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A STUDY OF IDEALS OF Γ−SEMIRING WITH
INVOLUTION

Murali Krishna Rao Marapureddy

Abstract. In this paper, we introduce the notion of involution in Γ-semirings.

We define bi-ideal, quasi ideal, interior ideal, bi-quasi interior ideal, and bi-
interior ideals of Γ-semirings with involution and study their properties.

1. INTRODUCTION

The algebraic structures play a prominent role in mathematics with wide range
of applications. Generalization of ideals of algebraic structures and ordered alge-
braic structure plays a very remarkable role and also necessary for further advance
studies and applications of various algebraic structures. Many mathematicians
proved important results and charecterization of algebraic structures by using the
concept and the properties of generalization of ideals in algebraic structures.

During 1950-1980, the concepts of bi-ideals, quasi ideals and interior ideals were
studied by many mathematicians and during 1950-2019, the applications of these
ideals only studied by mathematicians. Between 1980 and 2016 there have been
no new generalization of these ideals of algebraic structures. Then the author [20-
27] introduced and studied weak interior ideals, bi-interior ideals, bi quasi ideals,
quasi interior ideals, and tri ideals. Tri quasi ideals and bi quasi interior ideals of
Γ−Semirings, Semirings, Γ−Semigroups and Semigroups as a generalization of bi-
ideal, quasi ideal and interior ideal of algebraic structures and charecterized regular
algebraic structures as well as simple algebraic structures using these ideals.

In 1995, M.Murali Krishna Rao [15-19] introduced the notion of Γ−Semiring as
a generalization of Γ−ring, ternary semiring and semiring. As a generalization of
ring, the notion of a Γ-ring was introduced by Nobusawa [31] in 1964. In 1981 Sen
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[32] introduced the notion of a Γ−semigroup as a generalization of semigroup. The
notion of a ternary algebraic system was introduced by Lehmer [13] in 1932. Dutta
& Sardar[2] introduced the notion of operator semirings of Γ−semiring. In 1971.
Lister [14] introduced ternary ring. The set of all negative integers Z is not a semir-
ing with respect to usual addition and multiplication but Z forms a Γ−semiring
where Γ = Z. The important reason for the development of Γ-semiring is a general-
ization of results of rings, Γ-rings, semirings, semigroups and ternary semirings. The
notion of a semiring was introduced by Vandiver [35] in 1934, but semirings had ap-
peared in earlier studies on the theory of ideals of rings. A universal algebra (S,+, ·)
is called a semiring if and only if (S,+), (S, ·) are semigroups which are connected
by distributive laws, i.e., a(b+c) = ab+ac, (a+b)c = ac+bc, for all a, b, c ∈ S. The
theory of rings and theory of semigroups have considerable impact on the develop-
ment of theory of semirings. Semirings play an important role in studying matrices
and determinants. Semirings are useful in the areas of theoretical computer sci-
ence as well as in the solution of graph theory, optimization theory, in particular
for studying automata, coding theory and formal languages. Semiring theory has
many applications in other branches of mathematics.

We know that the notion of a one sided ideal of any algebraic structure is a
generalization of an ideal. The quasi ideals are generalization of left ideal and right
ideal whereas the bi-ideals are generalization of quasi ideals. In 1952, the concept
of bi-ideals was introduced by Good and Hughes [3] for semigroups. The notion
of bi-ideals in rings and semigroups were introduced by Lajos and Szasz [10,11].
Bi-ideal is a special case of ( m-n) ideal. In 1976, the concept of interior ideals was
introduced by Lajos [12] for semigroups. Steinfeld [34] first introduced the notion of
quasi ideals for semigroups and then for rings. Iseki and Izuka [5,6,7,8] introduced
the concept of quasi ideal for a semiring. Quasi ideals bi-ideals in Γ−semirings
studied by Jagtap and Pawar [9]. Henriksen [4] and Shabir et al. [33] studied ideals
in semirings. Murali Krishna Rao et al. [27,28] studied ideals in Γ−semirings.

2. Preliminaries

In this section, we will recall some of the fundamental concepts and definitions,
which are necessary for this paper.

Definition 2.1. [1] A set S together with two associative binary operations
called addition and multiplication (denoted by + and · respectively will be called
semiring provided

(i) addition is a commutative operation.
(ii) multiplication distributes over addition both from the left and from the

right.
(iii) there exists 0 ∈ S such that x+ 0 = x and x · 0 = 0 · x = 0 for all x ∈ S.

