 6. (t = 6). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = k$ and $\lambda_3 = -(9k+6), \tau - \theta = -(8k+6), \delta = 10k+6, r = 6p$ and $\theta = 6p - 9k^2 - 6k$. Using (2.1) we find that 4p - 5 = 3k(5k+6), a contradiction because $4 \nmid 15k^2 + 18k + 5$.

CASE 7. (t = 7). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = k$ and $\lambda_3 = -(9k+7), \tau - \theta = -(8k+7), \delta = 10k+7, r = 7p$ and $\theta = 7p - 9k^2 - 7k$. Using (2.1) we find that 7p - 14 = 6k(5k+7). Replacing k with 7k we arrive at $p = 210k^2 + 42k + 2$. So we obtain that G is a strongly regular graph of order $n = 21(10k+1)^2$ and degree $r = 7(210k^2 + 42k + 2)$ with $\tau = 7(147k^2 + 27k + 1)$ and $\theta = 7(7k+1)(21k+2)$.

CASE 8. (t = 8). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = k$ and $\lambda_3 = -(9k+8)$, $\tau - \theta = -(8k+8)$, $\delta = 10k+8$, r = 8p and $\theta = 8p - 9k^2 - 8k$. Using (2.1) we find that 8p - 28 = 9k(5k+8). Replacing k with 4k - 2 we arrive at $p = 90k^2 - 54k + 8$. So we obtain that G is a strongly regular graph of order $n = 9(10k-3)^2$ and degree $r = 8(90k^2 - 54k + 8)$ with $\tau = 4(4k-1)(36k-13)$ and $\theta = 4(4k-1)(36k-11)$.

CASE 9. (t = 9). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = k$ and $\lambda_3 = -(9k+9), \tau - \theta = -(8k+9), \delta = 10k+9, r = 9p$ and $\theta = 9p-9k^2-9k$. Using (2.1) we find that p = 2(k+1)(5k+4). Replacing k with k-1 we arrive at p = 2k(5k-1). So we obtain that G is a strongly regular graph of order $n = (10k-1)^2$ and degree r = 18k(5k-1) with $\tau = 81k^2 - 17k - 1$ and $\theta = 9k(9k-1)$.

PROPOSITION 2.2. Let G be a connected strongly regular graph of order n and degree r with $m_3 = 9m_2$. Then G belongs to the class (3^0) or $(\overline{4}^0)$ or (5^0) or $(\overline{6}^0)$ or $(\overline{7}^0)$ or $(\overline{8}^0)$ or $(\overline{9}^0)$ or (10^0) represented in Theorem 2.1.

PROOF. Let $m_2 = p$, $m_3 = 9p$ and n = 10p + 1 where $p \in \mathbb{N}$. Using (1.2) we obtain $r = p(9|\lambda_3| - \lambda_2)$. Let $9|\lambda_3| - \lambda_2 = t$ where $t = 1, 2, \ldots, 9$. Let $\lambda_3 = -k$ where k is a positive integer. Then according to Remark 1.3 we have (i) $\lambda_2 = 9k - t$; (ii) $\tau - \theta = 8k - t$; (iii) $\delta = 10k - t$; (iv) r = pt and (v) $\theta = pt - 9k^2 + kt$. In this case we can easily see that (1.4) is reduced to

(2.2)
$$(p+1)t^2 - (10p+1)t + 90k^2 - 18kt = 0.$$

CASE 1. (t = 1). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = 9k - 1$ and $\lambda_3 = -k, \tau - \theta = 8k - 1, \delta = 10k - 1, r = p$ and $\theta = p - 9k^2 + k$. Using (2.2) we find that p = 2k(5k - 1). So we obtain that G is a strongly regular graph of order $n = (10k - 1)^2$ and degree r = 2k(5k - 1) with $\tau = k^2 + 7k - 1$ and $\theta = k(k - 1)$.

CASE 2. (t = 2). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = 9k - 2$ and $\lambda_3 = -k$, $\tau - \theta = 8k - 2$, $\delta = 10k - 2$, r = 2p and $\theta = 2p - 9k^2 + 2k$. Using (2.2) we find that 8p - 1 = 9k(5k - 2). Replacing k with 4k - 1 we arrive at $p = 90k^2 - 54k + 8$. So we obtain that G is a strongly regular graph of order $n = 9(10k - 3)^2$ and degree $r = 2(90k^2 - 54k + 8)$ with $\tau = 36k^2 + 4k - 5$ and $\theta = (2k - 1)(18k - 5)$.

CASE 3. (t = 3). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = 9k - 3$ and $\lambda_3 = -k$, $\tau - \theta = 8k - 3$, $\delta = 10k - 3$, r = 3p and $\theta = 3p - 9k^2 + 3k$. Using (2.2) we find that 7p - 2 = 6k(5k - 3). Replacing k with 7k + 1 we arrive at $p = 210k^2 + 42k + 2$. So we obtain that G is a strongly regular graph of order $n = 21(10k + 1)^2$ and degree $r = 3(210k^2 + 42k + 2)$ with $\tau = 189k^2 + 77k + 5$ and $\theta = 21k(9k + 1)$.

CASE 4. (t = 4). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = 9k - 4$ and $\lambda_3 = -k, \tau - \theta = 8k - 4, \delta = 10k - 4, r = 4p$ and $\theta = 4p - 9k^2 + 4k$. Using (2.2) we find that 4p - 2 = 3k(5k - 4), a contradiction because $4 \nmid 15k^2 - 12k + 2$.

