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ON SOME DERIVATIVES OF k-ORESME
POLYNOMIALS

Serpil Halıcı and Zehra Betül Gür

Abstract. In this study, we examined some properties of recently defined

polynomial sequence called k-Oresme polynomials. We studied first order

derivatives of this sequence and deduced some formulas. Moreover, we for-
mulated the higher order derivative of k-Oresme polynomials and observed a

relation between the formula which is newly given and Pascal’s triangle.

1. Introduction

In [5], A.F. Horadam defined the well-known number sequence called Horadam
numbers denoted by Wn = Wn(W0,W1; p, q) by second order linear homogeneous
reccurence relation

(1.1) Wn+2 = pWn+1 − qWn

for integers p, q and n ⩾ 0. By choosing W0,W1, p and q properly, some special
number sequences can be obtained such as Fibonacci numbers Fn = Wn(0, 1; 1,−1)
and Pell numbers Pn = Wn(0, 1; 2,−1). Nicole Oresme extended the values of p
and q to be rational numbers and defined a new number sequence called Oresme
numbers [7]. From (1.1), we can obtain the Oresme numbers as

{On} = {Wn(0,
1

2
; 1,

1

4
)}

and terms of this sequence as{
0,

1

2
,
2

4
,
3

8
,
4

16
,
3

8
,
5

32
,
6

64
,

7

128
, ...

}
.
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42 HALICI AND GÜR

The reccurence relation of Oresme numbers is written as

On = On−1 −
1

4
On−2

with O0 = 0, O1 = 1
2 . The following properties are derived by the authors in [5,7].

(1.2)

∞∑
i=0

Oi = 2,

(1.3)

n−1∑
i=0

Oi = 4

(
1

2
−On+1

)
,

(1.4)

n−1∑
i=0

(−1)iOi =
4

9

(
−1

2
+ (−1)n(On+1 − 2On)

)
,

(1.5)

n−1∑
i=0

O2i+1 =
1

9
(10 + 5O2n−1 − 16O2n) .

In [1], for k > 2, a generalization of the Oresme numbers called k-Oresme numbers
is presented and defined by

(1.6) O(k)
n = O

(k)
n−1 −

1

k2
O

(k)
n−2, n ⩾ 2

where O
(k)
0 = 0, O

(k)
1 = 1

k2 . It can be clearly seen that O
(k)
n = Wn(0,

1
k ; 1,

1
k2 ) and

O
(2)
n = On. Using standard techniques to solve reccurence relation, Binet formula

can be deduced and written as

O(k)
n =

1√
k2 − 4

[(
k +

√
k2 − 4

2k

)n

−

(
k −

√
k2 − 4

2k

)n]
with k2 − 4 > 0. Several properties and identities of k-Oresme numbers are given
by authors (see [1,9,10,12]).
In [8], Horadam polynomial denoted by hn(x) = hn(x, a, b; p, q) is given by the
following second-order linear recurrence relation:

hn(x) = pxhn−1(x) + qhn−2(x), n ⩾ 3

with initial conditions h1(x) = a and h2(x) = bx.
The characteristic equation of the relation below

t2 − pxt− q = 0

has the roots

α =
px+

√
p2x2 + 4q

2
, β =

px−
√

p2x2 + 4q

2
.

Some properties of the Horadam polynomials can be found in [6,8,11].
In some particular cases, several special polynomials are obtained from the Ho-
radam polynomial. Some of these polynomials are Fibonacci, Lucas, Pell-Lucas,
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Jacobsthal, Jacobsthal-Lucas, Chebyshev polynomials studied in [2,3,11,13].
If a = b = p = q = 1 in hn(x, a, b; p, q), Fibonacci polynomials are obtained as

Fn(x) = xFn−1(x) + Fn−2(x); F1(x) = 1, F2(x) = 1.

In [8], Horzum and Kocer gave an explicit formula for the Fibonacci polynomials
as

Fn+1(x) =

⌊n
2 ⌋∑

k=0

(
n− k

k

)
(x)n−2k.

For a real number x ̸= 0, Oresme polynomials are defined by the following relation
[1].

On+1(x) =


1

x
n = 0, 1,

On(x)−
1

x2
On−1(x) n ⩾ 2.

The relation between Oresme polynomials and Fibonacci numbers can be given by
On(3) = F3/3

n in [10].
In [4], Halıcı et al. defined the n-th k-Oresme polynomial by the following rec-

curence relation by initial conditions O
(k)
0 (x) = 0, O

(k)
1 (x) = 1

kx .

(1.7) O
(k)
n+2(x) = O

(k)
n+1(x)−

1

k2x2
O(k)

n (x),

where x ∈ R and n ∈ N. Solving the auxiliary equation (1.7), the Binet Formula
can be written as

(1.8) O(k)
n (x) =

1√
k2x2 − 4

[(
kx+

√
k2x2 − 4

2kx

)n

−

(
kx−

√
k2x2 − 4

2kx

)n]
.

