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ON A VARIATIONAL PROBLEM IN p-CALCULUS

İlker Gençtürk

Abstract. This study focuses on to bring together a new type of quantum

calculus, namely p-calculus, and variational calculus. We give necessary op-
timality conditions for p-variational problem. Sufficient optimality conditions

are also given.

1. Introduction

The quantum calculus is an old and one of the interesting fields of mathematics,
sometimes called calculus without limits. It is well-known that it changes the
classical derivative by a quantum difference operator. In recent years, many papers
in several fields of mathematics, such as orthogonal polynomials, analytic number
theory, geometric function theory, combinatorics etc., have been produced by using
concepts of quantum calculus. [2, 12, 13, 15].

In the beginning of the twentieth century, Jackson introduced the q-calculus
with following notation

f(t)− f(qt)

(1− q)t
,

where q is a fixed number different from 1, t ̸= 0 and f is a real function. We
refer to reader to [14] for basic concepts of quantum calculus and [9] for history of
q-calculus.

In [16], authors produced a new type of quantum calculus with the following
expression

f(tp)− f(t)

tp − t
,
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2 GENÇTÜRK

and above notation is definition of the p-derivative, where p stands for power.
Moreover, in p-calculus, some features of functions and Steffensen inequality [17,
18] and pq-calculus which a generalization of p-calculus were given in [10].

The calculus of variation is one of the classical subjects in mathematics and
it establishes the relation between other fields of mathematics such as differential
equations, geometry, and physics. Also it has important applications in mechanics,
engineering, economics, biology and electrical engineering. The calculus of variation
copes with identifying extrema and, in this regard, one can say that it is a branch
of optimization. Because of its importance, studies based in quantum calculus are
occurred. In this sense, we refer [1, 3, 6, 7, 8, 11] to readers to for details in
calculus of variations based in different quantum operators.

The main objective of this paper is to provide necessary and sufficient optimal-
ity conditions for the p-variational problem for a and b are fixed real number

L[y] =
b∫

a

L

(
t, y(tp), Dp[y](t)

)
dpt −→ extremize,

y ∈ Y ([a, b]p,R) , y(a) = α, y(b) = β.

(P)

In this Problem (P), extremize indicates that minimize or maximize. Problem
(P) with detailed will be given in Section 3. Furthermore, for I is an interval of R
containing 1; a, b ∈ I, a < b, Lagrangian L has the desired the following hypotheses:

(H1) For any t ∈ I, a function which belongs to C1(R2,R) maps (u, v) to
L(t, u, v),

(H2) For any admissible function y, a function with continuity at the point 1
maps t to L

(
t, y(tp), Dp[y](t)

)
,

(H3) For all admissible functions y and i = 0, 1, functions which exists in
Y
(
[a, b]p,R

)
map t to ∂i+2L

(
t, y(tp), Dp[y](t)

)
,

where ∂j stands for the first order partial derivative with respect to j−th
argument.

This paper consists of 3 sections. Section 1 (this section) is devoted to in-
troduction, In Section 2, p-calculus, the new type quantum calculus, with some
necessary definitions and theorems, is introduced from Ref.[16]. In Section 3, we
discuss some results about p-variational calculus.

2. Preliminaries

Let p ∈ (0, 1) be and consider interval J =[0,∞). We will denote by Jp the set
Jp := {xp : x ∈ J}. All over the paper, we accept that function f(x) is defined on
J .

We will give only the needed definitions and fundamental results on p-calculus
to construct the main findings of the study.

Definition 2.1. [16] p-derivative of an arbitrary function f(x) is denoted by

Dpf(x) =
f(xp)− f(x)

xp − x
, if x ̸= 0, 1,
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and
Dpf(0) = lim

x→0+
Dpf(x), Dpf(1) = lim

x→1
Dpf(x).

Corollary 2.1. [16] If f(x) is classically differentiable, then by taking limits
(letting p → 1) Dpf(x) tends to f ′(x), and also suppose f ′(x) is defined in a
neighborhood of x = 0, x = 1 and suppose f ′(x) has the property that continuity at
x = 0, x = 1, then we have

Dpf(0) = f ′
+(0), Dpf(1) = f ′(1).