CASE 5. (t = 5). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = 9k - 5$ and $\lambda_3 = -k$, $\tau - \theta = 8k - 5$, $\delta = 10k - 5$, r = 5p and $\theta = 5p - 9k^2 + 5k$. Using (2.2) we find that 5p - 4 = 18k(k - 1). Replacing k with 5k + 2 we arrive at $p = 90k^2 + 54k + 8$. So we obtain that G is a strongly regular graph of order $n = 9(10k + 3)^2$ and degree $r = 5(90k^2 + 54k + 8)$ with $\tau = 225k^2 + 155k + 25$ and $\theta = (5k + 1)(45k + 14)$. Replacing k with 5k - 1 we arrive at $p = 90k^2 - 54k + 8$. So we obtain that G is a strongly regular graph of order $n = 9(10k - 3)^2$ and degree $r = 5(90k^2 - 54k + 8)$ with $\tau = 225k^2 - 115k + 13$ and $\theta = (5k - 2)(45k - 13)$.

CASE 6. (t = 6). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = 9k - 6$ and $\lambda_3 = -k, \tau - \theta = 8k - 6, \delta = 10k - 6, r = 6p$ and $\theta = 6p - 9k^2 + 6k$. Using (2.2) we find that 4p - 5 = 3k(5k - 6), a contradiction because $4 \nmid 15k^2 - 18k + 5$.

CASE 7. (t = 7). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = 9k - 7$ and $\lambda_3 = -k$, $\tau - \theta = 8k - 7$, $\delta = 10k - 7$, r = 7p and $\theta = 7p - 9k^2 + 7k$. Using (2.2) we find that 7p - 14 = 6k(5k - 7). Replacing k with 7k we arrive at $p = 210k^2 - 42k + 2$. So we obtain that G is a strongly regular graph of order $n = 21(10k - 1)^2$ and degree $r = 7(210k^2 - 42k + 2)$ with $\tau = 7(147k^2 - 27k + 1)$ and $\theta = 7(7k - 1)(21k - 2)$.

CASE 8. (t = 8). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = 9k - 8$ and $\lambda_3 = -k$, $\tau - \theta = 8k - 8$, $\delta = 10k - 8$, r = 8p and $\theta = 8p - 9k^2 + 8k$. Using (2.2) we find that 8p - 28 = 9k(5k - 8). Replacing k with 4k + 2 we arrive at $p = 90k^2 + 54k + 8$. So we obtain that G is a strongly regular graph of order $n = 9(10k + 3)^2$ and degree $r = 8(90k^2 + 54k + 8)$ with $\tau = 4(4k + 1)(36k + 13)$ and $\theta = 4(4k + 1)(36k + 11)$.

CASE 9. (t = 9). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = 9k - 9$ and $\lambda_3 = -k, \tau - \theta = 8k - 9, \delta = 10k - 9, r = 9p$ and $\theta = 9p - 9k^2 + 9k$. Using (2.2) we find that p = 2(k-1)(5k-4). Replacing k with k + 1 we arrive at p = 2k(5k+1). So we obtain that G is a strongly regular graph of order $n = (10k+1)^2$ and degree r = 18k(5k+1) with $\tau = 81k^2 + 17k - 1$ and $\theta = 9k(9k+1)$.

REMARK 2.4. We note that $\overline{3K_7}$ is a strongly regular graph with $m_2 = 9m_3$. It is obtained from the class Theorem 2.1 $(\overline{10}^0)$ for k = 0. REMARK 2.5. We note that $\overline{9K_9}$ is a strongly regular graph with $m_2 = 9m_3$. It is obtained from the class Theorem 2.1 ($\overline{3}^0$) for k = 1.

THEOREM 2.1. Let G be a connected strongly regular graph of order n and degree r with $m_2 = 9m_3$ or $m_3 = 9m_2$. Then G is one of the following strongly regular graphs:

- (1⁰) G is the strongly regular graph $\overline{3K_7}$ of order n = 21 and degree r = 14with $\tau = 7$ and $\theta = 14$. Its eigenvalues are $\lambda_2 = 0$ and $\lambda_3 = -7$ with $m_2 = 18$ and $m_3 = 2$;
- (2⁰) G is the strongly regular graph $\overline{9K_9}$ of order n = 81 and degree r = 72with $\tau = 63$ and $\theta = 72$. Its eigenvalues are $\lambda_2 = 0$ and $\lambda_3 = -9$ with $m_2 = 72$ and $m_3 = 8$;
- (3⁰) G is a strongly regular graph of order $n = (10k 1)^2$ and degree r = 2k(5k 1) with $\tau = k^2 + 7k 1$ and $\theta = k(k 1)$, where $k \ge 2$. Its eigenvalues are $\lambda_2 = 9k 1$ and $\lambda_3 = -k$ with $m_2 = 2k(5k 1)$ and $m_3 = 18k(5k 1)$;
- $(\overline{3}^0)$ G is a strongly regular graph of order $n = (10k 1)^2$ and degree r = 18k(5k 1) with $\tau = 81k^2 17k 1$ and $\theta = 9k(9k 1)$, where $k \ge 2$. Its eigenvalues are $\lambda_2 = k - 1$ and $\lambda_3 = -9k$ with $m_2 = 18k(5k - 1)$ and $m_3 = 2k(5k - 1)$;
- (4⁰) G is a strongly regular graph of order $n = (10k + 1)^2$ and degree r = 2k(5k + 1) with $\tau = k^2 7k 1$ and $\theta = k(k + 1)$, where $k \ge 8$. Its eigenvalues are $\lambda_2 = k$ and $\lambda_3 = -(9k + 1)$ with $m_2 = 18k(5k + 1)$ and $m_3 = 2k(5k + 1)$;
- $(\overline{4}^0)$ G is a strongly regular graph of order $n = (10k + 1)^2$ and degree r = 18k(5k + 1) with $\tau = 81k^2 + 17k 1$ and $\theta = 9k(9k + 1)$, where $k \ge 8$. Its eigenvalues are $\lambda_2 = 9k$ and $\lambda_3 = -(k+1)$ with $m_2 = 2k(5k+1)$ and $m_3 = 18k(5k+1)$;
- (5⁰) G is a strongly regular graph of order $n = 9(10k 3)^2$ and degree $r = 2(90k^2 54k + 8)$ with $\tau = 36k^2 + 4k 5$ and $\theta = (2k 1)(18k 5)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_2 = 36k 11$ and $\lambda_3 = -(4k 1)$ with $m_2 = 90k^2 54k + 8$ and $m_3 = 9(90k^2 54k + 8)$;
- ($\overline{5}^{0}$) G is a strongly regular graph of order $n = 9(10k 3)^{2}$ and degree $r = 8(90k^{2} 54k + 8)$ with $\tau = 4(4k 1)(36k 13)$ and $\theta = 4(4k 1)(36k 11)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2} = 4k 2$ and $\lambda_{3} = -(36k 10)$ with $m_{2} = 9(90k^{2} 54k + 8)$ and $m_{3} = 90k^{2} 54k + 8$;
- (6⁰) G is a strongly regular graph of order $n = 9(10k 3)^2$ and degree $r = 5(90k^2 54k + 8)$ with $\tau = 225k^2 155k + 25$ and $\theta = (5k 1)(45k 14)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_2 = 5k 2$ and $\lambda_3 = -(45k 13)$ with $m_2 = 9(90k^2 54k + 8)$ and $m_3 = 90k^2 54k + 8$;
- $(\overline{6}^{0})$ G is a strongly regular graph of order $n = 9(10k 3)^{2}$ and degree $r = 5(90k^{2} 54k + 8)$ with $\tau = 225k^{2} 115k + 13$ and $\theta = (5k 2)(45k 13)$,