The generating function of the k-Oresme polynomials is given as

(1.9) f(z) =
∑
i⩾0

O
(k)
i (x)zi =

z

kx

1− z +
z2

k2x2

,

for a real number z. Authors also gave the reccurence relation of the derivative
sequence of k-Oresme polynomials by

(1.10)
d

dx
O

(k)
n+1(x) = (O

(k)
n+1)

′(x) = (O(k)
n )′(x) +

2

k2x3
O

(k)
n−1(x)−

1

k2x2
(O

(k)
n−1)

′(x).

Note that, by taking x = 1 and kx = 2 in (1.7) respectively, one can get k-Oresme
numbers and Oresme numbers.
One can consider that this study is a continuation of the study in [4]. Some special
identities and properties of the new polynomial sequence defined in [4] are given
and derivative sequence is examined in the following sections.
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2. Some results

In the following theorem, some sums of k-Oresme polynomials are given.

Theorem 2.1. For n ⩾ 0, we have the followings.

(2.1)

n∑
i=0

O
(k)
i (x) = k2x2

(
1

kx
−O

(k)
n+2(x)

)
,

(2.2)

n∑
i=0

(−1)iO
(k)
i (x) =

k2x2

2k2x2 + 1

(
− 1

kx
+ (−1)n+1

(
O

(k)
n+2(x)− 2O

(k)
n+1(x)

))
.

Proof. It is clear that the equation (2.1) satisfies for n = 0. Suppose for
induction that the equation is true for all m ⩽ n. Using (1.7), we get

n+1∑
i=0

O
(k)
i (x) =

n∑
i=0

O
(k)
i (x) +O

(k)
n+1(x) = k2x2

(
1

kx
−O

(k)
n+2(x)

)
which implies

n+1∑
i=0

O
(k)
i (x) = k2x2

(
1

kx
−O

(k)
n+2(x) +

O
(k)
n+1(x)

k2x2

)
= k2x2

(
1

kx
−O

(k)
n+3(x)

)
.

Similarly, the equation (2.2) can be shown by induction. □

With the help of the previous theorem, we have the following results.

Corollary 2.1. For n ⩾ 0, we have,
(2.3)

n∑
i=0

O
(k)
2i+1(x) =

k2x2

2k2x2 + 1

(
k2x2 + 1

kx
+

k2x2 + 1

k2x2
O

(k)
2n+1(x)− k2x2O

(k)
2n+2(x)

)
and

(2.4)

n∑
i=0

O
(k)
2i (x) =

k2x2

2k2x2 + 1

(
kx− (k2x2 + 1)O

(k)
2n+2(x) +O

(k)
2n+1(x)

)
.

Proof. By observing that

n∑
i=0

O
(k)
2i (x) =

1

2

(
2n+1∑
i=0

O
(k)
i (x) +

2n+1∑
i=0

(−1)iO
(k)
i (x)

)
and

n∑
i=0

O
(k)
2i+1(x) =

1

2

(
2n+1∑
i=0

O
(k)
i (x)−

2n+1∑
i=0

(−1)iO
(k)
i (x)

)
,

the equations can be obtained clearly. □

It is easy to see from (1.9) that

(2.5) lim
z→1

f(z) =
∑
i⩾0

O
(k)
i (x) = kx.
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Furthermore, by using the equation (2.1) we can write

kx =
∑
i⩾0

O
(k)
i (x) = lim

n→∞

n−1∑
i=0

O
(k)
i (x) = k2x2

(
1

kx
− lim

n→∞
O

(k)
n+1(x)

)
.

Thus we obtain

(2.6) lim
n→∞

O(k)
n (x) = 0.

Notice that, setting kx = 2 in (2.1), (2.2), (2.3) and (2.5), we obtain (1.3), (1.4),
(1.5) and (1.2) respectively. For example, taking n = 3 in (2.1), we find

3∑
i=0

O
(k)
i (x) = k2x2

(
1

kx
−O

(k)
5 (x)

)
=

3k2x2 − 1

k3x3
.

Setting kx = 2 in the last equation, we can observe that

3∑
i=0

Oi = 4

(
1

2
−O5

)
=

11

8

which satisfies the equation (1.3).
In the next theorem, we give a product formula for k-Oresme polynomials.

Theorem 2.2. For n ⩾ 1, we have

(2.7) O(k)
n (x) =

∏
1⩽m⩽n−1

(
kx− 2 cos

mπ

n

)
.