Definition 2.2. [16] The nth order p-derivative of function f(x) can be de-
noted by (

D0
pf

)
(x) = f(x),

(
Dn

p f
)
(x) = Dp

(
Dn−1

p f
)
(x), n ∈ N.

We note that the p-derivative has the following properties [16].

Theorem 2.1. Suppose that α, β ∈ R and x ∈ Jp and also suppose that f(x)
and g(x) is p-differentiable on J . Then

(1) Dpf ≡ 0, then f is a fixed number. Conversely, Dpc ≡ 0 for any c.
(Constant rule)

(2) Dp(α f + β g)(x) = α Dpf(x) + β Dpg(x). (Linearity rule)
(3) Dp(f(x) g(x)) = f(x) Dpg(x) + g(xp) Dpf(x). (Product rule)

(4) Dp

(
f

g

)
(x) =

g(x)Dpf(x)− f(x)Dpg(x)

g(x)g(xp)
. (Quotient rule)

Definition 2.3. [16] Suppose that DpF (x) = f(x). Then F (x) is called a
p-antiderivative of f(x) and it is expressed by

F (x) =

∫
f(x)dpx.

The F (x) which p-integral of f(x) can be shown as with series
∞∑
j=0

(xpj

− xpj+1

)f(xpj

).

In [16], authors give definitions of definite p-integral with the following three
cases. In each cases, a and b are taken as a real numbers.

Case 1. Assume that 1 < a < b. Let function f exist on (1, b]. Then, we notice

that for any j ∈ {0, 1, 2, . . .}, bpj

is in (1, b].

Definition 2.4. The p-integral of a function f(x) on (1, b] is denoted as

b∫
1

f(x)dpx = lim
n→∞

N∑
j=0

(bp
j

− bp
j+1

)f(bp
j

) =

∞∑
j=0

(bp
j

− bp
j+1

)f(bp
j

),

and
b∫

a

f(x)dpx :=

b∫
1

f(x)dpx−
a∫

1

f(x)dpx.
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Case 2. Suppose that 0 < b < 1. Let function f exist on [b, 1). Then, we notice

that for any j ∈ {0, 1, 2, . . .}, bpj

is in [b, 1) and bp
j

< bp
j+1

.

Definition 2.5. The p-integral of a function f(x) on [b, 1) is denoted by

1∫
b

f(x)dpx = lim
n→∞

N∑
j=0

(bp
j+1

− bp
j

)f(bp
j

) =

∞∑
j=0

(bp
j+1

− bp
j

)f(bp
j

).

The p-integrals defined above are also given by

b∫
1

f(x)dpx = Ip+f(b),

1∫
b

f(x)dpx = Ip−f(b).

Case 3 Assume that 0 < a < b < 1. Let f exist on (0, b]. Then, we noticed that

for any j ∈ {0, 1, 2, . . .}, bp−j

is in (0, b] and bp
−j−1

< bp
−j

.

Definition 2.6. The p-integral of a function f(x) on (0, b](b < 1) is denoted
by

Ipf(b) =

b∫
0

f(x)dpx = lim
n→∞

N∑
j=0

(bp
−j

− bp
−j−1

)f(bp
−j−1

)

=

∞∑
j=0

(bp
−j

− bp
−j−1

)f(bp
−j−1

),

and
b∫

a

f(x)dpx :=

b∫
0

f(x)dpx−
a∫

0

f(x)dpx.

Remark 2.1. [16] If p ∈ (0, 1), then for any j ∈ {0,±1,±2,±3, . . .}, we have

pp
j ∈ (0, 1), pp

j

< pp
j+1

and

(2.1)

1∫
0

f(x)dpx =

∞∑
j=−∞

ppj+1∫
ppj

f(x)dpx =

∞∑
j=−∞

(pp
j+1

− pp
j

)f(pp
j

).