where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_2 = 45k - 14$ and $\lambda_3 = -(5k - 1)$ with $m_2 = 90k^2 - 54k + 8$ and $m_3 = 9(90k^2 - 54k + 8);$

- (7⁰) G is a strongly regular graph of order $n = 9(10k+3)^2$ and degree $r = 2(90k^2 + 54k + 8)$ with $\tau = 36k^2 4k 5$ and $\theta = (2k+1)(18k+5)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_2 = 4k + 1$ and $\lambda_3 = -(36k+11)$ with $m_2 = 9(90k^2 + 54k + 8)$ and $m_3 = 90k^2 + 54k + 8$;
- $(\overline{7}^0)$ G is a strongly regular graph of order $n = 9(10k+3)^2$ and degree $r = 8(90k^2+54k+8)$ with $\tau = 4(4k+1)(36k+13)$ and $\theta = 4(4k+1)(36k+11)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_2 = 36k+10$ and $\lambda_3 = -(4k+2)$ with $m_2 = 90k^2+54k+8$ and $m_3 = 9(90k^2+54k+8)$;
- (8⁰) G is a strongly regular graph of order $n = 9(10k+3)^2$ and degree $r = 5(90k^2+54k+8)$ with $\tau = 225k^2+115k+13$ and $\theta = (5k+2)(45k+13)$, where $k \ge 0$. Its eigenvalues are $\lambda_2 = 5k+1$ and $\lambda_3 = -(45k+14)$ with $m_2 = 9(90k^2+54k+8)$ and $m_3 = 90k^2+54k+8$;
- $(\overline{8}^0)$ G is a strongly regular graph of order $n = 9(10k+3)^2$ and degree $r = 5(90k^2+54k+8)$ with $\tau = 225k^2+155k+25$ and $\theta = (5k+1)(45k+14)$, where $k \ge 0$. Its eigenvalues are $\lambda_2 = 45k+13$ and $\lambda_3 = -(5k+2)$ with $m_2 = 90k^2+54k+8$ and $m_3 = 9(90k^2+54k+8)$;
- (9⁰) G is a strongly regular graph of order $n = 21(10k 1)^2$ and degree $r = 3(210k^2 42k + 2)$ with $\tau = 189k^2 77k + 5$ and $\theta = 21k(9k 1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_2 = 7k 1$ and $\lambda_3 = -(63k 6)$ with $m_2 = 9(210k^2 42k + 2)$ and $m_3 = 210k^2 42k + 2$;
- $(\overline{9}^0)$ G is a strongly regular graph of order $n = 21(10k 1)^2$ and degree $r = 7(210k^2 42k + 2)$ with $\tau = 7(147k^2 27k + 1)$ and $\theta = 7(7k 1)(21k 2)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_2 = 63k - 7$ and $\lambda_3 = -7k$ with $m_2 = 210k^2 - 42k + 2$ and $m_3 = 9(210k^2 - 42k + 2)$;
- (10⁰) G is a strongly regular graph of order $n = 21(10k + 1)^2$ and degree $r = 3(210k^2 + 42k + 2)$ with $\tau = 189k^2 + 77k + 5$ and $\theta = 21k(9k + 1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_2 = 63k + 6$ and $\lambda_3 = -(7k + 1)$ with $m_2 = 210k^2 + 42k + 2$ and $m_3 = 9(210k^2 + 42k + 2)$;
- ($\overline{10}^0$) G is a strongly regular graph of order $n = 21(10k+1)^2$ and degree $r = 7(210k^2+42k+2)$ with $\tau = 7(147k^2+27k+1)$ and $\theta = 7(7k+1)(21k+2)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_2 = 7k$ and $\lambda_3 = -(63k+7)$ with $m_2 = 9(210k^2+42k+2)$ and $m_3 = 210k^2+42k+2$;

PROOF. First, according to Remark 2.3 we have $\alpha(\beta - 1) = 9(\alpha - 1)$, from which we find that $\alpha = 3$, $\beta = 7$ or $\alpha = 9$, $\beta = 9$. In view of this we obtain the strongly regular graphs represented in Theorem 2.1 (1⁰), (2⁰). Next, according to Proposition 2.1 it turns out that G belongs to the class ($\overline{3}^0$) or (4^0) or ($\overline{5}^0$) or (6^0) or (7^0) or (8^0) or (9^0) or ($\overline{10}^0$) if $m_2 = 9m_3$. According to Proposition 2.2 it turns out that G belongs to the class (3⁰) or ($\overline{4}^0$) or (5⁰) or ($\overline{6}^0$) or ($\overline{7}^0$) or ($\overline{8}^0$) or ($\overline{9}^0$) or (10⁰) if $m_3 = 9m_2$.

