ON SOME DERIVATIVES OF k-ORESME POLYNOMIALS

Serpil Halıcı and Zehra Betül Gür

Abstract

In this study, we examined some properties of recently defined polynomial sequence called k-Oresme polynomials. We studied first order derivatives of this sequence and deduced some formulas. Moreover, we formulated the higher order derivative of k-Oresme polynomials and observed a relation between the formula which is newly given and Pascal's triangle.

1. Introduction

In [5], A.F. Horadam defined the well-known number sequence called Horadam numbers denoted by $W_{n}=W_{n}\left(W_{0}, W_{1} ; p, q\right)$ by second order linear homogeneous reccurence relation

$$
\begin{equation*}
W_{n+2}=p W_{n+1}-q W_{n} \tag{1.1}
\end{equation*}
$$

for integers p, q and $n \geqslant 0$. By choosing W_{0}, W_{1}, p and q properly, some special number sequences can be obtained such as Fibonacci numbers $F_{n}=W_{n}(0,1 ; 1,-1)$ and Pell numbers $P_{n}=W_{n}(0,1 ; 2,-1)$. Nicole Oresme extended the values of p and q to be rational numbers and defined a new number sequence called Oresme numbers [7]. From (1.1), we can obtain the Oresme numbers as

$$
\left\{O_{n}\right\}=\left\{W_{n}\left(0, \frac{1}{2} ; 1, \frac{1}{4}\right)\right\}
$$

and terms of this sequence as

$$
\left\{0, \frac{1}{2}, \frac{2}{4}, \frac{3}{8}, \frac{4}{16}, \frac{3}{8}, \frac{5}{32}, \frac{6}{64}, \frac{7}{128}, \ldots\right\} .
$$

2010 Mathematics Subject Classification. Primary 11B37; Secondary 11B83.
Key words and phrases. k-Oresme numbers, k-Oresme polynomials.
Communicated by Firat Ateș.

The reccurence relation of Oresme numbers is written as

$$
O_{n}=O_{n-1}-\frac{1}{4} O_{n-2}
$$

with $O_{0}=0, O_{1}=\frac{1}{2}$. The following properties are derived by the authors in [5,7].

$$
\begin{gather*}
\sum_{i=0}^{\infty} O_{i}=2 \tag{1.2}\\
\sum_{i=0}^{n-1} O_{i}=4\left(\frac{1}{2}-O_{n+1}\right) \tag{1.3}\\
\sum_{i=0}^{n-1}(-1)^{i} O_{i}=\frac{4}{9}\left(-\frac{1}{2}+(-1)^{n}\left(O_{n+1}-2 O_{n}\right)\right) \tag{1.4}\\
\sum_{i=0}^{n-1} O_{2 i+1}=\frac{1}{9}\left(10+5 O_{2 n-1}-16 O_{2 n}\right) \tag{1.5}
\end{gather*}
$$

In [1], for $k>2$, a generalization of the Oresme numbers called k-Oresme numbers is presented and defined by

$$
\begin{equation*}
O_{n}^{(k)}=O_{n-1}^{(k)}-\frac{1}{k^{2}} O_{n-2}^{(k)}, \quad n \geqslant 2 \tag{1.6}
\end{equation*}
$$

where $O_{0}^{(k)}=0, O_{1}^{(k)}=\frac{1}{k^{2}}$. It can be clearly seen that $O_{n}^{(k)}=W_{n}\left(0, \frac{1}{k} ; 1, \frac{1}{k^{2}}\right)$ and $O_{n}^{(2)}=O_{n}$. Using standard techniques to solve reccurence relation, Binet formula can be deduced and written as

$$
O_{n}^{(k)}=\frac{1}{\sqrt{k^{2}-4}}\left[\left(\frac{k+\sqrt{k^{2}-4}}{2 k}\right)^{n}-\left(\frac{k-\sqrt{k^{2}-4}}{2 k}\right)^{n}\right]
$$