Definition 2.2. Let (M,+) and (Γ,+) be commutative semigroups. Then we
call M a Γ-semiring, if there exists a mapping M×Γ×M → M (images of (x, α, y)
will be denoted by xαy, x, y ∈ M,α ∈ Γ) such that it satisfies the following axioms
for all x, y, z ∈ M and α, β ∈ Γ
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(i) xα(y + z) = xαy + xαz
(ii) (x+ y)αz = xαz + yαz
(iii) x(α+ β)y = xαy + xβy
(iv) xα(yβz) = (xαy)βz.

Definition 2.3. A Γ-semiring M is said to be commutative Γ-semiring if
xαy = yαx, for all x, y ∈ M and α ∈ Γ.

Definition 2.4. Let M be a Γ-semiring. An element 1 ∈ M is said to be unity
if for each x ∈ M there exists α ∈ Γ such that xα1 = 1αx = x.

Definition 2.5. In a Γ-semiring M with unity 1, an element a ∈ M is said
to be left invertible (right invertible) if there exist b ∈ M,α ∈ Γ such that bαa =
1(aαb = 1).

Definition 2.6. In a Γ-semiring M with unity 1, an element a ∈ M is said
to be invertible if there exist b ∈ M,α ∈ Γ such that aαb = bαa = 1.

Definition 2.7. A Γ-semiring M is said to have zero element if there exists
an element 0 ∈ M such that 0 + x = x and 0αx = xα0 = 0, for all x ∈ M,α ∈ Γ.

Definition 2.8. An element a in a Γ-semiring M is said to be idempotent if
there exists α ∈ Γ such that a = aαa.

Definition 2.9. Every element of M, is an idempotent of M then M is said
to be idempotent Γ-semiring M.

Definition 2.10. A Γ-semiring M is called a division Γ-semiring if for each
non-zero element of M has multiplication inverse.

Definition 2.11. A non-empty subset A of a Γ-semiring M is called

(i) a Γ-subsemiring of M if (A,+) is a subsemigroup of (M,+) and AΓA ⊆
A.

(ii) a quasi ideal of M if A is a Γ-subsemiring of M and AΓM ∩MΓA ⊆ A.
(iii) a bi-ideal of M if A is a Γ-subsemiring of M and AΓMΓA ⊆ A.
(iv) an interior ideal of M if A is a Γ-subsemiring of M and MΓAΓM ⊆ A.
(v) a left (right) ideal of M if A is a Γ-subsemiring of M and MΓA ⊆

A(AΓM ⊆ A).
(vi) an ideal if A is a Γ-subsemiring of M,AΓM ⊆ A and MΓA ⊆ A.
(vii) a k−ideal if A is a Γ-subsemiring of M,AΓM ⊆ A,MΓA ⊆ A and x ∈

M, x+ y ∈ A, y ∈ A then x ∈ A.
(viii) a bi-interior ideal of M if A is a Γ-subsemiring of M and MΓBΓM ∩

BΓMΓB ⊆ B.
(ix) a left bi-quasi ideal (right bi-quasi ideal) of M if A is a subsemigroup of

(M,+) and MΓA ∩AΓMΓA ⊆ A (AΓM ∩AΓMΓA ⊆ A).
(x) a bi-quasi ideal of M if B is a Γ−subsemiring of M and Bis a left bi-quasi

ideal and a right bi-quasi ideal of M .
(xi) a left quasi-interior ideal (right quasi-interior ideal) of M if A is a Γ-

subsemiring of M and MΓAΓMΓA ⊆ A (AΓMΓAΓM ⊆ A).
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(xii) a quasi-interior of M if B is a Γ−subsemiring of M and Bis a left quasi-
interior ideal and a right quasi-interior ideal of M .

(xiii) a bi-quasi-interior ideal of M if A is a Γ-subsemiring of M and
BΓMΓBΓMΓB ⊆ B.

(xiv) a left tri- ideal (right tri- ideal) of M if A is a Γ-subsemiring of M and
AΓMΓAΓA ⊆ A (AΓAΓMΓA ⊆ A).

(xv) a tri- ideal of M if A is a Γ-subsemiring of M and AΓMΓAΓA ⊆ A and
AΓAΓMΓA ⊆ A.

(xvi) a left(right) weak-interior ideal of M if B is a Γ−subsemiring of M and
MΓBΓB ⊆ B( BΓBΓM ⊆ B).

(xvii) a weak-interior ideal of M if B is a Γ−subsemiring of M and Bis a left
weak-interior ideal and a right weak-interior ideal)of M .

3. Ideals of Γ-semirings with involution

In this section, we introduce the notion of Γ-semiring with involution and ideals
of Γ-semiring with involution.