PROPOSITION 2.3. Let G be a connected strongly regular graph of order n and degree r with $m_2 = 10m_3$. Then G belongs to the class $(\overline{4}^0)$ or (5^0) or (6^0) or $(\overline{7}^0)$ or (8^0) or $(\overline{9}^0)$ or (10^0) or $(\overline{11}^0)$ or $(\overline{12}^0)$ or (13^0) represented in Theorem 2.2.

PROOF. Let $m_3 = p$, $m_2 = 10p$ and n = 11p + 1 where $p \in \mathbb{N}$. Using (1.2) we obtain $r = p(|\lambda_3| - 10\lambda_2)$. Let $|\lambda_3| - 10\lambda_2 = t$ where t = 1, 2, ..., 10. Let $\lambda_2 = k$ where k is a positive integer. Then according to Remark 1.3 we have (i) $\lambda_3 = -(10k + t)$; (ii) $\tau - \theta = -(9k + t)$; (iii) $\delta = 11k + t$; (iv) r = pt and (v) $\theta = pt - 10k^2 - kt$. In this case we can easily see that (1.3) is reduced to

(2.3)
$$(p+1)t^2 - (11p+1)t + 110k^2 + 20kt = 0.$$

CASE 1. (t = 1). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = k$ and $\lambda_3 = -(10k + 1)$, $\tau - \theta = -(9k + 1)$, $\delta = 11k + 1$, r = p and $\theta = p - 10k^2 - k$. Using (2.3) we find that p = k(11k + 2). So we obtain that G is a strongly regular graph of order $n = (11k + 1)^2$ and degree r = k(11k + 2) with $\tau = k^2 - 8k - 1$ and $\theta = k(k + 1)$.

CASE 2. (t = 2). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = k$ and $\lambda_3 = -(10k+2), \tau - \theta = -(9k+2), \delta = 11k+2, r = 2p$ and $\theta = 2p - 10k^2 - 2k$. Using (2.3) we find that 9p - 1 = 5k(11k+4). Replacing k with 3k - 1 we arrive at $p = 55k^2 - 30k + 4$. So we obtain that G is a strongly regular graph of order $n = 5(11k-3)^2$ and degree $r = 2(55k^2 - 30k + 4)$ with $\tau = 20k^2 - 33k + 7$ and $\theta = 2k(10k-3)$.

CASE 3. (t = 3). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = k$ and $\lambda_3 = -(10k+3), \tau - \theta = -(9k+3), \delta = 11k+3, r = 3p$ and $\theta = 3p - 10k^2 - 3k$. Using (2.3) we find that 12p - 3 = 5k(11k+6). Replacing k with 6k - 3 we arrive at $p = 165k^2 - 150k + 34$. So we obtain that G is a strongly regular graph of order $n = 15(11k-5)^2$ and degree $r = 3(165k^2 - 150k + 34)$ with $\tau = 3(45k^2 - 54k + 15)$ and $\theta = 3(3k - 1)(15k - 7)$.

CASE 4. (t = 4). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = k$ and $\lambda_3 = -(10k + 4), \tau - \theta = -(9k + 4), \delta = 11k + 4, r = 4p$ and $\theta = 4p - 10k^2 - 4k$. Using (2.3) we find that 14p - 6 = 5k(11k + 8). Replacing k with 14k + 6 we arrive at $p = 770k^2 + 700k + 159$. So we obtain that G is a strongly regular graph of order $n = 70(11k+5)^2$ and degree $r = 4(770k^2 + 700k + 159)$ with $\tau = 2(560k^2 + 469k + 97)$ and $\theta = 28(2k + 1)(20k + 9)$.

CASE 5. (t = 5). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = k$ and $\lambda_3 = -(10k + 5), \tau - \theta = -(9k + 5), \delta = 11k + 5, r = 5p$ and $\theta = 5p - 10k^2 - 5k$. Using (2.3) we find that 3p - 2 = k(11k + 10). Replacing k with 3k - 1 we arrive at $p = 33k^2 - 12k + 1$. So we obtain that G is a strongly regular graph of order $n = 3(11k - 2)^2$ and degree $r = 5(33k^2 - 12k + 1)$ with $\tau = 75k^2 - 42k + 4$ and $\theta = 15k(5k - 1)$.

CASE 6. (t = 6). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = k$ and $\lambda_3 = -(10k+6), \tau - \theta = -(9k+6), \delta = 11k+6, r = 6p$ and $\theta = 6p - 10k^2 - 6k$. Using (2.3) we find that 3p - 3 = k(11k + 12). Replacing k with 3k we arrive

at $p = 33k^2 + 12k + 1$. So we obtain that G is a strongly regular graph of order $n = 3(11k + 2)^2$ and degree $r = 6(33k^2 + 12k + 1)$ with $\tau = 27k(4k + 1)$ and $\theta = 6(3k + 1)(6k + 1)$.

CASE 7. (t = 7). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = k$ and $\lambda_3 = -(10k + 7), \tau - \theta = -(9k + 7), \delta = 11k + 7, r = 7p$ and $\theta = 7p - 10k^2 - 7k$. Using (2.3) we find that 14p - 21 = 5k(11k + 14). Replacing k with 14k - 7 we arrive at $p = 770k^2 - 700k + 159$. So we obtain that G is a strongly regular graph of order $n = 70(11k - 5)^2$ and degree $r = 7(770k^2 - 700k + 159)$ with $\tau = 14(245k^2 - 226k + 52)$ and $\theta = 14(7k - 3)(35k - 16)$.