with $k^{2}-4>0$. Several properties and identities of k-Oresme numbers are given by authors (see [1,9,10,12]).
In [8], Horadam polynomial denoted by $h_{n}(x)=h_{n}(x, a, b ; p, q)$ is given by the following second-order linear recurrence relation:

$$
h_{n}(x)=p x h_{n-1}(x)+q h_{n-2}(x), \quad n \geqslant 3
$$

with initial conditions $h_{1}(x)=a$ and $h_{2}(x)=b x$.
The characteristic equation of the relation below

$$
t^{2}-p x t-q=0
$$

has the roots

$$
\alpha=\frac{p x+\sqrt{p^{2} x^{2}+4 q}}{2}, \quad \beta=\frac{p x-\sqrt{p^{2} x^{2}+4 q}}{2} .
$$

Some properties of the Horadam polynomials can be found in [6,8,11].
In some particular cases, several special polynomials are obtained from the Horadam polynomial. Some of these polynomials are Fibonacci, Lucas, Pell-Lucas,

Jacobsthal, Jacobsthal-Lucas, Chebyshev polynomials studied in [2,3,11,13].
If $a=b=p=q=1$ in $h_{n}(x, a, b ; p, q)$, Fibonacci polynomials are obtained as

$$
F_{n}(x)=x F_{n-1}(x)+F_{n-2}(x) ; \quad F_{1}(x)=1, F_{2}(x)=1
$$

In [8], Horzum and Kocer gave an explicit formula for the Fibonacci polynomials as

$$
F_{n+1}(x)=\sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor}\binom{n-k}{k}(x)^{n-2 k} .
$$

For a real number $x \neq 0$, Oresme polynomials are defined by the following relation [1].

$$
O_{n+1}(x)=\left\{\begin{array}{cc}
\frac{1}{x} & n=0,1 \\
O_{n}(x)-\frac{1}{x^{2}} O_{n-1}(x) & n \geqslant 2
\end{array}\right.
$$

The relation between Oresme polynomials and Fibonacci numbers can be given by $O_{n}(3)=F_{3} / 3^{n}$ in [10].
In [4], Halıcı et al. defined the n-th k-Oresme polynomial by the following reccurence relation by initial conditions $O_{0}^{(k)}(x)=0, O_{1}^{(k)}(x)=\frac{1}{k x}$.

$$
\begin{equation*}
O_{n+2}^{(k)}(x)=O_{n+1}^{(k)}(x)-\frac{1}{k^{2} x^{2}} O_{n}^{(k)}(x), \tag{1.7}
\end{equation*}
$$

where $x \in \mathbb{R}$ and $n \in \mathbb{N}$. Solving the auxiliary equation (1.7), the Binet Formula can be written as

$$
\begin{equation*}
O_{n}^{(k)}(x)=\frac{1}{\sqrt{k^{2} x^{2}-4}}\left[\left(\frac{k x+\sqrt{k^{2} x^{2}-4}}{2 k x}\right)^{n}-\left(\frac{k x-\sqrt{k^{2} x^{2}-4}}{2 k x}\right)^{n}\right] \tag{1.8}
\end{equation*}
$$

The generating function of the k-Oresme polynomials is given as

$$
\begin{equation*}
f(z)=\sum_{i \geqslant 0} O_{i}^{(k)}(x) z^{i}=\frac{\frac{z}{k x}}{1-z+\frac{z^{2}}{k^{2} x^{2}}}, \tag{1.9}
\end{equation*}
$$

for a real number z. Authors also gave the reccurence relation of the derivative sequence of k-Oresme polynomials by
(1.10) $\frac{d}{d x} O_{n+1}^{(k)}(x)=\left(O_{n+1}^{(k)}\right)^{\prime}(x)=\left(O_{n}^{(k)}\right)^{\prime}(x)+\frac{2}{k^{2} x^{3}} O_{n-1}^{(k)}(x)-\frac{1}{k^{2} x^{2}}\left(O_{n-1}^{(k)}\right)^{\prime}(x)$.