Definition 3.1. Let M be a Γ-semiring then (M, ∗) is called a Γ-semiring with
involution, provided that ∗ is an involution satisfying the identities

(i) (x+ y)∗ = x∗ + y∗.
(ii) (xαy)∗ = y∗αx∗.
(iii) 1∗ = 0.
(iv) 0∗ = 1, for all x, y ∈ M,α ∈ Γ.

Definition 3.2. Let (M, ∗) be a Γ-semiring with involution.Then A∗ is said
to be quasi ideal of (M, ∗), if (MΓA∗) ∩ (A∗ΓM) ⊆ A∗ .

Definition 3.3. Let (M, ∗) be a Γ-semiring with involution. Then A∗ is said
to be left(right) ideal of (M, ∗), if MΓA∗ ⊆ A∗(A∗ΓM) ⊆ A∗) .

Definition 3.4. Let (M, ∗) be a Γ-semiring with involution. Then B∗ is said
to be interior ideal of (M, ∗), if MΓB∗ΓM ⊆ B∗.

Definition 3.5. Let (M, ∗) be a Γ-semiring with involution. Then B∗ is said
to be bi-ideal of (M, ∗), if B∗ΓMΓB∗ ⊆ B∗.

Definition 3.6. Let (M, ∗) be a Γ-semiring with involution. Then B∗ is said
to be bi-interior ideal of (M, ∗), if B∗ΓMΓB∗ ∩MΓB∗ΓM ⊆ B∗.

Definition 3.7. Let (M, ∗) be a Γ-semiring with involution. Then B∗ is said
to be left(right) tri-ideal of (M, ∗), if B∗ΓMΓB∗ΓB∗ ⊆ B∗(B∗ΓB∗ΓMΓB∗ ⊆ B∗).

Definition 3.8. Let (M, ∗) be a Γ-semiring with involution. Then B∗ is said
to be bi-quasi interior ideal of (M, ∗) , if B∗ΓMΓB∗ΓMΓB∗ ⊆ B∗.

Theorem 3.1. Let M be a Γ-semiring with involution. Then A∗ is a right
ideal of the Γ-semiring with involution (M, ∗), if A is a left ideal of M.
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Proof. Let A be a left ideal of M. Then MΓA ⊆ A

MΓA ⊆ A

⇒ (MΓA)∗ ⊆ A∗

⇒ A∗ΓM∗ ⊆ A∗

⇒ A∗ΓM ⊆ A∗.

Hence A∗ is a right ideal of M. □

Theorem 3.2. Let M be a Γ-semiring with involution ∗. Then

(i) (xΓMΓy)∗ = y∗ΓMΓx∗

(ii) (MΓxΓM)∗ = MΓx∗ΓM, for all x, y ∈ M.

Theorem 3.3. Let M be a Γ-semiring with involution if A is a quasi ideal of
M. Then A∗ is a quasi ideal of (M, ∗).

Proof. Suppose A is a quasi ideal of M. Then

(AΓM) ∩ (MΓA) ⊆ A

⇒ [(AΓM) ∩ (MΓA)]∗ ⊆ A∗

⇒ (AΓM)∗ ∩ (MΓA)∗ ⊆ A∗

⇒ (M∗ΓA∗) ∩ (A∗ΓM∗) ⊆ A∗

⇒ (MΓA∗) ∩ (A∗ΓM) ⊆ A∗.

Hence A∗ is a quasi ideal of the (M, ∗). □

Theorem 3.4. Let M be a Γ-semiring . Then A∗ is a left ideal of (M, ∗), for
any right ideal A of M.

Proof. Let A be a right ideal of the Γ-semiring M. Then AΓM ⊆ A and
M∗ = M.

MΓA∗ = M∗ΓA∗

= (AΓM)∗

⊆ A∗.

Thus A∗ is a left ideal of the Γ-semiring M with involution. □

Theorem 3.5. Let M be a Γ-semiring with involution. If A is a bi-quasi ideal
of M then A∗ is a bi-quasi ideal of M .

Proof. Let A be a bi-quasi ideal of M. Then

AΓM ∩AΓMΓA ⊆ A

⇒(AΓM ∩AΓMΓA)∗ ⊆ A∗

⇒ A∗ΓM∗ΓA∗ ∩M∗ΓA∗ ⊆ A∗

⇒ A∗ΓMΓA∗ ∩MΓA∗ ⊆ A∗.

Hence A∗ is a bi-quasi ideal of M. □
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Theorem 3.6. Let M be a Γ-semiring with involution. Then A = A∗ΓA∗, for
all Γ-subsemirings of M if and only if M is a regular Γ-semiring.