CASE 8. (t = 8). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = k$ and $\lambda_3 = -(10k+8), \tau - \theta = -(9k+8), \delta = 11k+8, r = 8p$ and $\theta = 8p - 10k^2 - 8k$. Using (2.3) we find that 12p - 28 = 5k(11k+16). Replacing k with 6k+2 we arrive at $p = 165k^2 + 150k + 34$. So we obtain that G is a strongly regular graph of order $n = 15(11k+5)^2$ and degree $r = 8(165k^2 + 150k + 34)$ with $\tau = 2(480k^2 + 429k + 95)$ and $\theta = 24(2k+1)(20k+9)$.

CASE 9. (t = 9). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = k$ and $\lambda_3 = -(10k + 9), \tau - \theta = -(9k + 9), \delta = 11k + 9, r = 9p$ and $\theta = 9p - 10k^2 - 9k$. Using (2.3) we find that 9p - 36 = 5k(11k + 18). Replacing k with 3k we arrive at $p = 55k^2 + 30k + 4$. So we obtain that G is a strongly regular graph of order $n = 5(11k + 3)^2$ and degree $r = 9(55k^2 + 30k + 4)$ with $\tau = 27(3k + 1)(5k + 1)$ and $\theta = 9(3k + 1)(15k + 4)$.

CASE 10. (t = 10). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = k$ and $\lambda_3 = -(10k+10), \tau - \theta = -(9k+10), \delta = 11k+10, r = 10p$ and $\theta = 10p-10k^2-10k$. Using (2.3) we find that p = (k + 1)(11k + 9). Replacing k with k - 1 we arrive at p = k(11k - 2). So we obtain that G is a strongly regular graph of order $n = (11k - 1)^2$ and degree r = 10k(11k - 2) with $\tau = 100k^2 - 19k - 1$ and $\theta = 10k(10k - 1)$.

PROPOSITION 2.4. Let G be a connected strongly regular graph of order n and degree r with $m_3 = 10m_2$. Then G belongs to the class (4^0) or $(\overline{5}^0)$ or $(\overline{6}^0)$ or (7^0) or $(\overline{8}^0)$ or (9^0) or $(\overline{10}^0)$ or (11^0) or (12^0) or $(\overline{13}^0)$ represented in Theorem 2.2.

PROOF. Let $m_2 = p$, $m_3 = 10p$ and n = 11p + 1 where $p \in \mathbb{N}$. Using (1.2) we obtain $r = p(10|\lambda_3| - \lambda_2)$. Let $10|\lambda_3| - \lambda_2 = t$ where t = 1, 2, ..., 10. Let $\lambda_3 = -k$ where k is a positive integer. Then according to Remark 1.3 we have (i) $\lambda_2 = 10k - t$; (ii) $\tau - \theta = 9k - t$; (iii) $\delta = 11k - t$; (iv) r = pt and (v) $\theta = pt - 10k^2 + kt$. In this case we can easily see that (1.4) is reduced to

(2.4)
$$(p+1)t^2 - (11p+1)t + 110k^2 - 20kt = 0.$$

CASE 1. (t = 1). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = 10k-1$ and $\lambda_3 = -k, \tau - \theta = 9k-1, \delta = 11k-1, r = p$ and $\theta = p - 10k^2 + k$. Using (2.4) we find that p = k(11k-2). So we obtain that G is a strongly regular graph of order $n = (11k-1)^2$ and degree r = k(11k-2) with $\tau = k^2 + 8k - 1$ and $\theta = k(k-1)$.

CASE 2. (t = 2). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = 10k - 2$ and $\lambda_3 = -k$, $\tau - \theta = 9k - 2$, $\delta = 11k - 2$, r = 2p and $\theta = 2p - 10k^2 + 2k$. Using (2.4) we find that 9p - 1 = 5k(11k - 4). Replacing k with 3k + 1 we arrive at $p = 55k^2 + 30k + 4$. So we obtain that G is a strongly regular graph of order $n = 5(11k + 3)^2$ and degree $r = 2(55k^2 + 30k + 4)$ with $\tau = 20k^2 + 33k + 7$ and $\theta = 2k(10k + 3)$.

CASE 3. (t = 3). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = 10k - 3$ and $\lambda_3 = -k$, $\tau - \theta = 9k - 3$, $\delta = 11k - 3$, r = 3p and $\theta = 3p - 10k^2 + 3k$. Using (2.4) we find that 12p - 3 = 5k(11k - 6). Replacing k with 6k + 3 we arrive at $p = 165k^2 + 150k + 34$. So we obtain that G is a strongly regular graph of order $n = 15(11k + 5)^2$ and degree $r = 3(165k^2 + 150k + 34)$ with $\tau = 3(45k^2 + 54k + 15)$ and $\theta = 3(3k + 1)(15k + 7)$.

CASE 4. (t = 4). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = 10k - 4$ and $\lambda_3 = -k$, $\tau - \theta = 9k - 4$, $\delta = 11k - 4$, r = 4p and $\theta = 4p - 10k^2 + 4k$. Using (2.4) we find that 14p - 6 = 5k(11k - 8). Replacing k with 14k - 6 we arrive at $p = 770k^2 - 700k + 159$. So we obtain that G is a strongly regular graph of order $n = 70(11k - 5)^2$ and degree $r = 4(770k^2 - 700k + 159)$ with $\tau = 2(560k^2 - 469k + 97)$ and $\theta = 28(2k - 1)(20k - 9)$.

