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A STUDY ON PYTHAGOREAN FUZZY BI
Γ−HYPERIDEALS IN Γ−HYPERSEMIGROUPS

S. Sharmila and V. S. Subha

Abstract. In this paper, we study the notion of Pythagorean fuzzy Γ−hyper-
ideals in Γ−hypersemigroups. We also study Pythagorean fuzzy Γ− subsemi-

hypergroup and Pythagorean fuzzy bi Γ−hyperideals in Γ−hypersemigroups

and discuss some properties. Relations between these Γ-hyperideals are also
studied. Inverse image of Pythagorean fuzzy Γ− subsemihypergroup and

Pythagorean fuzzy bi Γ−hyperideals are discussed.

1. Introduction

Fuzzy set theory was proposed by Zadeh[14]. Atanassov[3] introduced a new
generalization, intuitionistic fuzzy set in 1986. He defined some new operations on
intuitionistic fuzzy sets[4]. The theory of Pythagorean fuzzy set was propounded
by Yager[11]. It is a generalization of intuitionistic fuzzy set. In recent days
Pythagorean fuzzy set got more attention among the researchers. It plays an im-
portant role to tackle the uncertainities. Kumar et al.[9] approached transportation
decision making problems using Pythagorean fuzzy set. Yager[12] and Zhang[15]
were applied the concept of Pythagorean fuzzy set in decision making problem.

Marty[10] extended the algebraic structures to algebraic hyperstructures. In
classic structure, the product of two elements is an element again but in hyperstruc-
ture it will be a set. Anvariyeh et al.[2] studied Γ−hyperideals in Γ−hypersemigroups.
Hussain et al.[8] applied the concept of rough set in Pythagorean fuzzy ideals in
semigroups. Chinram et al.[6] extended the idea of [8] to ternary semigroups.
Akram[1] established the properties of fuzzy lie algebras. Davvaz[7] studied fuzzy
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hyperideals and intuitionistic fuzzy hyperideals in hypersemigroups. In this pa-
per we introduce Pythagorean fuzzy left(right) Γ−hyperideals, Pythagorean fuzzy
Γ−subsemihypergroup and Pythagorean fuzzy bi Γ−hyperideal in Γ−hypersemigroups.
We find the relationship between these Γ−hyperideals. We also study the inverse
image of Pythagorean fuzzy set in Γ−hypersemigroups.

2. Pythagorean left(right) Γ−hyperideals in Γ−hypersemigroups

In this section we study the Pythagorean left(right) Γ−hyperideals in Γ−hyper-
semigroups and discuss some properties.

Definition 2.1. [2] Let Y and Γ be two non-empty sets. Y is called a Γ -
hypersemigroup if

(i) cγd ∈ Y and
(ii) cγ(dηe) = (cγd)ηe

for every c, d ∈ Y and γ, η ∈ Γ are hyperoperations on Y .

Let Y1 and Y2 be two non-empty subsets of Y and γ ∈ Γ we define
Y1ΓY2 =

⋃
{cγd : c ∈ Y1 and d ∈ Y2}

Also

(2.1) Y1ΓY2 =
⋃

(c,d)∈Y1×Y2

cγd

Definition 2.2. [2] Let Y and Γ be any two sets. A non-empty set B of
a Γ−hypersemigroup Y is said to be a

(i) left(right) Γ−hyperideal if Y ΓB ⊆ B(BΓY ⊆ B).
(ii) Γ−subsemihypergroup if BΓB ⊆ B.
(iii) bi Γ−hyperideal if BΓY ΓB ⊆ B.

Definition 2.3. Let Y be a Γ−hypersemigroup. A Pythagorean fuzzy set P =
(φ, ϱ) is defined by

P = {(x/φ(x), ϱ(x)) : x ∈ Y } such that 0 ⩽ φ(x)2 + ϱ(x)2 ⩽ 1.
where φ(x) is a membership function from the universe set Y to the closed interval
[0, 1] and ϱ(x) is a non-membership function from the universe set Y to the closed
interval [0, 1].

Definition 2.4. If P = (φ, ϱ) and Q = (φ
′
, ϱ

′
) are any two Pythagorean fuzzy

sets of Y then the following operations are defined as:
(i) P ∩Q = {(x/φ(x) ∧ φ

′
(x), ϱ(x) ∨ ϱ′(x)) : x ∈ Y }

(ii) P ∪Q = {(x/φ(x) ∨ φ
′
(x), ϱ(x) ∧ ϱ′(x)) : x ∈ Y }

(iii) 2P = (φ, φ̂), where φ̂ = 1− φ.