Proof. Let A be a left ideal of M with involution. Then
A = A∗ΓA∗ ⊆ A∗ ⊆ A Therefore A∗ = A.
Let A be a right ideal and B be a left ideal of M. Then A = A∗A and B = B∗.

A∗ΓB∗ = A ∩B

AΓB ⊆ AΓM ⊆ A

AΓB ⊆ MΓB ⊆ B.

Therefore AΓB ⊆ A ∩B. Now

A∗ΓB∗ = A ∩B

AΓB = (AΓB)Γ(AΓB)

⊆ (A ∩B)Γ(A ∩B)

AΓB ⊆ A ∩B

BΓA ⊆ A ∩B.

Now

A∗ΓB∗ = A ∩B

A ∩B = (A ∩B)Γ(A ∩B)

⊆ AΓB.

Therefore AΓB = A ∩B.
Hence M is a regular Γ-semiring. □

Theorem 3.7. Let M be a Γ-semiring with involution ∗. If {Ai | i ∈ I} is a
family of left ideals of Γ-semiring then the ∩Ai ̸= ϕ is a left ideals of Γ-semiring
M.

Proof. Let {Ai | i ∈ I} is a family of left ideals of Γ-semiring M. Then

MΓ ∩A∗
i ⊆ MΓA∗

i , for all i

⊆ A∗
i , for all i

⇒ MΓ ∩A∗
i ⊆ ∩Ai

□

Theorem 3.8. Let M be a Γ-semiring with involution∗. Then A∗ is a bi-
interior ideal of M if A is a bi-interior ideal of M.

Proof. Suppose A is a bi-interior ideal of M. Then

AΓMΓA ∩MΓAΓM ⊆ A

(AΓMΓA ∩MΓAΓM)∗ ⊆ A∗

⇒ A∗ΓMΓA∗ ∩MΓA∗ΓM ⊆ A∗.

Hence A∗ is a bi-interior ideal of M. □
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Corollary 3.1. Let M be a Γ-semiring with involution∗. If A is a left ideal
and right ideal of M then A∗ is an ideal of M with involution.

Theorem 3.9. Let M be a Γ-semiring with involution if A is a quasi ideal of
M. Then A∗ is a quasi ideal of M.

Proof. Suppose A is a quasi ideal of M. Then

(AΓM) ∩ (MΓA) ⊆ A

⇒ [(AΓM) ∩ (MΓA)] ⊆ A∗

⇒ (AΓM)∗ ∩ (MΓA)∗ ⊆ A∗

⇒ (M∗ΓA∗) ∩ (A∗ΓM∗) ⊆ A∗

⇒ (MΓA∗) ∩ (A∗ΓM) ⊆ A∗.

Hence A∗ is a quasi ideal of M. □

Theorem 3.10. Let M be a Γ-semiring with involution ∗. Then A∗ is a left
(right) ideal for any right ideal A of M.

Proof. Let A be a right ideal of the Γ-semiring M. Then AΓM ⊆ A and
M∗ = M.

MΓA∗ = M∗ΓA∗

= (AΓM)∗

⊆ A∗.

Thus A∗ is a left ideal of the Γ-semiring M with involution. □

Theorem 3.11. Let M be a Γ-semiring with involution ∗. If B is an interior
ideal of M, then B∗ is an interior ideal of M.

Proof. Let B be a interior ideal of the Γ−semiring M.
Then MΓBΓM ⊆ B and M∗ = M
⇒ M∗ΓB∗ΓM∗ = (MΓBΓM)∗ ⊆ B∗.
Hence B∗ is an interior ideal of M □

Theorem 3.12. Let M be a Γ−semiring with involution ∗. If B is a bi-ideal
of M, then B∗ is a bi-ideal of M.

Proof. Let B be a bi-ideal of M.
Then BΓMΓB ⊆ B and M∗ = M.
⇒ B∗ΓM∗ΓB∗ = (BΓMΓB)∗ ⊆ B∗.
Hence B∗ is a bi-ideal of M. □

Theorem 3.13. Let M be a Γ-semiring with involution. If A is a bi quasi
interior ideal of M then A∗ is a bi quasi interior ideal of M .
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Proof. Let A be a bi quasi interior ideal of the Γ- semiring with involutionM.
Then

AΓMΓAΓMΓA ⊆ A

⇒(AΓMΓAΓMΓA)∗ ⊆ A∗

⇒ A∗ΓM∗ΓA∗ΓM∗ΓA∗ ⊆ A∗

⇒ A∗ΓMΓA∗ΓMΓA∗ ⊆ A∗.