CASE 5. (t = 5). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = 10k - 5$ and $\lambda_3 = -k$, $\tau - \theta = 9k - 5$, $\delta = 11k - 5$, r = 5p and $\theta = 5p - 10k^2 + 5k$. Using (2.4) we find that 3p - 2 = k(11k - 10). Replacing k with 3k + 1 we arrive at $p = 33k^2 + 12k + 1$. So we obtain that G is a strongly regular graph of order $n = 3(11k + 2)^2$ and degree $r = 5(33k^2 + 12k + 1)$ with $\tau = 75k^2 + 42k + 4$ and $\theta = 15k(5k + 1)$.

CASE 6. (t = 6). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = 10k-6$ and $\lambda_3 = -k, \tau - \theta = 9k-6, \delta = 11k-6, r = 6p$ and $\theta = 6p - 10k^2 + 6k$. Using (2.4) we find that 3p - 3 = k(11k - 12). Replacing k with 3k we arrive at $p = 33k^2 - 12k + 1$. So we obtain that G is a strongly regular graph of order $n = 3(11k-2)^2$ and degree $r = 6(33k^2 - 12k + 1)$ with $\tau = 27k(4k-1)$ and $\theta = 6(3k-1)(6k-1)$.

CASE 7. (t = 7). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = 10k - 7$ and $\lambda_3 = -k, \tau - \theta = 9k - 7, \delta = 11k - 7, r = 7p$ and $\theta = 7p - 10k^2 + 7k$. Using (2.4) we find that 14p - 21 = 5k(11k - 14). Replacing k with 14k + 7 we arrive at $p = 770k^2 + 700k + 159$. So we obtain that G is a strongly regular graph of order $n = 70(11k+5)^2$ and degree $r = 7(770k^2+700k+159)$ with $\tau = 14(245k^2+226k+52)$ and $\theta = 14(7k + 3)(35k + 16)$.

CASE 8. (t = 8). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = 10k - 8$ and $\lambda_3 = -k$, $\tau - \theta = 9k - 8$, $\delta = 11k - 8$, r = 8p and $\theta = 8p - 10k^2 + 8k$. Using (2.4) we find that 12p - 28 = 5k(11k - 16). Replacing k with 6k - 2 we arrive at $p = 165k^2 - 150k + 34$. So we obtain that G is a strongly regular graph of order $n = 15(11k - 5)^2$ and degree $r = 8(165k^2 - 150k + 34)$ with $\tau = 2(480k^2 - 429k + 95)$ and $\theta = 24(2k - 1)(20k - 9)$.

CASE 9. (t = 9). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = 10k - 9$ and $\lambda_3 = -k$, $\tau - \theta = 9k - 9$, $\delta = 11k - 9$, r = 9p and $\theta = 9p - 10k^2 + 9k$. Using (2.4) we find that 9p - 36 = 5k(11k - 18). Replacing k with 3k we arrive at $p = 55k^2 - 30k + 4$. So we obtain that G is a strongly regular graph of order $n = 5(11k - 3)^2$ and degree $r = 9(55k^2 - 30k + 4)$ with $\tau = 27(3k - 1)(5k - 1)$ and $\theta = 9(3k - 1)(15k - 4)$. CASE 10. (t = 10). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = 10k - 10$ and $\lambda_3 = -k$, $\tau - \theta = 9k - 10$, $\delta = 11k - 10$, r = 10p and $\theta = 10p - 10k^2 + 10k$. Using (2.4) we find that p = (k - 1)(11k - 9). Replacing k with k + 1 we arrive at p = k(11k + 2). So we obtain that G is a strongly regular graph of order $n = (11k + 1)^2$ and degree r = 10k(11k + 2) with $\tau = 100k^2 + 19k - 1$ and $\theta = 10k(10k + 1)$.

REMARK 2.6. We note that the complete bipartite graph $K_{6,6}$ is a strongly regular graph with $m_2 = 10m_3$. It is obtained from the class Theorem 2.2 $(\overline{7}^0)$ for k = 0.

REMARK 2.7. We note that $\overline{5K_9}$ is a strongly regular graph with $m_2 = 10m_3$. It is obtained from the class Theorem 2.2 ($\overline{9}^0$) for k = 0.

REMARK 2.8. We note that $\overline{10K_{10}}$ is a strongly regular graph with $m_2 = 10m_3$. It is obtained from the class Theorem 2.2 ($\overline{4}^0$) for k = 1.

THEOREM 2.2. Let G be a connected strongly regular graph of order n and degree r with $m_2 = 10m_3$ or $m_3 = 10m_2$. Then G is one of the following strongly regular graphs:

- (1⁰) G is the complete bipartite graph $K_{6,6}$ of order n = 12 and degree r = 6with $\tau = 0$ and $\theta = 6$. Its eigenvalues are $\lambda_2 = 0$ and $\lambda_3 = -6$ with $m_2 = 10$ and $m_3 = 1$;
- (2⁰) G is the strongly regular graph $\overline{5K_9}$ of order n = 45 and degree r = 36with $\tau = 27$ and $\theta = 36$. Its eigenvalues are $\lambda_2 = 0$ and $\lambda_3 = -9$ with $m_2 = 40$ and $m_3 = 4$;
- (3⁰) G is the strongly regular graph $\overline{10K_{10}}$ of order n = 100 and degree r = 90with $\tau = 80$ and $\theta = 90$. Its eigenvalues are $\lambda_2 = 0$ and $\lambda_3 = -10$ with $m_2 = 90$ and $m_3 = 9$;
- (4⁰) G is a strongly regular graph of order $n = (11k 1)^2$ and degree r = k(11k 2) with $\tau = k^2 + 8k 1$ and $\theta = k(k 1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_2 = 10k 1$ and $\lambda_3 = -k$ with $m_2 = k(11k 2)$ and $m_3 = 10k(11k 2)$;
- $(\overline{4}^0)$ G is a strongly regular graph of order $n = (11k 1)^2$ and degree r = 10k(11k 2) with $\tau = 100k^2 19k 1$ and $\theta = 10k(10k 1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_2 = k - 1$ and $\lambda_3 = -10k$ with $m_2 = 10k(11k - 2)$ and $m_3 = k(11k - 2)$;
- (5⁰) G is a strongly regular graph of order $n = (11k + 1)^2$ and degree r = k(11k + 2) with $\tau = k^2 8k 1$ and $\theta = k(k + 1)$, where $k \ge 9$. Its eigenvalues are $\lambda_2 = k$ and $\lambda_3 = -(10k + 1)$ with $m_2 = 10k(11k + 2)$ and $m_3 = k(11k + 2)$;
- ($\overline{5}^0$) G is a strongly regular graph of order $n = (11k + 1)^2$ and degree r = 10k(11k+2) with $\tau = 100k^2 + 19k 1$ and $\theta = 10k(10k+1)$, where $k \ge 9$. Its eigenvalues are $\lambda_2 = 10k$ and $\lambda_3 = -(k+1)$ with $m_2 = k(11k+2)$ and $m_3 = 10k(11k+2)$;