Note that, by taking $x=1$ and $k x=2$ in (1.7) respectively, one can get k-Oresme numbers and Oresme numbers.
One can consider that this study is a continuation of the study in [4]. Some special identities and properties of the new polynomial sequence defined in [4] are given and derivative sequence is examined in the following sections.

2. Some results

In the following theorem, some sums of k-Oresme polynomials are given.
Theorem 2.1. For $n \geqslant 0$, we have the followings.

$$
\begin{equation*}
\sum_{i=0}^{n} O_{i}^{(k)}(x)=k^{2} x^{2}\left(\frac{1}{k x}-O_{n+2}^{(k)}(x)\right) \tag{2.1}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{i=0}^{n}(-1)^{i} O_{i}^{(k)}(x)=\frac{k^{2} x^{2}}{2 k^{2} x^{2}+1}\left(-\frac{1}{k x}+(-1)^{n+1}\left(O_{n+2}^{(k)}(x)-2 O_{n+1}^{(k)}(x)\right)\right) \tag{2.2}
\end{equation*}
$$

Proof. It is clear that the equation (2.1) satisfies for $n=0$. Suppose for induction that the equation is true for all $m \leqslant n$. Using (1.7), we get

$$
\sum_{i=0}^{n+1} O_{i}^{(k)}(x)=\sum_{i=0}^{n} O_{i}^{(k)}(x)+O_{n+1}^{(k)}(x)=k^{2} x^{2}\left(\frac{1}{k x}-O_{n+2}^{(k)}(x)\right)
$$

which implies

$$
\sum_{i=0}^{n+1} O_{i}^{(k)}(x)=k^{2} x^{2}\left(\frac{1}{k x}-O_{n+2}^{(k)}(x)+\frac{O_{n+1}^{(k)}(x)}{k^{2} x^{2}}\right)=k^{2} x^{2}\left(\frac{1}{k x}-O_{n+3}^{(k)}(x)\right)
$$

Similarly, the equation (2.2) can be shown by induction.
With the help of the previous theorem, we have the following results.
Corollary 2.1. For $n \geqslant 0$, we have,

$$
\begin{equation*}
\sum_{i=0}^{n} O_{2 i+1}^{(k)}(x)=\frac{k^{2} x^{2}}{2 k^{2} x^{2}+1}\left(\frac{k^{2} x^{2}+1}{k x}+\frac{k^{2} x^{2}+1}{k^{2} x^{2}} O_{2 n+1}^{(k)}(x)-k^{2} x^{2} O_{2 n+2}^{(k)}(x)\right) \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{i=0}^{n} O_{2 i}^{(k)}(x)=\frac{k^{2} x^{2}}{2 k^{2} x^{2}+1}\left(k x-\left(k^{2} x^{2}+1\right) O_{2 n+2}^{(k)}(x)+O_{2 n+1}^{(k)}(x)\right) \tag{2.4}
\end{equation*}
$$

Proof. By observing that

$$
\sum_{i=0}^{n} O_{2 i}^{(k)}(x)=\frac{1}{2}\left(\sum_{i=0}^{2 n+1} O_{i}^{(k)}(x)+\sum_{i=0}^{2 n+1}(-1)^{i} O_{i}^{(k)}(x)\right)
$$

and

$$
\sum_{i=0}^{n} O_{2 i+1}^{(k)}(x)=\frac{1}{2}\left(\sum_{i=0}^{2 n+1} O_{i}^{(k)}(x)-\sum_{i=0}^{2 n+1}(-1)^{i} O_{i}^{(k)}(x)\right)
$$

the equations can be obtained clearly.
It is easy to see from (1.9) that

$$
\begin{equation*}
\lim _{z \rightarrow 1} f(z)=\sum_{i \geqslant 0} O_{i}^{(k)}(x)=k x \tag{2.5}
\end{equation*}
$$