Definition 2.5. A Pythagorean fuzzy set P = (φ, ϱ) of Y is said to be a
Pythagorean fuzzy left Γ−hyperideal if for z ∈ Y we have

(i) φ(d) ⩽ inf
z∈cγd

φ(z) and

(ii) ϱ(d) ⩾ sup
z∈cγd

ϱ(z) for all c, d ∈ Y .

A Pythagorean fuzzy set P = (φ, ϱ) of Y is said to be a Pythagorean fuzzy right
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Γ−hyperideal if for z ∈ Y we have
(i) φ(c) ⩽ inf

z∈cγd
φ(z) and

(ii) ϱ(c) ⩾ sup
z∈cγd

ϱ(z) for all c, d ∈ Y .

A Pythagorean fuzzy set P = (φ, ϱ) of Y is said to be a Pythagorean fuzzy Γ−hyper-
ideal if P is a both Pythagorean fuzzy left Γ−hyperideal and Pythagorean fuzzy right
Γ−hyperideal of Γ−hypersemigroup.

Example 2.1. Let Y = {a, b, c, d} and Γ = {γ} be any two sets then Y is a
Γ−hypersemigroup.

γ a b c d
a {a} {a} {a} {a}
b {a} {a} {a} {a}
c {a} {a} {a, b} {a, b}
d {a} {a} {a, b} {a}

Define a Pythagorean fuzzy set P = (φ, ϱ) as

φ(x) =

{
0.5 if x = a, b

0.3 if x = c, d

ϱ(x) =

{
0.7 if x = a, b

1 if x = c, d

By calculation we can note that P is a Pythagorean left(right) Γ−hyperideal of
Γ−hypersemigroup.

Theorem 2.1. If {Pi = (φi, ϱi)}i∈N are Pythagorean fuzzy left(right) Γ−hyper-
ideals of Y then

⋂
i∈N

Pi = (
⋂
i∈N

φi,
⋂
i∈N

ϱi) is also a Pythagorean fuzzy left(right)

Γ−hyperideal of Y .

Proof. Consider for z ∈ Y

⋂
i∈N

φi(d) = φ1(d) ∧ φ2(d) ∧ .... ∧ φn(d)

⩽ inf
z∈cγd

φ1(z) ∧ inf
z∈cγd

φ2(z) ∧ ... ∧ inf
z∈cγd

φn(z)

⩽ inf
z∈cγd

{φ1(z) ∧ φ2(z) ∧ ... ∧ φn(z)}

⩽ inf
z∈cγd

{⋂
i∈N

φi(z)

}
∀ c, d ∈ Y.
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Now ⋃
i∈N

ϱi(d) = ϱ1(d) ∨ ϱ2(d) ∨ .... ∨ ϱn(d)

⩾ sup
z∈cγd

ϱ1(z) ∨ sup
z∈cγd

ϱ2(z) ∨ ... ∨ sup
z∈cγd

ϱn(z)

⩾ sup
z∈cγd

{ϱ1(z) ∨ ϱ2(z) ∨ ... ∨ ϱn(z)}

⩾ sup
z∈cγd

{⋃
i∈N

ϱi(z)

}
∀ c, d ∈ Y.

Thus
⋂
i∈N

Pi is a Pythagorean fuzzy left Γ−hyperideal. Similarly we can prove

that
⋂
i∈N

Pi is a Pythagorean fuzzy right Γ−hyperideal. □

Theorem 2.2. If {Pi = (φi, ϱi)}i∈N are Pythagorean fuzzy left(right) Γ−hyper-
ideals of Y then

⋃
i∈N

Pi = (
⋃
i∈N

φi,
⋃
i∈N

ϱi) is also a Pythagorean fuzzy left(right)

Γ−hyperideal of Y .

Proof. The proof is similar as in Theorem 2.1 □

Definition 2.6. If P = (φ, ϱ) is a Pythagorean fuzzy set of Y then the image
of P is defined by IMG(P ) = IMG(φ) ∪ IMG(ϱ) where
IMG(φ) = {φ(z) : z ∈ Y } and IMG(ϱ) = {ϱ(z) : z ∈ Y }.