MIRKO LEPOVIĆ

- (6⁰) G is a strongly regular graph of order $n = 3(11k 2)^2$ and degree $r = 5(33k^2 12k + 1)$ with $\tau = 75k^2 42k + 4$ and $\theta = 15k(5k 1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_2 = 3k 1$ and $\lambda_3 = -(30k 5)$ with $m_2 = 10(33k^2 12k + 1)$ and $m_3 = 33k^2 12k + 1$;
- $(\overline{6}^{0})$ G is a strongly regular graph of order $n = 3(11k-2)^{2}$ and degree $r = 6(33k^{2}-12k+1)$ with $\tau = 27k(4k-1)$ and $\theta = 6(3k-1)(6k-1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2} = 30k-6$ and $\lambda_{3} = -3k$ with $m_{2} = 33k^{2}-12k+1$ and $m_{3} = 10(33k^{2}-12k+1)$;
- (7⁰) G is a strongly regular graph of order $n = 3(11k + 2)^2$ and degree $r = 5(33k^2 + 12k + 1)$ with $\tau = 75k^2 + 42k + 4$ and $\theta = 15k(5k + 1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_2 = 30k + 5$ and $\lambda_3 = -(3k + 1)$ with $m_2 = 33k^2 + 12k + 1$ and $m_3 = 10(33k^2 + 12k + 1)$;
- $(\overline{7}^0)$ G is a strongly regular graph of order $n = 3(11k+2)^2$ and degree $r = 6(33k^2 + 12k + 1)$ with $\tau = 27k(4k+1)$ and $\theta = 6(3k+1)(6k+1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_2 = 3k$ and $\lambda_3 = -(30k+6)$ with $m_2 = 10(33k^2 + 12k + 1)$ and $m_3 = 33k^2 + 12k + 1$;
- (8⁰) G is a strongly regular graph of order $n = 5(11k 3)^2$ and degree $r = 2(55k^2 30k + 4)$ with $\tau = 20k^2 33k + 7$ and $\theta = 2k(10k 3)$, where $k \ge 2$. Its eigenvalues are $\lambda_2 = 3k 1$ and $\lambda_3 = -(30k 8)$ with $m_2 = 10(55k^2 30k + 4)$ and $m_3 = 55k^2 30k + 4$;
- $\begin{array}{l} (\overline{8}^{0}) \ G \ is \ a \ strongly \ regular \ graph \ of \ order \ n \ = \ 5(11k \ \ 3)^{2} \ and \ degree \ r \ = \ 9(55k^{2} \ \ 30k \ + \ 4) \ with \ \tau \ = \ 27(3k \ \ 1)(5k \ \ 1) \ and \ \theta \ = \ 9(3k \ \ 1)(15k \ \ 4), \\ where \ k \ \ge \ 2. \ Its \ eigenvalues \ are \ \lambda_{2} \ = \ 30k \ \ 9 \ and \ \lambda_{3} \ = \ \ 3k \ with \\ m_{2} \ = \ 55k^{2} \ \ 30k \ + \ 4 \ and \ m_{3} \ = \ 10(55k^{2} \ \ 30k \ + \ 4); \end{array}$
- (9⁰) G is a strongly regular graph of order $n = 5(11k + 3)^2$ and degree $r = 2(55k^2 + 30k + 4)$ with $\tau = 20k^2 + 33k + 7$ and $\theta = 2k(10k + 3)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_2 = 30k + 8$ and $\lambda_3 = -(3k + 1)$ with $m_2 = 55k^2 + 30k + 4$ and $m_3 = 10(55k^2 + 30k + 4)$;
- $(\overline{9}^0)$ G is a strongly regular graph of order $n = 5(11k+3)^2$ and degree $r = 9(55k^2+30k+4)$ with $\tau = 27(3k+1)(5k+1)$ and $\theta = 9(3k+1)(15k+4)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_2 = 3k$ and $\lambda_3 = -(30k+9)$ with $m_2 = 10(55k^2+30k+4)$ and $m_3 = 55k^2+30k+4$;
- (10⁰) G is a strongly regular graph of order $n = 15(11k 5)^2$ and degree $r = 3(165k^2 150k + 34)$ with $\tau = 3(45k^2 54k + 15)$ and $\theta = 3(3k 1)(15k 7)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_2 = 6k 3$ and $\lambda_3 = -(60k 27)$ with $m_2 = 10(165k^2 150k + 34)$ and $m_3 = 165k^2 150k + 34$;
- ($\overline{10}^0$) G is a strongly regular graph of order $n = 15(11k 5)^2$ and degree $r = 8(165k^2 150k + 34)$ with $\tau = 2(480k^2 429k + 95)$ and $\theta = 24(2k 1)(20k 9)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_2 = 60k 28$ and $\lambda_3 = -(6k 2)$ with $m_2 = 165k^2 150k + 34$ and $m_3 = 10(165k^2 150k + 34)$;