By using Definition 2.4, Definition 2.5 and Definition 2.6, we give a more general
formula:

Corollary 2.2 (Cf. Corollary 4.12, [16]). Suppose 0 ⩽ a < 1 < b. The
p-integral of a function f(x) on [a, b] is given by

(2.2)

b∫
a

f(t)dpt =

b∫
0

f(t)dpt−
a∫

0

f(t)dpt,
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where

(2.3)

x∫
0

f(t)dpt =

∞∑
j=0

(xp−j

− xp−j−1

)f(xp−j−1

), if 0 ⩽ x < 1,

and

x∫
0

f(t)dpt =

1∫
0

f(t)dpt+

x∫
1

f(t)dpt

=

∞∑
j=−∞

(pp
j+1

− pp
j

)f(pp
j

)

+

∞∑
j=0

(xpj+1

− xpj

)f(xpj

) if x > 1.(2.4)

If the series in (2.3), (2.4) individually converge at x = a and x = b, then we
call f p-integrable on [a, b].

Definition 2.7. The nth order p-integral of a function f can be denoted by(
I0pf

)
(x) = f(x),

(
Inp f

)
(x) = Ip

(
In−1
p f

)
(x), n ∈ N.

Following lemmas are given to obtain fundamental theorem of p-calculus by
authors in [16]. In each lemmas, it is assumed that p ∈ (0, 1).

Lemma 2.1. Suppose that x belongs to interval (1,∞). In this case,
Dp Ip+f(x) = f(x), and in additionally suppose that function f has the property
that continuity at x = 1, then Ip+ Dpf(x) = f(x)− f(1).

Lemma 2.2. Suppose that x belongs to interval (0, 1). In this case,
Dp Ip−f(x) = −f(x), and in additionally suppose that function f has the property
that continuity at x = 1, then Ip− Dpf(x) = f(1)− f(x).

Lemma 2.3. Suppose that x belongs to interval (0, 1) and Ipf(x) is given as

Ipf(x) =
x∫
0

f(s)dps. In this case, Dp Ipf(x) = f(x), and in additionally suppose

that function f has the property that continuity at x = 0, then Ip Dpf(x) = f(x)−
f(0).

Theorem 2.2 (Fundamental theorem of p-calculus,[16]). Assume that
p ∈ (0, 1). If the function F (x) which is an antiderivative of f(x) has the property
that continuity at x = 0, x = 1, then for all a, b real numbers which satisfy the
condition 0 ⩽ a < b ⩽ ∞, we obtain

b∫
a

f(x)dpx = F (b)− F (a).
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Corollary 2.3. Assume that f(x) has the property that continuity at x = 0,
x = 1, then we obtain

b∫
a

Dpf(x)dpx = f(b)− f(a).

Corollary 2.4. Assume that f(x) and g(x) have the property that continuity
at x = 0, x = 1, then we obtain

(2.5)

b∫
a

f(x)Dpg(x)dpx = f(b)g(b)− f(a)g(a)−
b∫

a

g(xp)Dpf(x)dpx.

This formula is called p-integration by parts.

The p-integral has the same fundamental properties as the Riemann integral.

Theorem 2.3. For any two p-integrable functions f, g : J → R, for a, b, c ∈ J
and α, β ∈ R. Then

(1)
a∫
a

f(t)dpt = 0;

(2)
b∫
a

f(t)dpt = −
a∫
b

f(t)dpt;

(3)
b∫
a

f(t)dpt =
c∫
a

f(t)dpt+
b∫
c

f(t)dpt;

(4)
b∫
a

(αf + βg) (t)dpt = α
b∫
a

f(t)dpt+ β
b∫
a

g(t)dpt.

Proof. By using definitions of definite p-integral, the proof is clear. □

In the following, for a given t ∈ J , we denote

[t]p = {tp
j

: j ∈ N0} ∪ {0, 1},

and

[a, b]p = [a]p ∪ [b]p.

Because of different definitions of p-integral depending on interval, from now
on, it is required that 0 < a < 1 < b for a, b ∈ J .