Definition 2.7. Let P = (φ, ϱ) be a Pythagorean fuzzy set of Y and let t ∈
IMG(P ) then the sets

φt = {z ∈ Y : φ(z) ⩾ t} and
ϱt = {z ∈ Y : ϱ(z) ⩽ t}

are called t− level cut of φ and t− level cut of ϱ respectively.

Theorem 2.3. If P = (φ, ϱ) is a Pythagorean fuzzy Γ−hyperideal of Y and for
t ∈ IMG(P ) then P t = (φt, ϱt) is a Γ−hyperideal of Y .

Proof. Let c, d, z ∈ Y such that c ∈ φt then

(2.2) φ(c) ⩾ t

Since φ(c) ⩽ inf
z∈cγd

φ(z)

=⇒ inf
z∈cγd

φ(z) ⩾ t by (2.2)

=⇒ φ(z) ⩾ t for z ∈ cγd
=⇒ cγd ∈ φt.
Thus φt is a right Γ−hyperideal.

Now, let c, d, z ∈ Y such that c ∈ ϱt then

(2.3) ϱ(c) ⩽ t
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=⇒ ϱ(c) ⩾ sup
z∈cγd

ϱ(z)

=⇒ sup
z∈cγd

ϱ(z) ⩽ t by (2.3)

=⇒ ϱ(z) ⩽ t for z ∈ cγd
=⇒ cγd ∈ ϱt.
Thus ϱt is a right Γ−hyperideal. Similarly we can prove that P t is a left Γ−hype-
rideal of Y. □

Theorem 2.4. If P = (φ, ϱ) of Y is a Pythagorean Γ−hyperideal then so
2P = (φ, φ̂) where φ̂ = 1− φ .

Proof. Since φ is a Pythagorean fuzzy Γ−hyperideal. Now to show that φ̂ is
a Pythagorean fuzzy Γ−hyperideal. Consider for z, c, d ∈ Y ,

φ̂(c) = 1− φ(c)

⩾ 1− sup
z∈cγd

φ(z)

⩾ sup
z∈cγd

(1− φ(z))

⩾ sup
z∈cγd

φ̂(z)

Thus 2P is a Pythagorean fuzzy Γ−hyperideal of Y ⋆. □

3. Pythagorean fuzzy bi Γ−hyperideals

In this section we discuss Pythagorean fuzzy Γ−subsemihypergroup and Pytha-
gorean fuzzy bi Γ−hyperideals in Y.

Definition 3.1. A Pythagorean fuzzy set P = (φ, ϱ) of Y is said to be Pytha-
gorean fuzzy Γ−subsemihypergroup if for z ∈ Y we have

(i) φ(c) ∧ φ(d) ⩽ inf
z∈cγd

φ(z)

(ii) ϱ(c) ∨ ϱ(d) ⩾ sup
z∈cγd

ϱ(z) for all c, d ∈ Y and γ ∈ Γ.

Example 3.1. Let us consider a hypersemigroup Y = {a, b, c, d} with the hy-
peroperation γ ∈ Γ:

γ a b c d
a {a} {a} {a} {a}
b {a} {a, b} {a, c} {a}
c {a} {a} a} {a}
d {a} {a, d} {a} {a}

Define a Pythagorean fuzzy set P = (φ, ϱ) as
P = {a/(1, 0.3), b/(0.2, 1), c/(0.2, 0.9), d/(0.7, 0.6)}. We have
φ(b) ∧ φ(d) = 0.2 < 1 = inf

a∈bγd
φ(a) ∀ b, d ∈ Y ,

ϱ(c) ∨ ϱ(d) = 0.9 > 0.3 = sup
a∈cγd

ϱ(a) ∀ c, d ∈ Y ,

Similarly (i) and (ii) of Definition 3.1 holds for all a, b, c, d ∈ Y . Hence P is a
Pythagorean fuzzy Γ−subsemihypergroup.
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Theorem 3.1. If {Pi = (φi, ϱi)}i∈N are Pythagorean fuzzy Γ− subsemihyper-
group of Y then

⋂
i∈N

Pi = (
⋂
i∈N

φi,
⋂
i∈N

ϱi) is also a Pythagorean fuzzy Γ−subsemi-

hypergroup of Y .