Furthermore, by using the equation (2.1) we can write

$$
k x=\sum_{i \geqslant 0} O_{i}^{(k)}(x)=\lim _{n \rightarrow \infty} \sum_{i=0}^{n-1} O_{i}^{(k)}(x)=k^{2} x^{2}\left(\frac{1}{k x}-\lim _{n \rightarrow \infty} O_{n+1}^{(k)}(x)\right) .
$$

Thus we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty} O_{n}^{(k)}(x)=0 \tag{2.6}
\end{equation*}
$$

Notice that, setting $k x=2$ in (2.1), (2.2), (2.3) and (2.5), we obtain (1.3), (1.4), (1.5) and (1.2) respectively. For example, taking $n=3$ in (2.1), we find

$$
\sum_{i=0}^{3} O_{i}^{(k)}(x)=k^{2} x^{2}\left(\frac{1}{k x}-O_{5}^{(k)}(x)\right)=\frac{3 k^{2} x^{2}-1}{k^{3} x^{3}}
$$

Setting $k x=2$ in the last equation, we can observe that

$$
\sum_{i=0}^{3} O_{i}=4\left(\frac{1}{2}-O_{5}\right)=\frac{11}{8}
$$

which satisfies the equation (1.3).
In the next theorem, we give a product formula for k-Oresme polynomials.
Theorem 2.2. For $n \geqslant 1$, we have

$$
\begin{equation*}
O_{n}^{(k)}(x)=\prod_{1 \leqslant m \leqslant n-1}\left(k x-2 \cos \frac{m \pi}{n}\right) . \tag{2.7}
\end{equation*}
$$

Proof. Observe that the degree of the polynomial $k^{n} x^{n} O_{n}^{(k)}(x)$ is $n-1$. By using the Binet formula, we express $O_{n}^{(k)}(x)$ in terms of hyperbolic functions to deduce the zeros. Take $k x=2 \cosh z$, where $z=u+i v$. Then by (1.8), we have

$$
O_{n}^{(k)}(x)=\frac{1}{(k x)^{n}} \frac{r_{1}^{n}-r_{2}^{n}}{r_{1}-r_{2}}=\frac{1}{(k x)^{n}} \frac{e^{n z}-e^{-n z}}{e^{z}-e^{-z}}=\frac{1}{(k x)^{n}} \frac{\sinh n z}{\sinh z}
$$

where $r_{1}, r_{2}=\left(k x \pm \sqrt{k^{2} x^{2}-4}\right) / 2 k x$. Notice that $O_{n}^{(k)}(x)=0$ only if $\sinh n z=0$ which implies $e^{2 n z}=1$, i.e., $u=0$. Therefore, $\sinh n z=i \sin n z=i \sin n v=0$ when $v=\frac{m \pi}{n}$ for an integer m. As a result, we find

$$
k x=2 \cosh \frac{i m \pi}{n}=2 \cos \frac{m \pi}{n} .
$$

Thus, we have

$$
(k x)^{n} O_{n}^{(k)}(x)=\prod_{1 \leqslant m \leqslant n-1}\left(k x-2 \cos \frac{m \pi}{n}\right)
$$

As an example of this theorem, for $n=3$, one can observe that

$$
\frac{1}{(k x)^{3}} \prod_{1 \leqslant m \leqslant 2}\left(k x-2 \cos \frac{m \pi}{3}\right)=\frac{1}{(k x)^{3}}\left(k x-2 \cos \frac{\pi}{3}\right)\left(k x-2 \cos \frac{2 \pi}{3}\right)
$$

$$
=\frac{k^{2} x^{2}-1}{(k x)^{3}}
$$

which equals to $O_{3}^{(k)}(x)$.