Proposition 2.1. For any two p-integrable functions f, g on J , and a, b ∈ J
such that 0 < a < 1 < b suppose that f, g satisfying |f(t)| ⩽ g(t), t ∈ [a, b]p, then
for x, y ∈ [a, b]p, x < 1 < y, one can obtain

(1) ∣∣∣∣∣∣
y∫

1

f(t)dpt

∣∣∣∣∣∣ ⩽
y∫

1

g(t)dpt,



ON A VARIATIONAL PROBLEM IN p-CALCULUS 7

(2) ∣∣∣∣∣∣
x∫

1

f(t)dpt

∣∣∣∣∣∣ ⩽ −
x∫

1

g(t)dpt,

(3) ∣∣∣∣∣∣
y∫

x

f(t)dpt

∣∣∣∣∣∣ ⩽
y∫

x

g(t)dpt.

Therefore, assuming for all t ∈ [a, b]p, 0 ⩽ g(t), then we obtain

b∫
1

g(t)dpt ⩾ 0 and

b∫
a

g(t)dpt ⩾ 0.

Proof. (1) Since y > 1, then yp
j+1

< yp
j

, j ∈ N0, y ∈ [a, b]p,∣∣∣∣∣∣
y∫

1

f(t)dpt

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∞∑
j=0

(yp
j

− yp
j+1

)f(yp
j

)

∣∣∣∣∣∣ ⩽
∞∑
j=0

(yp
j

− yp
j+1

)
∣∣∣f(ypj

)
∣∣∣

⩽
∞∑
j=0

(yp
j

− yp
j+1

)g(yp
j

) =

y∫
1

g(t)dpt.

(2)∣∣∣∣∣∣
1∫

x

f(t)dpt

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∞∑
j=0

(xpj+1

− xpj

)f(xpj

)

∣∣∣∣∣∣ ⩽
∞∑
j=0

(xpj

− xpj+1

)
∣∣∣f(xpj

)
∣∣∣

⩽ −
∞∑
j=0

(xpj

− xpj+1

)g(xpj

) = −
x∫

1

g(t)dpt.

(3) The proof is similar previous ones.
□

3. Main results

In this section, we introduce a new type variational calculus which is called p-
variational calculus. For this purpose, we consider the following variational problem
as expected:

L[y] =
b∫

a

L
(
t, y(tp), Dp[y](t)

)
dpt −→ extremize,

(P)

y ∈ Y
(
[a, b]p,R

)
, y(a) = α, y(b) = β,
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where by extremize we mean minimize or maximize and y ∈ Y, where

Y := {y : J → R | y and Dp[y] are bounded on [a, b]p and continuous at 0 and 1}

equipped with the norm

||y|| = sup
t∈[a,b]p

|y(t)|+ sup
t∈[a,b]p

|Dp[y](t)|.

Definition 3.1. Assuming that y ∈ Y ([a, b]p,R) is merely required to the
boundary condition y(a) = α, y(b) = β. In this case, we call the function y an
admissible function for Problem (P).

Definition 3.2. Assuming that there exists δ > 0 such that

L[y∗] ⩽ L[y] (resp. L[y∗] ⩾ L[y])

for all admissible y with ||y∗ − y|| < δ. In this case, we call the admissible function
y∗ a local minimizer (resp. local maximizer) for Problem (P).

Definition 3.3. Assuming that η(a) = 0 = η(b). In this case, we call the
function η in Y ([a, b]p,R) an admissible variation for Problem (P).

3.1. Basic Lemmas. In order to get our main findings, we need the follow-
ing lemma which is the p-variational form of the fundamental lemma of classical
variational calculus [5].

Lemma 3.1 (Fundamental Lemma of p-variational Calculus). Given
any function f suppose that belongs to Y ([a, b]p,R). Then, for all functions h ∈
Y ([a, b]p,R) which satisfies the boundary conditions h(a) = h(b) = 0, we have

b∫
a

f(t)h(tp)dpt = 0

if and only if f(t) = 0 for all t ∈ [a, b]p.

Proof. The implication ”⇐” is pretty obvious from definition of p-integral.
It remains to prove the implication ”⇒”. To obtain a contradiction, assume that
there exists a q ∈ [a, b]p ensures that f(q) ̸= 0.

(1) Setting q ̸= 0, we obtain q = ap
−j

or q = bp
−j

for some j ∈ N0.