Proof. Consider for z ∈ Y⋂
i∈N

φi(c) ∧
⋂
i∈N

φi(d) = {φ1(c) ∧ φ2(c) ∧ .... ∧ φn(c)} ∧ {φ1(d) ∧ φ2(d) ∧ .... ∧ φn(d)}

= {φ1(c) ∧ φ1(d)} ∧ {φ2(c) ∧ φ2(d)} ∧ ... ∧ {φn(c) ∧ φn(d)}
⩽ inf

z∈cγd
φ1(z) ∧ inf

z∈cγd
φ2(z) ∧ ... ∧ inf

z∈cγd
φn(z)

⩽ inf
z∈cγd

{φ1(z) ∧ φ2(z) ∧ ... ∧ φn(z)}

⩽ inf
z∈cγd

{⋂
i∈N

φi(z)

}
∀ c, d ∈ Y.

⋂
i∈N

ϱi(c) ∨
⋂
i∈N

ϱi(d) = {ϱ1(c) ∨ ϱ2(c) ∨ .... ∨ ϱn(c)} ∨ {ϱ1(d) ∨ ϱ2(d) ∨ .... ∨ ϱn(d)}

= {ϱ1(c) ∨ ϱ1(d)} ∨ {ϱ2(c) ∨ ϱ2(d)} ∨ ... ∨ {ϱn(c) ∨ ϱn(d)}
⩾ sup

z∈cγd
ϱ1(z) ∨ sup

z∈cγd
ϱ2(z) ∨ ... ∨ sup

z∈cγd
ϱn(z)

⩾ sup
z∈cγd

{ϱ1(z) ∨ ϱ2(z) ∨ ... ∨ ϱn(z)}

⩾ sup
z∈cγd

{⋂
i∈N

ϱi(z)

}
∀ c, d ∈ Y.

Hence
⋂
i∈N

Pi is a Γ−subsemihypergroup in Γ−hypersemigroup.

□

Theorem 3.2. Let P = (φ, ϱ) be a Pythagorean fuzzy set of Y. For t ∈
IMG(P ), the t−level cut of P (P t) is a Γ−subsemihypergroup then P is a Pytha-
gorean fuzzy Γ−subsemihypergroup of Y .

Proof. Let φt be a Γ−subsemihypergroup of Y then for c, d ∈ φt we have

(3.1) cγd ∈ φt

Suppose if φ(c) ∧ φ(d) ̸⩽ inf
z∈cγd

φ(z) then we have

φ(c) ∧ φ(d) > inf
z∈cγd

φ(z).

Then there exists some t0 ∈ IMG(P ) such that
φ(c) ∧ φ(d) > t0 > inf

z∈cγd
φ(z). This implies that

φ(c) ∧ φ(d) > t0 and inf
z∈cγd

φ(z) < t0.

=⇒ φ(c) ∧ φ(d) > t0 and φ(z) < t0 for z ∈ cγd
=⇒ cγd ̸∈ φt and either c ∈ φt or d ∈ φt.
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Which is a contradiction to Equation (3.1). Hence φ(c) ∧ φ(d) ⩽ inf
z∈cγd

φ(z).

Now, Since ϱt is a Γ−subsemihypergroup then for c, d ∈ ϱt we have

(3.2) cγd ∈ ϱt

Suppose if ϱ(c) ∨ ϱ(d) ̸⩾ sup
z∈cγd

ϱ(z) then we have

ϱ(c) ∨ ϱ(d) < sup
z∈cγd

ϱ(z).

Then there exists some t1 ∈ IMG(P ) such that
ϱ(c) ∨ ϱ(d) < t1 < sup

z∈cγd
ϱ(z). This implies that

ϱ(c) ∨ ϱ(d) < t1 and sup
z∈cγd

ϱ(z) > t1

=⇒ ϱ(c) ∨ ϱ(d) < t1 and ϱ(z) > t1 for z ∈ cγd
=⇒ cγd ̸∈ ϱt and either c ∈ ϱt or d ∈ ϱt.
Which is a contradiction to Equation (3.2). Hence ϱ(c) ∨ ϱ(d) ⩾ sup

z∈cγd
ϱ(z).