Hence A∗ is a bi-quasi interior ideal of M. □

Theorem 3.14. Let M be a Γ- semiring with involution ∗. If {Ai/i ∈ I} is a
family of bi-interior ideals of Γ-semiring M then ∩A∗

i ̸= ϕ is a bi-interior ideal of
a Γ- semiring M.

Proof. Let {Ai/i ∈ I} be a family of bi-interior ideals of Γ-semiring M with
involution.

AiΓMΓAi ∩MΓAiM ⊆ Ai

⇒A∗
iΓMΓA∗

i ∩MΓA∗
iΓM ⊆ A∗

i

⇒(∩A∗
iΓMΓ ∩A∗

i )
⋂

(MΓ ∩A∗
iΓM)

⊆ A∗
iΓM ∩A∗

i

⋂
(MΓA∗

iΓM) ⊆ Ai

⇒ (∩A∗
iΓMΓ ∩A∗

i )
⋂

(MΓ ∩A∗
iΓM) ⊆ ∩A∗

i .

Hence ∩A∗
i is a bi-interior ideal of a Γ- semiring M with involution. □

Theorem 3.15. Let M be a Γ-semiring with involution. Then A = AΓA, for
all left ideals and right deals of M, if and only if M is a regular Γ-semiring.

Proof. Let A be a left ideal of M with involution. Then

A = AΓA

⇒ (AΓA)∗ = A∗ ⊆ A

⇒ A∗ΓA∗ = AΓA

⇒ A∗ ⊆ AΓA) ⊆ A.

Therefore A∗ = A.
Let A be a right ideal and B be a left ideal of M. Then A = A∗ and B = B∗.

AΓB ⊆ AΓM ⊆ A

AΓB ⊆ MΓB ⊆ B.

Therefore AΓB ⊆ A ∩B.
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Now

A∗ΓB∗ ⊆ A∗ ∩B∗

AΓB = (AΓB)Γ(AΓB)

⊆ (A ∩B)Γ(A ∩B)

AΓB ⊆ AΓB

BΓA ⊆ AΓB.

Now

A ∩B = (A ∩B) ∩ (A ∩B)

⊆ AΓB.

Therefore AΓB = A ∩B.
Hence M is a regular Γ−semiring. □

Theorem 3.16. Let M be a Γ-semiring with involution ∗. If {Ai | i ∈ I} is a
family of right ideals of Γ-semiring, then ∩A∗

i ̸= ϕ is a left ideals of Γ-semiring M.

Proof. Let {Ai | i ∈ I} is a family of right ideals of Γ-semiring M. Then

MΓ ∩A∗
i ⊆ MΓA∗

i , for all i

⊆ A∗
i , for all i

⇒ MΓ ∩A∗
i ⊆ ∩A∗

i .

Hence ∩A∗
i is a left ideal of M. □

Corollary 3.2. Let M be a Γ-semiring with involution ∗. If {Ai | i ∈ I} is a
family of left ideals of Γ-semiring then ∩A∗

i ̸= ϕ is a right ideal of Γ-semiring M.

Corollary 3.3. Let M be a Γ-semiring with involution ∗. If {Ai | i ∈ I} is a
family of ideals of Γ-semiring then the ∩A∗

i ̸= ϕ is an ideal of Γ-semiring M

Theorem 3.17. Let M be a Γ-semiring with involution∗. Then A∗ is a bi-
interior ideal of M, if A is a bi-interior ideal of M.

Proof. Suppose A is a bi-interior ideal of M. Then

AΓMΓA ∩MΓAΓM ⊆ A

(AΓMΓA ∩MΓAΓM)∗ ⊆ A∗

⇒ A∗ΓMΓA∗ ∩MΓA∗ΓM ⊆ A∗.

Hence A∗ is a bi-interior ideal of M. □

Theorem 3.18. Let M be a Γ-semiring with involution∗. Then A∗ is a right
tri-ideal of M, if A is a left tri-ideal of M.
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Proof. Let A be a left tri-ideal of M. Then

AΓMΓAΓA ⊆ A

⇒ (AΓMΓAΓA)∗ ⊆ A∗

⇒ A∗ΓA∗ΓM∗ΓA∗ ⊆ A∗

⇒ A∗ΓA∗ΓMΓA∗ ⊆ A∗

Hence A∗ is a right tri-ideal of M. □

Corollary 3.4. Let M be a Γ-semiring with involution∗. Then A∗ is a left
tri-ideal of M, if A is a right tri-ideal of M.
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