(a) Let a ̸= 0, b ̸= 0. There is no loss of generality in assuming that

q = bp
j

. Set

h(t) =

{
f(ap

−j−1

), if t = ap
−j

,
0, otherwise.
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Then, we get

b∫
a

f(t)h(tp)dpt =

b∫
0

f(t)h(tp)dpt−
a∫

0

f(t)h(tp)dpt

=

1∫
0

f(t)h(tp)dpt+

b∫
1

f(t)h(tp)dpt−
a∫

0

f(t)h(tp)dpt

=

∞∑
j=−∞

(pp
j+1

− pp
j

)f(pp
j

)h((pp
j

)p)

+

∞∑
j=0

(bp
−j

− bp
−j−1

)f(bp
−j−1

)h((bp)
p−j−1

)

−
∞∑
j=0

(ap
−j

− ap
−j−1

)f(ap
−j−1

)h((ap)
p−j−1

)

=− (ap
−j

− ap
−j−1

)
[
f(ap

−j−1

)
]2

̸= 0.

This contradicts our assumption.

(b) Setting a = 0 and b ̸= 0, we obtain q = bp
−j

for some j ∈ N0. Let

h(t) =

{
f(bp

−j−1

), t = bp
−j

,
0, otherwise,

and as in the proof (a), which is impossible.
(c) Setting b = 0 and a ̸= 0, we obtain a result same as the previous

case.
(2) Set q = 0. There is no loss of generality in assuming that 0 < f(q). Since

lim
j→∞

ap
−j−1

= lim
j→∞

bp
−j−1

= 1,

and f is continuous at 1, one has

lim
j→∞

f(ap
−j−1

) = lim
j→∞

f(bp
−j−1

) = f(1).

Thus, we obtain an order j0 ∈ N satisfies that for all j > j0

f(ap
−j−1

) > 1 and f(bp
−j−1

) > 1.

(a) Setting a, b ̸= 0, we define a function h for some k > j0

h(t) =

 f(bp
−j−1

), if t = bp
−j

,

f(ap
−j−1

), if t = ap
−j

,
0, otherwise.
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Hence, we have

b∫
a

f(t)h(tp)dpt = (bp
−j

− bp
−j−1

)f(bp
−j−1

)− (ap
−j

− ap
−j−1

)f(ap
−j−1

) ̸= 0.

(b) Setting a = 0, define

h(t) =

{
f(bp

−j−1

), if t = bp
−j

,
0, otherwise.

Therefore, we have

b∫
0

f(t)h(tp)dpt = (bp
−j

− bp
−j−1

)
[
f(bp

−j−1

)
]2

̸= 0.

(c) If b = 0, this follows by the same method as in case ((ii)-b).

□

Definition 3.4. For s ∈ J and g : Jp × (−θ, θ) → R, assuming that for every
ϵ > 0, there exists δ > 0 such that

0 < |θ − θ0| < δ =⇒
∣∣∣∣g(t, θ)− g(t, θ0)

θ − θ0
− ∂2g(t, θ0)

∣∣∣∣ < ϵ

for all t ∈ [s]p, where ∂2g =
∂g

∂θ
. In this case, we call g(t, ·) differentiable at θ0

uniformly in [s]p.

Lemma 3.2 (Cf. [4]). Assume that s ∈ J and g : Jp × (−θ, θ) → R is

differentiable at θ0 uniformly in [s]p. Under the existence of
s∫
0

g(t, θ0)dpt, we obtain

that G(θ) :=
s∫
0

g(t, θ)dpt for θ near θ0 is differentiable at θ0 and

G′(θ0) =

s∫
0

∂2g(t, θ0)dpt.