□

Definition 3.2. A Pythagorean fuzzy Γ−subsemihypergroup P = (φ, ϱ) of Y
is said to be Pythagorean fuzzy bi Γ−hyperideal if for z ∈ Y we have

(i) φ(c) ∧ φ(d) ⩽ inf
z∈cγmηd

φ(z)

(ii) ϱ(c) ∨ ϱ(d) ⩾ sup
z∈cγmηd

ϱ(z) for all c, d,m ∈ Y and γ, η ∈ Γ.

Theorem 3.3. If {Pi = (φi, ϱi)}i∈N are Pythagorean fuzzy bi Γ−hyperideals
of Y then

⋂
i∈N

Pi = (
⋂
i∈N

φi,
⋂
i∈N

ϱi) is also a Pythagorean fuzzy bi Γ−hyperideal of

Y .

Proof. Straightforward. □

Theorem 3.4. Let P = (φ, ϱ) be a Pythagorean fuzzy set of Y. For t ∈
IMG(P ), the t−level cut of P is a bi Γ−hyperideal of Y then P is a Pythagorean
fuzzy bi Γ−hyperideal of Y .

Proof. Let P be a Pythagorean fuzzy set of Y. From Theorem 3.2 P is a
Pythagorean fuzzy Γ−subsemihypergroup.
Since φt is a bi Γ−hyperideal then for c, d ∈ Y , γ, η ∈ Γ and m ∈ φt we have

(3.3) cγmηd ∈ φt

Suppose if φ is not a Pythagorean fuzzy bi Γ−hyperideal, we have
φ(c) ∧ φ(d) ̸⩽ inf

z∈cγmηd
φ(z)

=⇒ φ(c) ∧ φ(d) ⩾ inf
z∈cγmηd

φ(z) .

Then there exists some t0 ∈ IMG(P ) such that
φ(c) ∧ φ(d) > t0 > inf

z∈cγmηd
φ(z).

This implies that φ(c) ∧ φ(d) > t0 and inf
z∈cγmηd

φ(z) < t0.
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i.e., φ(c) > t0 or φ(d) > t0 and φ(z) < t0 for z ∈ cγmγd
=⇒ cγmηd ̸∈ φt and z ∈ φt.
Which is a contradiction to Equation( 3.3). Hence φ(c) ∧ φ(c) ⩽ inf

z∈cγmηd
φ(z).

Now, since ϱt is a bi Γ−hyperideal then for c, d ∈ Y and m ∈ ϱt we have

(3.4) cγmηd ∈ ϱt

Suppose if ϱ is not a Pythagorean fuzzy bi Γ−hyperideal, we have
ϱ(c) ∨ ϱ(d) ̸⩾ sup

z∈cγmηd
ϱ(z)

=⇒ ϱ(c) ∨ ϱ(d) < sup
z∈cγmηd

ϱ(z) .

Then there exists some t1 ∈ IMG(P ) such that
ϱ(c) ∨ ϱ(d) < t1 < sup

z∈cγηd
ϱ(z).

This implies that ϱ(c) ∨ ϱ(d) < t1 and sup
z∈cγmηd

ϱ(z) > t1.

i.e., ϱ(c) < t1 or ϱ(d) < t1 and ϱ(z) > t1 for z ∈ cγmηd
=⇒ cγmηd ̸∈ ϱt and z ∈ ϱt.
Which is a contradiction to Equation (3.4). Hence ϱ(c) ∨ ϱ(d) ⩾ sup

z∈cγmηd
ϱ(z).

□

4. Relationship between Pythagorean fuzzy Γ−hyperideal, Pythagorean
fuzzy Γ−subsemihypergroup and Pythagorean fuzzy bi Γ−hyperideal

In this section we discuss the relationship between Pythagorean fuzzy Γ−hyper-
ideal, Pythagorean fuzzy Γ−subsemihypergroup and Pythagorean fuzzy bi Γ−hyper-
ideal.

Lemma 4.1. Every Pythagorean fuzzy Γ−hyperideal of Y is a Pythagorean fuzzy
Γ− subsemihypergroup.

Proof. Let P = (φ, ϱ) be a Pythagorean fuzzy Γ−hyperideal. For c, d, z ∈ Y
we have

(4.1) φ(c) ∧ φ(d) ⩽ inf
z∈cγd

φ(z) ⩽ inf
z∈cγd

φ(z).

and

(4.2) ϱ(c) ∨ ϱ(b) ⩾ sup
z∈cγd

ϱ(z) ⩾ sup
z∈cγd

ϱ(z).