- (11⁰) G is a strongly regular graph of order $n = 15(11k + 5)^2$ and degree $r = 3(165k^2 + 150k + 34)$ with $\tau = 3(45k^2 + 54k + 15)$ and $\theta = 3(3k+1)(15k+7)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_2 = 60k + 27$ and $\lambda_3 = -(6k+3)$ with $m_2 = 165k^2 + 150k + 34$ and $m_3 = 10(165k^2 + 150k + 34)$;
- ($\overline{11}^{0}$) G is a strongly regular graph of order $n = 15(11k + 5)^{2}$ and degree $r = 8(165k^{2}+150k+34)$ with $\tau = 2(480k^{2}+429k+95)$ and $\theta = 24(2k+1)(20k+9)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2} = 6k + 2$ and $\lambda_{3} = -(60k + 28)$ with $m_{2} = 10(165k^{2}+150k+34)$ and $m_{3} = 165k^{2}+150k+34$;
- (12⁰) G is a strongly regular graph of order $n = 70(11k 5)^2$ and degree $r = 4(770k^2 700k + 159)$ with $\tau = 2(560k^2 469k + 97)$ and $\theta = 28(2k 1)(20k 9)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_2 = 140k 64$ and $\lambda_3 = -(14k-6)$ with $m_2 = 770k^2 700k + 159$ and $m_3 = 10(770k^2 700k + 159)$;
- (12⁰) G is a strongly regular graph of order $n = 70(11k 5)^2$ and degree $r = 7(770k^2 700k + 159)$ with $\tau = 14(245k^2 226k + 52)$ and $\theta = 14(7k 3)(35k 16)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_2 = 14k 7$ and $\lambda_3 = -(140k 63)$ with $m_2 = 10(770k^2 700k + 159)$ and $m_3 = 770k^2 700k + 159$;
- (13⁰) G is a strongly regular graph of order $n = 70(11k + 5)^2$ and degree $r = 4(770k^2 + 700k + 159)$ with $\tau = 2(560k^2 + 469k + 97)$ and $\theta = 28(2k + 1)(20k + 9)$, where $k \ge 0$. Its eigenvalues are $\lambda_2 = 14k + 6$ and $\lambda_3 = -(140k + 64)$ with $m_2 = 10(770k^2 + 700k + 159)$ and $m_3 = 770k^2 + 700k + 159$;
- $\begin{array}{l} (\overline{13}^{0}) \ G \ is \ a \ strongly \ regular \ graph \ of \ order \ n = 70(11k+5)^{2} \ and \ degree \ r = \\ 7(770k^{2}+700k+159) \ with \ \tau = 14(245k^{2}+226k+52) \ and \ \theta = 14(7k+3)(35k+16), \ where \ k \ge 0. \ Its \ eigenvalues \ are \ \lambda_{2} = 140k+63 \ and \ \lambda_{3} = \\ (14k+7) \ with \ m_{2} = 770k^{2}+700k+159 \ and \ m_{3} = 10(770k^{2}+700k+159) \,. \end{array}$

PROOF. First, according to Remark 2.3 we have $\alpha(\beta - 1) = 10(\alpha - 1)$, from which we find that $\alpha = 2$, $\beta = 6$ or $\alpha = 5$, $\beta = 9$ or $\alpha = 10$, $\beta = 10$. In view of this we obtain the strongly regular graphs represented in Theorem 2.2 (1⁰), (2⁰), (3⁰). Next, according to Proposition 2.3 it turns out that *G* belongs to the class ($\overline{4}^0$) or ($\overline{5}^0$) or ($\overline{6}^0$) or ($\overline{7}^0$) or ($\overline{8}^0$) or ($\overline{9}^0$) or (10^0) or ($\overline{11}^0$) or ($\overline{12}^0$) or (13^0) if $m_2 = 10m_3$. According to Proposition 2.4 it turns out that *G* belongs to the class (4^0) or ($\overline{5}^0$) or ($\overline{6}^0$) or (7^0) or ($\overline{8}^0$) or (9^0) or ($\overline{10}^0$) or (11^0) or (12^0) or ($\overline{13}^0$) if $m_3 = 10m_2$. \Box

References

- D. Cvetković, M. Doob, and H. Sachs. Spectra of graphs Theory and applications, 3rd revised and enlarged edition, J.A. Barth Verlag, Heidelberg – Leipzig, 1995.
- R. J. Elzinga. Strongly regular graphs: values of λ and μ for which there are only finitely many feasible (v, k, λ, μ), Electronic Journal of Linear Algebra ISSN 1081-3810, A publication of the International Linear Algebra Society, Volume 10, pp. 232-239, October 2003.
- 3. C. Godsil and G. Royle. Algebraic Graph Theory, Springer-Verlag, New York, 2001.
- 4. M. Lepović. On strongly regular graphs with $m_2 = qm_3$ and $m_3 = qm_2$, Serdica Math. J. **37** (2011), 1001–1012.

MIRKO LEPOVIĆ

5. M. Lepović. On strongly regular graphs with $m_2 = qm_3$ and $m_3 = qm_2$ for q = 5, 6, 7, 8, Sarajevo Journal of Mathematics, Vol. **16** (28), No. 2, (2019), 209–225. DOI:10.5644/SJM.15.02.06

Received by editors 25.2.2023; Revised version 9.7.2023; Available online 20.9.2023.

MIRKO LEPOVIĆ, TIHOMIRA VUKSANOVIĆA 32, 34000 KRAGUJEVAC, SERBIA. Email address: lepovic@kg.ac.rs