Proof.

i.) Let s < 1 be. Since g(t, ·) is differentiable at θ0 uniformly in [s]p, then
for every ϵ > 0 there exists δ > 0 such that for all t ∈ [s]p and for
0 < |θ − θ0| < δ, the following inequalities hold:∣∣∣∣g(t, θ)− g(t, θ0)

θ − θ0
− ∂2g(t, θ0)

∣∣∣∣ < ϵ

2s
,
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∣∣∣∣G(θ)−G(θ0)

θ − θ0
−G′(θ0)

∣∣∣∣ ⩽
s∫

0

∣∣∣∣g(t, θ)− g(t, θ0)

θ − θ0
− ∂2g(t, θ0)

∣∣∣∣ dpt
<

s∫
0

ϵ

2s
dpt =

ϵ

2
< ϵ.

ii.) Let s > 1 be. Since g(t, ·) is differentiable at θ0 uniformly in [s]p, then
for every ϵ > 0 there exists δ > 0 such that for all t ∈ [s]p and for
0 < |θ − θ0| < δ, the following inequalities hold:∣∣∣∣g(t, θ)− g(t, θ0)

θ − θ0
− ∂2g(t, θ0)

∣∣∣∣ < ϵ

2(s− 1)
,

∣∣∣∣G(θ)−G(θ0)

θ − θ0
−G′(θ0)

∣∣∣∣ ⩽
s∫

0

∣∣∣∣g(t, θ)− g(t, θ0)

θ − θ0
− ∂2g(t, θ0)

∣∣∣∣ dpt
<

s∫
0

ϵ

2(s− 1)
dpt =

ϵ

2
< ϵ.

Hence, G(·) is differentiable at θ0 and G′(θ0) =
s∫
0

∂2g(t, θ0)dpt. □

3.2. p-variational Problem. Given an admissible variation η, an admissible
function y, we set the real function ϕ by

ϕ(ε) = ϕ(ε, y, η) := L[y + εη].

The first variation of the functional L of the problem (P) is defined by

δL[y, η] := ϕ′(0).

We remark that

L[y + εη] =

b∫
a

L

(
t, y(tp) + εη(tp), Dp[y](t) + εDp[η](t)

)
dpt

=Lb[y + εη]− La[y + εη],

where

Lζ [y + εη] =

ζ∫
0

L

(
t, y(tp) + εη(tp), Dp[y](t) + εDp[η]

)
(t)dpt

with ζ ∈ {a, b}.
Thus, we have

δL[y, η] = δLb[y, η]− δLa[y, η].

One can say that following lemma is a straight result of Lemma 3.2.
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Lemma 3.3. Given an admissible variation η, an admissible function y, define

g(t, ε) := L

(
t, y(tp) + εη(tp), Dp[y](t) + εDp[η](t)

)
.

Suppose that

(1) g(t, ·) is differentiable at 0 uniformly in [a, b]p;

(2) La[y + εη] =
a∫
0

g(t, ε)dpt and Lb[y + εη] =
b∫
0

g(t, ε)dpt exist for ε ≈ 0;

(3)
a∫
0

∂2g(t, 0)dpt and
b∫
0

∂2g(t, 0)dpt exists.

Then, we have

ϕ′(0) =δL[y, η]

=

b∫
a

(
∂2L

(
t, y(tp), Dp[y](t)

)
η(tq) + ∂3L

(
t, y(tp), Dp[y](t)

)
Dpη(t)

)
dpt.

3.3. Optimality conditions. In this section, we derive a necessary condition,
called the p-Euler-Lagrange equation, and a sufficient condition to our Problem (P),
respectively.

Theorem 3.1 (The p-Euler-Lagrange equation). Assuming that Lagrangian L
satisfy hypotheses (H1)-(H3) and conditions (i)-(iii) of Lemma 3.3. If y∗ ∈ Y is
a local extremizer for problem (P), then for all t ∈ [a, b]p, y∗ satisfies the p-Euler-
Lagrange equation

(3.1) ∂2L
(
t, y(tp), Dp[y](t)

)
= Dp

[
∂3L(·, y(·p), Dp[y](·))

]
(t).

Proof. Consider that y∗ is a local minimizer (resp. maximizer) for problem
(P) and η an admissible variation, we set ϕ : R → R by

ϕ(ε) := L[y∗ + εη].

A necessary condition for y∗ to be an extremizer is given by ϕ′(0) = 0. By
Lemma 3.3, it can be concluded that

b∫
a

(
∂2L

(
t, y(tp), Dp[y](t)

)
η(tq) + ∂3L

(
t, y(tp), Dp[y](t)

)
Dpη(t)

)
dpt = 0.