3. Derivatives

In this section, we study the derivatives sequence of k-Oresme polynomials. We give generating function of this sequence and some sums related to k-Oresme polynomials and their derivatives. An important identity which gives a relation between polynomial sequence and their derivative sequence is given. In the end of this section, we generalize and formulate the higher order derivatives of k-Oresme polynomials. Throughout this study, we denote the derivatives of k-Oresme polynomials by $\left(O_{n}^{(k)}\right)^{\prime}(x)$.
In the following theorem, we give sums of derivatives by using the results given in Theorem 2.1.

Theorem 3.1. For $n \geqslant 0$, we have

$$
\begin{equation*}
\sum_{i=0}^{n}\left(O_{i}^{(k)}\right)^{\prime}(x)=k^{2} x^{2}\left(\frac{1}{k x^{2}}-\frac{2}{x} O_{n+2}^{(k)}(x)-\left(O_{n+2}^{(k)}\right)^{\prime}(x)\right) \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{i=0}^{n}(-1)^{i}\left(O_{i}^{(k)}\right)^{\prime}(x)=\frac{k\left(2 k^{2} x^{2}-1\right)}{\left(2 k^{2} x^{2}+1\right)^{2}} \tag{3.2}
\end{equation*}
$$

$+\frac{k^{2} x(-1)^{n+1}}{\left(2 k^{2} x^{2}+1\right)^{2}}\left(x\left(2 k^{2} x^{2}+1\right)\left(\left(O_{n+2}^{(k)}\right)^{\prime}(x)-2\left(O_{n+1}^{(k)}\right)^{\prime}(x)\right)+2\left(O_{n+2}^{(k)}(x)-2 O_{n+1}^{(k)}(x)\right)\right)$.
Proof. By differentiating with respect to x (2.1) and (2.2) respectively, (3.1) and (3.2) can be obtained clearly.

Theorem 3.2. Generating function of $\left(O_{n}^{(k)}\right)^{\prime}(x)$ is of the form

$$
\begin{equation*}
g(z)=-k \frac{f(z)^{2}}{z}\left(1-z-\frac{z^{2}}{k^{2} x^{2}}\right) \tag{3.3}
\end{equation*}
$$

where $z \in \mathbb{R}$.
Proof. Observing that

$$
\sum_{i \geqslant 0}\left(O_{i}^{(k)}\right)^{\prime}(x) z^{i}=\frac{d}{d x} \sum_{i \geqslant 0}\left(O_{i}^{(k)}\right)^{\prime}(x) z^{i}
$$

and using (1.9), we have

$$
\sum_{i \geqslant 0}\left(O_{i}^{(k)}\right)^{\prime}(x) z^{i}=-\frac{k z}{k^{2} x^{2}} \frac{\left(1-z-\frac{z^{2}}{k^{2} x^{2}}\right)}{\left(1-z-\frac{z^{2}}{k^{2} x^{2}}\right)^{2}}
$$

By the definition of $f(z)$, we complete the proof.

Proposition 3.1. For $n \geqslant 2$, we have

$$
\begin{equation*}
\left(O_{n}^{(k)}\right)^{\prime}(x)=\frac{k^{2} x^{2}\left(2 n-k^{2} x^{2}\right) O_{n}^{(k)}(x)-2 n O_{n-2}^{(k)}(x)}{k^{2} x^{3}\left(k^{2} x^{2}-4\right)} \tag{3.4}
\end{equation*}
$$