From Equations (4.1) and (4.2) we have P is a Pythagorean fuzzy Γ−subsemihyper-
group. Therefore every Pythagorean fuzzy Γ−hyperideal is a Pythagorean fuzzy
Γ−subsemihypergroup. □

The converse part of the above Lemma is not true. It has been proved by the
following Example.

Example 4.1. Let Y = {a, b, c, d, e, f, e} and Γ = {γ}, then Y is a Γ−hyper-
semigroup.
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γ a b c d e f g
a {a} {a} {a} {a} {a} {a} {a}
b {a} {b} {b, c} {d} {d, e} {f} {f, g}
c {a} {c} {c} {e} {e} {g} {g}
d {a} {d} {d, e} {d} {d, e} {d} {d, e}
e {a} {e} {e} {e} {e} {e} {e}
f {a} {f} {f, g} {d} {d, e} {f} {f, g}
g {a} {g} {g} {e} {e} {g} {g}

Define a Pythagorean fuzzy set P = (φ, ϱ) as
P={a/(0.1, 1),b/(0.1, 1),c/(0.2, 0.7),d/(0.5, 0.6),e/(0.5, 0.6),f/(0.9, 0.3),e/(0.9, 0.3)}.
P satisfies the conditions of (i) and (ii) in Definition 3.2. Hence we can say that
P is a Pythagorean fuzzy Γ−subsemihypergroup. But P is not a Pythagorean fuzzy
Γ−hyperideal of Y. Since
φ(d) = 0.5 ̸⩽ 0.1 = inf

a∈aγd
φ(a) ∀ a ∈ Y

φ is not a Pythagorean fuzzy left Γ−hyperideal.
ϱ(c) = 0.7 ̸⩾ 1 = sup

a∈aγc
ϱ(a) ∀ a ∈ Y

ϱ is not a Pythagorean fuzzy left Γ−hyperideal.
φ(d) = 0.5 ̸⩽ 0.1 = inf

a∈dγa
{φ(a)} ∀ a ∈ Y

φ is not a Pythagorean fuzzy right Γ−hyperideal.
ϱ(f) = 0.3 ̸⩾ 1 = sup

a∈fγa
{ϱ(a)} ∀ a ∈ Y

ϱ is not a Pythagorean fuzzy right Γ−hyperideal.

Lemma 4.2. Every Pythagorean fuzzy Γ−hyperideal of Y is a Pythagorean fuzzy
bi Γ−hyperideal of Y .

Proof. Let P = (φ, ϱ) be a Pythagorean fuzzy Γ−hyperideal. For c, d,m, z ∈
Y we have

inf
z∈cγmγd

φ(z) = inf
z∈cγ(mγd)

φ(z)

⩾ φ(c) (φ is a Pythagorean fuzzy right Γ− hyperideal.)

inf
z∈cγmγd

φ(z) = inf
z∈(cγm)γd

φ(z)

⩾ φ(d) (φ is a Pythagorean fuzzy left Γ− hyperideal.)

Hence φ(c) ∧ φ(d) ⩽ inf
z∈cγmγd

φ(z) Now,

sup
z∈cγmγd

ϱ(z) = sup
z∈cγ(mγd)

ϱ(z)

⩽ ϱ(c) (ϱ is a Pythagorean fuzzy right Γ− hyperideal.)

sup
z∈cγmγd

ϱ(z) = sup
z∈(cγm)γd

ϱ(z)

⩽ ϱ(d) (ϱ is a Pythagorean fuzzy left Γ− hyperideal.)
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Hence ϱ(c) ∨ ϱ(d) ⩾ sup
z∈cγmγd

ϱ(z).

Therefore P is a Pythagorean fuzzy bi Γ−hyperideal.
□

The following Example shows that every Pythagorean fuzzy bi Γ−hyperideal
of Y need not be a Pythagorean fuzzy Γ−hyperideal of Y .

Example 4.2. Let Y = {a, b, c, d} and Γ = {γ} be two sets, then Y is a
Γ−hypersemigroup.