Proof. Observe that the degree of the polynomial knxnO
(k)
n (x) is n − 1. By

using the Binet formula, we express O
(k)
n (x) in terms of hyperbolic functions to

deduce the zeros. Take kx = 2 cosh z, where z = u+ iv. Then by (1.8), we have

O(k)
n (x) =

1

(kx)n
rn1 − rn2
r1 − r2

=
1

(kx)n
enz − e−nz

ez − e−z
=

1

(kx)n
sinhnz

sinh z
,

where r1, r2 = (kx±
√
k2x2 − 4)/2kx. Notice that O

(k)
n (x) = 0 only if sinhnz = 0

which implies e2nz = 1, i.e., u = 0. Therefore, sinhnz = i sinnz = i sinnv = 0

when v =
mπ

n
for an integer m. As a result, we find

kx = 2 cosh
imπ

n
= 2 cos

mπ

n
.

Thus, we have

(kx)nO(k)
n (x) =

∏
1⩽m⩽n−1

(
kx− 2 cos

mπ

n

)
.

□

As an example of this theorem, for n = 3, one can observe that

1

(kx)3

∏
1⩽m⩽2

(
kx− 2 cos

mπ

3

)
=

1

(kx)3

(
kx− 2 cos

π

3

)(
kx− 2 cos

2π

3

)
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=
k2x2 − 1

(kx)3

which equals to O
(k)
3 (x).

3. Derivatives

In this section, we study the derivatives sequence of k-Oresme polynomials.
We give generating function of this sequence and some sums related to k-Oresme
polynomials and their derivatives. An important identity which gives a relation
between polynomial sequence and their derivative sequence is given. In the end of
this section, we generalize and formulate the higher order derivatives of k-Oresme
polynomials. Throughout this study, we denote the derivatives of k-Oresme poly-

nomials by (O
(k)
n )′(x).

In the following theorem, we give sums of derivatives by using the results given in
Theorem 2.1.

Theorem 3.1. For n ⩾ 0, we have

(3.1)
n∑

i=0

(O
(k)
i )′(x) = k2x2

(
1

kx2
− 2

x
O

(k)
n+2(x)− (O

(k)
n+2)

′(x)

)
and

(3.2)

n∑
i=0

(−1)i(O
(k)
i )′(x) =

k(2k2x2 − 1)

(2k2x2 + 1)2

+
k2x(−1)n+1

(2k2x2 + 1)2

(
x(2k2x2 + 1)

(
(O

(k)
n+2)

′(x)− 2(O
(k)
n+1)

′(x)
)
+ 2

(
O

(k)
n+2(x)− 2O

(k)
n+1(x)

))
.

Proof. By differentiating with respect to x (2.1) and (2.2) respectively, (3.1)
and (3.2) can be obtained clearly. □

Theorem 3.2. Generating function of (O
(k)
n )′(x) is of the form

(3.3) g(z) = −k
f(z)2

z

(
1− z − z2

k2x2

)
,

where z ∈ R.

Proof. Observing that∑
i⩾0

(O
(k)
i )′(x)zi =

d

dx

∑
i⩾0

(O
(k)
i )′(x)zi

and using (1.9), we have

∑
i⩾0

(O
(k)
i )′(x)zi = − kz

k2x2

(
1− z − z2

k2x2

)
(
1− z − z2

k2x2

)2 .

By the definition of f(z), we complete the proof. □
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Proposition 3.1. For n ⩾ 2, we have

(3.4) (O(k)
n )′(x) =

k2x2
(
2n− k2x2

)
O

(k)
n (x)− 2nO

(k)
n−2(x)

k2x3(k2x2 − 4)
.

Proof. Recall that, the roots of the auxiliary equation (1.7) are

α(x), β(x) =
kx±

√
k2x2 − 4

2kx

and ∆(x) =
√
k2x2 − 4. Then by differentiating, we find

α′(x), β′(x) = ± 2

kx2
√
k2x2 − 4

.

and

∆′(x) =
kx2

∆(x)
.

By Binet Forumla, we can write

(O(k)
n )′(x) =

d

dx

(
α(x)n − β(x)n

∆(x)

)
=

((α(x)n)′ − (β(x)n)′)∆(x)− kx2O
(k)
n (x)

∆(x)2

=

(
nα(x)n−1α′(x)− nβ(x)n−1β′(x)

)
∆(x)− kx2O

(k)
n (x)

∆(x)2

=

2n

x∆(x)

(
α(x)n−1 + β(x)n−1

)
(α(x)− β(x))− kx2O

(k)
n (x)

∆(x)2

=

2n

x∆(x)

(
α(x)n − β(x)n − β(x)α(x)n−1 + α(x)β(x)n−1

)
− kx2O

(k)
n (x)

∆(x)2
.

Using the fact that α(x)β(x) = 1/k2x2 , we have

(O(k)
n )′(x) =

O
(k)
n (x)

(
2n

x
− kx2

)
− 2n

k2x3
O

(k)
n−2(x)

k2x2 − 4
.