Proof. Recall that, the roots of the auxiliary equation (1.7) are

$$
\alpha(x), \beta(x)=\frac{k x \pm \sqrt{k^{2} x^{2}-4}}{2 k x}
$$

and $\Delta(x)=\sqrt{k^{2} x^{2}-4}$. Then by differentiating, we find

$$
\alpha^{\prime}(x), \beta^{\prime}(x)= \pm \frac{2}{k x^{2} \sqrt{k^{2} x^{2}-4}} .
$$

and

$$
\Delta^{\prime}(x)=\frac{k x^{2}}{\Delta(x)}
$$

By Binet Forumla, we can write

$$
\begin{aligned}
\left(O_{n}^{(k)}\right)^{\prime}(x) & =\frac{d}{d x}\left(\frac{\alpha(x)^{n}-\beta(x)^{n}}{\Delta(x)}\right)=\frac{\left(\left(\alpha(x)^{n}\right)^{\prime}-\left(\beta(x)^{n}\right)^{\prime}\right) \Delta(x)-k x^{2} O_{n}^{(k)}(x)}{\Delta(x)^{2}} \\
& =\frac{\left(n \alpha(x)^{n-1} \alpha^{\prime}(x)-n \beta(x)^{n-1} \beta^{\prime}(x)\right) \Delta(x)-k x^{2} O_{n}^{(k)}(x)}{\Delta(x)^{2}} \\
& =\frac{\frac{2 n}{x \Delta(x)}\left(\alpha(x)^{n-1}+\beta(x)^{n-1}\right)(\alpha(x)-\beta(x))-k x^{2} O_{n}^{(k)}(x)}{\Delta(x)^{2}} \\
& =\frac{\frac{2 n}{x \Delta(x)}\left(\alpha(x)^{n}-\beta(x)^{n}-\beta(x) \alpha(x)^{n-1}+\alpha(x) \beta(x)^{n-1}\right)-k x^{2} O_{n}^{(k)}(x)}{\Delta(x)^{2}} .
\end{aligned}
$$

Using the fact that $\alpha(x) \beta(x)=1 / k^{2} x^{2}$, we have

$$
\left(O_{n}^{(k)}\right)^{\prime}(x)=\frac{O_{n}^{(k)}(x)\left(\frac{2 n}{x}-k x^{2}\right)-\frac{2 n}{k^{2} x^{3}} O_{n-2}^{(k)}(x)}{k^{2} x^{2}-4}
$$

Finally, some elementary operations complete the proof.
As an example of this result, by taking $n=2$ in (3.4) we can find

$$
\frac{k^{2} x^{2}\left(4-k^{2} x^{2}\right) O_{2}^{(k)}(x)-4 O_{0}^{(k)}(x)}{k^{2} x^{3}\left(k^{2} x^{2}-4\right)}=-\frac{1}{k x^{2}}=\left(O_{2}^{(k)}\right)^{\prime}(x) .
$$

Theorem 3.3. . For $n \geqslant 2$, we have the followings.

$$
\begin{equation*}
\sum_{j=1}^{n-1} O_{j}^{(k)}(x) O_{n-j}^{(k)}(x)=\frac{1}{k}\left(O_{n}^{(k)}\right)^{\prime}(x)+\frac{n}{k x} O_{n}^{(k)}(x) \tag{3.5}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{j=1}^{\left\lfloor\frac{n-1}{2}\right\rfloor} \frac{n-2 j-1}{(k x)^{2 j+1}} O_{n-2 j-1}^{(k)}(x)=\frac{1}{k}\left(O_{n}^{(k)}\right)^{\prime}(x)+\frac{n}{k x} O_{n}^{(k)}(x) . \tag{3.6}
\end{equation*}
$$

Proof. Obviously for $n=2$, the equation (3.5) is true. Assume for induction that equation satifies $\forall m \leqslant n$. By (1.7) and (1.10), we obtain

$$
\begin{gathered}
\frac{1}{k}\left(O_{n+1}^{(k)}\right)^{\prime}(x)+\frac{n+1}{k x} O_{n+1}^{(k)}(x)=\frac{1}{k x} O_{n}^{(k)}(x)+\frac{1}{k}\left(O_{n}^{(k)}\right)^{\prime}(x)+\frac{n}{k x} O_{n}^{(k)}(x) \\
-\frac{1}{k^{2} x^{2}}\left(\frac{1}{k x}\left(O_{n-1}^{(k)}\right)^{\prime}(x)+\frac{n-1}{k x} O_{n-1}^{(k)}(x)\right)
\end{gathered}
$$