By integration by parts (2.5), it follows that

b∫
a

∂3L
(
t, y(tp), Dp[y](t)

)
Dpη(t)dpt

= ∂3L
(
t, y(tp), Dp[y](t)

)
η(t)|ba −

b∫
a

Dp∂3L
(
·, y(·p), Dp[y](·)

)
(t)η(tp)dpt.
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Hence η(a) = η(b) = 0, then we have

b∫
a

(
∂2L

(
t, y(tp), Dp[y](t)

)
η(tp)−Dp∂3L

(
·, y(·p), Dp[y](·)

)
(t)η(tp)

)
dpt = 0.

Finally, by Lemma 3.1, it yields for all t ∈ [a, b]p

∂2L

(
t, y(tp), Dp[y](t)

)
= Dp∂3L

(
·, y(·p), Dp[y](·)

)
(t).

□

We conclude this section with a sufficient optimality condition for the Problem
(P). Firstly, we need following definition.

Definition 3.5. Assuming that for a given function L has following properties:
i.) ∂iL, i = 2, 3, exist ii.) is continuous, iii.) satisfies the conditions

L(t, u+ u1, v + v1)− L(t, u, v) ⩾ (resp. ⩽) ∂2L(t, u, v)u1 + ∂3L(t, u, v)v1

for all (t, u, v), (t, u + u1, v + v1) ∈ J × R2. In this case, we call L(t, u, v) jointly
convex (resp. concave) in (u, v).

Theorem 3.2. For a < b and a, b ∈ [c]p for some c ∈ J , suppose that L is a
jointly convex(resp. concave) function in (u, v). If y∗ satisfies the p-Euler-Lagrange
equation (3.1), then y∗ is global minimizer (resp. maximizer) to the problem (P).

Proof. Under the assumptions of Theorem 3.2 with “jointly convex in (u, v)”,
for any admissible variation η, one can obtain

L[y∗ + η]− L[y∗]

=

b∫
a

[
L

(
t, y∗(t

p) + η(tp), Dp[y∗](t) +Dp[η](t)

)
− L

(
t, y∗(t

p), Dp[y∗](t)

)]
dpt

⩾

b∫
a

[
∂2L

(
t, y∗(t

p), Dp[y∗](t)

)
η(tp) + ∂3L

(
t, y∗(t

p), Dp[y∗](t)

)
Dp[η](t)

]
dpt.
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Using integration by part, formula (2.5), one obtains

L[y∗ + η]− L[y∗] ⩾
b∫

a

[
∂2L

(
t, y∗(t

p), Dp[y∗](t)
)
η(tp)

]
dpt

+

b∫
a

[
∂3L

(
t, y∗(t

p), Dp[y∗](t)
)
Dp[η](t)

]
dpt

⩾

b∫
a

[
∂2L

(
t, y∗(t

p), Dp[y∗](t)
)
η(tp)

]
dpt

+ ∂3L
(
t, y∗(t

p), Dp[y∗](t)
)
η(t)|ba

−
b∫

a

Dp∂3L
(
·, y(·p), Dp[y](·)

)
(t)η(tp)dpt.

Since y∗ satisfies Theorem 3.1 and also η is an admissible variation, it is con-
cluded that

L[y∗ + η]− L[y∗] ⩾ 0.

Note that we have actually proved that y∗ is a minimizer of Problem (P). The same
conclusion can be drawn for the concave case. □

4. An example

We require that p is a fixed number different from 1. For a < b in [a, b]p, regard
the following problem

L[y] =
b∫
a

(
t+ 1

2 (Dp[y](t))
2
)
dpt → minimize

y ∈ Y ([a, b]p,R)
y(a) = a,

y(b) = b.

Assume that y∗ is a local minimizer of the problem. In this case y∗ satisfies
the p-Euler-Lagrange equation

Dp [Dp[y](p·)] (t) = 0 for all t ∈ [a, b]p.

It can be easily seen that the function y∗(t) = t is a candidate solution of this
problem. Hence that the Lagrangian function is jointly convex in (u, v), then by
using Theorem 3.2, it follows immediately that the function y∗ is a minimizer of
the problem.
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