γ a b c d
a {b, d} {c, d} {d} {d}
b {c, d} {b} {d} {d}
c {d} {d} {d} {d}
d {d} {d} {d} {d}

The Pythagorean fuzzy set P is defined by
P = {a/(0.3, 1), b/(0.5, 0.7), c/(0.3, 1), d/(0.9, 0.3)}.
By routine calculation we can say that P is a Pythagorean fuzzy Γ−hyperideal of
Y. But it is not a Pythagorean fuzzy Γ−hyperideal, since
φ(b) = 0.5 ̸⩽ inf

{c,d}⊆aγb
= 0.3. Hence φ(b) ̸⩽ inf

{c,d}⊆aγb
for all a, b ∈ Y.

5. Inverse image of Pythagorean fuzzy set

In this section we define inverse image of Pythagorean fuzzy set and study some
properties.

Definition 5.1. Let U and V be any two Γ−hypersemigroups. By a ho-
momorphism we mean a mapping Φ : U → V satisfying the identity Φ(xγy) =
Φ(x)Φ(γ)Φ(y) for all x, y ∈ U and γ ∈ Γ.

Definition 5.2. Let Φ be a mapping from a Γ−hypersemigroup U to a Γ−hyper-
semigroup V and P = (φ, ϱ) be a Pythagorean fuzzy set in V . Then the inverse
image of P , Φ−1(P ) = (Φ−1(φ),Φ−1(ϱ)) is a Pythagorean fuzzy set in U and is
defined by

(i) Φ−1(φ)(x) = φ(Φ(x)) and
(ii) Φ−1(ϱ)(x) = ϱ(Φ(x)) for all x ∈ V .

Theorem 5.1. Let U and V be any two Γ−hypersemigroups and Φ : U → V be
an onto homomorphism of Γ−hypersemigroups. If P = (φ, ϱ) is a Pythagorean fuzzy
Γ−subsemihypergroup of V then Φ−1(P ) = (Φ−1(φ),Φ−1(ϱ)) is also a Pythagorean
fuzzy Γ−subsemihypergroup of U .

Proof. P = (φ, ϱ) is a Pythagorean fuzzy Γ−subsemihypergroup of V . Let
c, d ∈ V and γ ∈ Γ.

inf
z∈cγy

Φ−1(φ)(z) = inf
Φ(z)∈Φ(c)Φ(γ)Φ(d)

φ(Φ(z))

⩾ φ(Φ(c)) ∧ φ(Φ(d))

⩾ Φ−1(φ)(c) ∧ Φ−1(φ)(d)
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sup
z∈cγy

Φ−1(ϱ)(z) = sup
Φ(z)∈Φ(c)Φ(γ)Φ(d)

ϱ(Φ(z))

⩽ ϱ(Φ(c)) ∨ ϱ(Φ(d))

⩽ Φ−1(ϱ)(c) ∨ Φ−1(ϱ)(d)

Thus Φ−1(P ) is also a Pythagorean fuzzy Γ−subsemihypergroup of U . □

Theorem 5.2. Let U and V be any two Γ−hypersemigroups and Φ : U → V
be an onto homomorphism of Γ−hypersemigroups. If P = (φ, ϱ) is a Pythagorean
fuzzy bi Γ−hyperideal of V then Φ−1(P ) is also a Pythagorean fuzzy bi Γ−hyperideal
of U .

Proof. Since by Theorem 5.1 we know that the inverse image of Pythagorean
fuzzy Γ−subsemihypergroup is also a Pythagorean fuzzy Γ−subsemihypergroup in
Γ−hypersemigroup. Let P = (φ, ϱ) be a Pythagorean fuzzy bi Γ−hyperideal of V ,
a, b ∈ V and γ ∈ Γ.

inf
z∈cγmηd

Φ−1(φ)(z) = inf
Φ(z)∈Φ(c)Φ(γ)Φ(m)Φ(η)Φ(d)

φ(Φ(z))

⩾ φ(Φ(c)) ∧ φ(Φ(d))

⩾ Φ−1(φ)(c) ∧ Φ−1(φ)(d)

sup
z∈cγmηd

Φ−1(ϱ)(z) = sup
Φ(z)∈Φ(c)Φ(γ)Φ(m)Φ(η)Φ(d)

ϱ(Φ(z))

⩽ ϱ(Φ(c)) ∨ ϱ(Φ(d))

⩽ Φ−1(ϱ)(c) ∨ Φ−1(ϱ)(d)

Thus Φ−1(P ) is also a Pythagorean fuzzy bi Γ−hyperideal of Y . □
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