which equals to

$$
\begin{equation*}
\frac{1}{k x} O_{n}^{(k)}(x)+\sum_{j=1}^{n-1} O_{j}^{(k)}(x) O_{n-j}^{(k)}(x)-\frac{1}{k^{2} x^{2}} \sum_{j=1}^{n-2} O_{j}^{(k)}(x) O_{n-j+1}^{(k)}(x) \tag{3.7}
\end{equation*}
$$

Using some operations on sums and the relation (1.7), (3.7) equals to

$$
\frac{1}{k x} O_{n}^{(k)}(x)+O_{1}^{(k)}(x) O_{n-1}^{(k)}(x)+\sum_{j=1}^{n-2} O_{j}^{(k)}(x) O_{n-j+1}^{(k)}(x)
$$

Notice that
$\sum_{j=1}^{n-2} O_{j}^{(k)}(x) O_{n-j-1}^{(k)}(x)=\sum_{j=1}^{n} O_{j}^{(k)}(x) O_{n-j-1}^{(k)}(x)-O_{n}^{(k)}(x) O_{1}^{(k)}(x)-O_{n-1}^{(k)}(x) O_{2}^{(k)}(x)$.
Using this fact and $O_{1}^{(k)}(x)=O_{2}^{(k)}(x)=\frac{1}{k x}$, we complete the proof. Other equation can be shown similarly by setting $n=2 m$ and using induction.

Second derivatives of k-Oresme polynomials can be obtained by differentiating the formula (1.10) as follows :

$$
\left(O_{n+1}^{(k)}\right)^{\prime \prime}(x)=\left(O_{n}^{(k)}\right)^{\prime \prime}(x)-\frac{6}{k^{2} x^{4}} O_{n-1}^{(k)}(x)+\frac{4}{k^{2} x^{3}}\left(O_{n-1}^{(k)}\right)^{\prime}(x)-\frac{1}{k^{2} x^{2}}\left(O_{n-1}^{(k)}\right)^{\prime \prime}(x)
$$

Similarly we get third and 4-th derivatives as

$$
\begin{gathered}
\left(O_{n+1}^{(k)}\right)^{\prime \prime \prime}(x)=\left(O_{n}^{(k)}\right)^{\prime \prime \prime}(x)+\frac{24}{k^{2} x^{5}} O_{n-1}^{(k)}(x)-\frac{18}{k^{2} x^{4}}\left(O_{n-1}^{(k)}\right)^{\prime}(x) \\
+\frac{6}{k^{2} x^{3}}\left(O_{n-1}^{(k)}\right)^{\prime \prime}(x)-\frac{\left(O_{n-1}^{(k)}\right)^{\prime \prime \prime}(x)}{k^{2} x^{2}}
\end{gathered}
$$

and

$$
\begin{gathered}
\left(O_{n+1}^{(k)}\right)^{(4)}(x)=\left(O_{n}^{(k)}\right)^{(4)}(x)-\frac{120}{k^{2} x^{6}} O_{n-1}^{(k)}(x)+\frac{96}{k^{2} x^{5}}\left(O_{n-1}^{(k)}\right)^{\prime}(x)-\frac{36}{k^{2} x^{4}}\left(O_{n-1}^{(k)}\right)^{\prime \prime}(x) \\
+\frac{8}{k^{2} x^{3}}\left(O_{n-1}^{(k)}\right)^{\prime \prime \prime}(x)-\frac{1}{k^{2} x^{2}}\left(O_{n-1}^{(k)}\right)^{(4)}(x)
\end{gathered}
$$