Finally, some elementary operations complete the proof. □

As an example of this result, by taking n = 2 in (3.4) we can find

k2x2
(
4− k2x2

)
O

(k)
2 (x)− 4O

(k)
0 (x)

k2x3(k2x2 − 4)
= − 1

kx2
= (O

(k)
2 )′(x).

Theorem 3.3. . For n ⩾ 2, we have the followings.

(3.5)

n−1∑
j=1

O
(k)
j (x)O

(k)
n−j(x) =

1

k
(O(k)

n )′(x) +
n

kx
O(k)

n (x),

(3.6)

⌊n−1
2 ⌋∑

j=1

n− 2j − 1

(kx)2j+1
O

(k)
n−2j−1(x) =

1

k
(O(k)

n )′(x) +
n

kx
O(k)

n (x).
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Proof. Obviously for n = 2, the equation (3.5) is true. Assume for induction
that equation satifies ∀m ⩽ n. By (1.7) and (1.10), we obtain

1

k
(O

(k)
n+1)

′(x) +
n+ 1

kx
O

(k)
n+1(x) =

1

kx
O(k)

n (x) +
1

k
(O(k)

n )′(x) +
n

kx
O(k)

n (x)

− 1

k2x2

(
1

kx
(O

(k)
n−1)

′(x) +
n− 1

kx
O

(k)
n−1(x)

)
which equals to

(3.7)
1

kx
O(k)

n (x) +

n−1∑
j=1

O
(k)
j (x)O

(k)
n−j(x)−

1

k2x2

n−2∑
j=1

O
(k)
j (x)O

(k)
n−j+1(x).

Using some operations on sums and the relation (1.7), (3.7) equals to

1

kx
O(k)

n (x) +O
(k)
1 (x)O

(k)
n−1(x) +

n−2∑
j=1

O
(k)
j (x)O

(k)
n−j+1(x).

Notice that
n−2∑
j=1

O
(k)
j (x)O

(k)
n−j−1(x) =

n∑
j=1

O
(k)
j (x)O

(k)
n−j−1(x)−O(k)

n (x)O
(k)
1 (x)−O

(k)
n−1(x)O

(k)
2 (x).

Using this fact and O
(k)
1 (x) = O

(k)
2 (x) =

1

kx
, we complete the proof. Other equation

can be shown similarly by setting n = 2m and using induction. □

Second derivatives of k-Oresme polynomials can be obtained by differentiating
the formula (1.10) as follows :

(O
(k)
n+1)

′′(x) = (O(k)
n )′′(x)− 6

k2x4
O

(k)
n−1(x) +

4

k2x3
(O

(k)
n−1)

′(x)− 1

k2x2
(O

(k)
n−1)

′′(x).

Similarly we get third and 4-th derivatives as

(O
(k)
n+1)

′′′(x) = (O(k)
n )′′′(x) +

24

k2x5
O

(k)
n−1(x)−

18

k2x4
(O

(k)
n−1)

′(x)

+
6

k2x3
(O

(k)
n−1)

′′(x)−
(O

(k)
n−1)

′′′(x)

k2x2

and

(O
(k)
n+1)

(4)(x) = (O(k)
n )(4)(x)− 120

k2x6
O

(k)
n−1(x) +

96

k2x5
(O

(k)
n−1)

′(x)− 36

k2x4
(O

(k)
n−1)

′′(x)

+
8

k2x3
(O

(k)
n−1)

′′′(x)− 1

k2x2
(O

(k)
n−1)

(4)(x).

By continuing this process, it can be observed that the r-th derivative of k-Oresme
polynomial is

(3.8) (O
(k)
n+1)

(r)(x) = (O(k)
n )(r)(x) +

1

k2x2

r∑
i=0

(−1)i+1 cr,i+1

xi
(O

(k)
n−1)

(r−i)(x),

with initial conditions (O
(k)
0 )(r)(x) = 0, (O

(k)
1 )(r)(x) = (−1)rr!

kxr+1 . Notice that the co-
efficients {ci,j} are the entries of the modified Pascal triangle below.
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1

1 2

1 4 6

1 6 18 24

1 8 36 96 120

1 10 60 240 600 720

1 12 90 480 1800 4320 5040

.

.

.

Here ci,j is the i − th row and j − th column element of triangle. Notice that
this triangle is constructed by multiplying rows of classical Pascals triangle by
1, 2, 6, 24, 120, 720, . . . which is the set {n!}n=0,1,. . . . For example, 4 − th row
1, 8, 36, 96, 120 is (1.1), (4.2), (6.6), (4.24), (1.120), where 1, 4, 6, 4, 1 is the 4 − th
row of the classical Pascal’s triangle.
It can be observe that all results given in this paper satisfy for the Oresme poly-
nomials by setting k = 1 (see [1]).
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