By continuing this process, it can be observed that the r-th derivative of k-Oresme polynomial is

$$
\begin{equation*}
\left(O_{n+1}^{(k)}\right)^{(r)}(x)=\left(O_{n}^{(k)}\right)^{(r)}(x)+\frac{1}{k^{2} x^{2}} \sum_{i=0}^{r}(-1)^{i+1} \frac{c_{r, i+1}}{x^{i}}\left(O_{n-1}^{(k)}\right)^{(r-i)}(x) \tag{3.8}
\end{equation*}
$$

with initial conditions $\left(O_{0}^{(k)}\right)^{(r)}(x)=0,\left(O_{1}^{(k)}\right)^{(r)}(x)=\frac{(-1)^{r} r!}{k x^{r+1}}$. Notice that the coefficients $\left\{c_{i, j}\right\}$ are the entries of the modified Pascal triangle below.

Here $c_{i, j}$ is the $i-t h$ row and $j-t h$ column element of triangle. Notice that this triangle is constructed by multiplying rows of classical Pascals triangle by $1,2,6,24,120,720, \ldots$ which is the set $\{n!\}_{n=0,1, \ldots}$. For example, $4-t h$ row $1,8,36,96,120$ is $(1.1),(4.2),(6.6),(4.24),(1.120)$, where $1,4,6,4,1$ is the $4-t h$ row of the classical Pascal's triangle.
It can be observe that all results given in this paper satisfy for the Oresme polynomials by setting $k=1$ (see [1]).

References

[1] C. K. Cook, Some sums related to sums of Oresme numbers, in: Applications of Fibonacci Numbers (9), Proceedings of the Tenth International Research Conference on Fibonacci Numbers and their Applications, Kluwer Academic Publishers, 2004, 87-99.
[2] P. Filipponi, A.F. Horadam, Derivative sequences of Fibonacci and Lucas polynomials, Applications of Fibonacci Numbers, Springer, 4 (1991), 99-108.
[3] S. Halıc1, On the Pell polynomials, Appl. Math. Sci. 5(37) (2011), 1833-1838.
[4] S. Halıcı, Z. B. Gür, E. Sayın, k-Oresme Polynomials and Their Derivatives, Third International Conference on Mathematics and Its Applications in Science and Engineering, Bucharest, Romania, 4-7 July 2022.
[5] A. F. Horadam, Basic Properties of a Certain Generalized Sequence of Numbers, Fibonacci Q. 3(3) (1965), 161-176.
[6] A. F. Horadam, Jacobsthal representation polynomials, Fibonacci Q. 35 (1997), 137-148.
[7] A. F. Horadam, Oresme Numbers, Fibonacci Q. 12(3) (1974), 267-271.
[8] T. Horzum, E. G. Kocer, On some properties of Horadam polynomials, Int. Math. Forum. 4(25) (2009), 1243-1252.
[9] A. S. Liana, I. Wloch, Oresme Hybrid numbers and Hybrationals, Kragujevac J. Math. 48(5) (2024), 747-753.
[10] G. C. Morales, Oresme Polynomials and Their Derivatives, arXiv:1904.01165 [math.CO] (2019).
[11] F. Qi, C. Kızılateş and W-S. Du, A Closed Formula for the Horadam Polynomials in Terms of a Tridiagonal Determinant, Symmetry, 11(6) (2019).
[12] G. Y. Şentürk, N. Gürses, S. Yüce, A New Look on Oresme Numbers: Dual-Generalized Complex Component Extension, Conference Proceeding Science and Technology, 1(1) (2018), 254-265.
[13] C. Li, Z. Wenpeng, Chebyshev polynomials and their some interesting applications, Adv. Differ. Equ. 303 (2017).

Received by editors 20.7.2022; Revised version 29.12.2022; Available online 25.2.2023.
Serpil Halici, Department of Mathematics, Pamukkale University, Denizli, Turkey Email address: shalici@pau.edu.tr

Zehra Betül Gür, Department of Mathematics, Pamukkale University, Denizli, Turkey

Email address: gurbetul35@gmail.com

