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AN EXTENSION OF GOTTSCHALK-HEDLUND
THEOREM

Boris Petkovié

ABSTRACT. We extend the famous Gottschalk-Hedlund theorem [9] which
guarantees continuous solutions to a certain cohomological equation over clas-
sical minimal dynamical systems to the cohomological equation for vector-
valued cocycles over a minimal group action.

1. Introduction

Many problems in dynamics can be reduced to solving a certain functional equa-
tion in appropriate topology, the so-called cohomological equation. For the classical
dynamical system given by iterating (forward and backward) some invertible map
T on a set M the (untwisted) cohomological equation is

(1.1) hoT —h=g

for a given g: M — R and h: M — R is unknown. However, the iteration of
the map T can be seen as an action of the additive group of integers (Z,+) on
M. Therefore, we look at the cohomological equation in a more general context,
namely for group actions.

1.1. Cohomology in dynamics. Let p: G x M — M be a group action of
a group (G, *) on a set M and let (T',4) be an abelian group.
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DEFINITION 1.1. A 1-cocycle over p twisted with a representation a: G —
GL(n,R) and with values in T is a map

B:GxM—T,

such that
B(gh,z) = a(h)B(g, p(h, )) + B(h, z),
forallg,h € G and all x € M.

If « is the identity representation then ( is called untwisted 1-cocycle. In this
paper, we deal only with untwisted 1-cocycles. Z(p,T") denotes the group of all
1-cocycles over p with values in I" under the pointwise addition. One can put some
regularity on the action p as well as on the 1-cocycle 8. For example, if p and
B are continuous or differentiable r times, r € NU {oco,w} we denote Z(p,I') by
Z%p,T) and by Z7(p,T'). In particular, in this paper, we are mostly interested in
continuous and analytic categories, i.e. C° and C*. Very often I is the additive
group of real numbers (R, +).

A very special and very important class of smooth 1-cocycles is that of 1-
coboundaries.

DEFINITION 1.2. A 1-coboundary over p with values in T is a 1-cocycle B given
by a function f: M — T

Bg,x) = f(p(g,x)) — a(g)f(x).

B(p,T') denotes the subgroup of all 1-coboundaries over p with values in T.
We will often drop the prefixes and just write cocycles and coboundaries instead
of 1-cocycles and smooth 1-coboundaries. There is a natural notion of equivalence
between two cocycles, they are equivalent if they differ by a coboundary.

DEFINITION 1.3. Two cocycles B,v: G x M — T are cohomologous if there
exists a map f: M — T such that

Blg,x) = f(p(g, ) + (g, x) — alg)f(x),
for allx € M and all g € G.

The map f is called the transfer map. Constant cocycles are the ones that do
not depend on M. In these terms, we can say that a cocycle is a coboundary if and
only if it is cohomologous to the zero cocycle.

Of course, all these notions come from cohomology theory. The set of (con-
tinuous) functions on M C°(M,R) and the set of continuous vector fields on M
VectO(M ) under the action p become naturally G—modules, if M has appropri-
ate manifold structure. Hence, we can define the Chevalley-Eilenberg complex
H*(G,V), over the action p with values in V, where V is either C°(M,R) or
Vect®(M). Moreover, in this case, H'(G, V), which is of principal importance to
us, turns out to be naturally isomorphic to the quotient vector space of all (contin-
uous) cocycles over p by the subspace of all (continuous) coboundaries over p.
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DEFINITION 1.4. The first cohomology group over the action p with values in

T" is the quotient group
Z!(p,T)
H'(p,I) = ==
(p.T) B (p,T)

As usual, H!(p,I') measures the extent to which cocycles fail to be cobound-
aries. If the case group action p has some regularity, we give H!(p,T') the quotient
topology.

1.2. Applications of cohomology to dynamical systems. As we already
mentioned above, many questions in dynamical systems such as rigidity proper-
ties of smooth actions, the existence of invariants, questions about extensions, and
many more can be reduced to the cohomological considerations about the action
itself. We mention only a few.

Cocycles over a group action allow us to build more complex group actions.
One of the results in this direction is obtained by Furstenberg [8]. We extend the
group action in the base to an extended group action on a fibered space. These are
usually called skew-products and they can be defined in the following way

pr:GE@XMxID —MxT

p(g, (x,7)) = (p(g,2),v + B(g, x)),

for all g € G, z € M and v € . This is indeed a group action if S is a cocycle
over p with values in I'. Moreover, note that if 8 is a coboundary generated by a
map f, then p is conjugated to the dynamical system I(z,v) = (z,7 + f(x)) on
M x T'. Therefore, the first cohomology classifies all possible extensions of the base
dynamics.

Other applications of cohomology in dynamical systems include problems such
as the existence of invariant volume forms and the stability of hyperbolic systems
(see [13]).

In all the applications in dynamical systems, the main problem is to show
whether a given real-valued cocycle is or is not a coboundary, whether it is or it
is not cohomologous to another given real-valued cocycle and whether or not the
transfer map has some (higher) regularity or not. That is the main reason why it is
so important to investigate the solutions h: M — R of the cohomological equation

(1.2) h(p(g,x)) — h(z) = B(g, x),

for all g € G and all x € M, where  is a given real-valued cocycle over the group
action p. Usually, the representation « is the linear part of the action p, and this
is the case in this thesis as well. In that case, there is a huge difference between
hyperbolic and non-hyperbolic « (in particular, the untwisted case). For example,
in the continuous category, if « is hyperbolic, then there is a unique continuous
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solution to the twisted cohomological equation, while in the non-hyperbolic case
that is very rarely the case, and even if the (formal) solution exists, the regularity
of the solution is a big issue (see [18], [19], [17] and [16]).

1.3. Obstructions to solving a cohomological equation. Usually, it is
very difficult to determine whether the cohomological equation has a solution, and
even when it does, whether the solution is in some particular regularity class or not.
The reason for this is the set of obstructions. Even in the case of C" actions where
it is possible to solve the cohomological equation, the solution itself is usually not
as regular as the action itself. In fact, it can be very discontinuous while the action
itself is analytic. This phenomenon is called loss of reqularity or loss of derivatives.
Therefore, if possible, it would be a very important task to determine the set of
all obstructions for a particular regularity class. For example, a very obvious set
of obstructions for solving the cohomological equation (1.2) is the set of all Borel
probability measures that are invariant under the action, if any. Since H!(p,T")
measures the extent to which cocycles fail to be coboundaries, it is natural that the
obstructions to the cohomological equation parameterize the first cohomology.

2. Gottschlak-Hedlund theorem

It is very rare that one is able to completely characterize the set of obstructions.
Classical examples where this is possible are Gottschalk and Hedlund for continuous
systems and Livsic’s theorem for hyperbolic systems. The first one deals with a
classical continuous dynamical system on a compact metric space that is minimal,
i.e. every orbit is dense in M. They proved the following theorem.

THEOREM 2.1. [9] Let M be a compact metric space, and T: M — M a contin-
wous dynamical system which is minimal, and let g: M — R be a given continuous
function. The cohomological equation

hoT —h=g

has a continuous solution h: M — R if and only if the sequence of functions

{ZQ ° Ti(ffo))}
i=0

is uniformly bounded in C°(M,R) for some xo € M.

n>1

REMARK 2.1. Note that boundedness of {3 ; g o T%(z0)) }n21 gives its bound-
edness at any other point y € M. Otherwise, if ‘Z?ZOgOTi(y))‘ > 2K, where
K = sup,>; ‘Z?:o goT? (.’Eo)’. By continuity, the same inequality holds for some
z € M which is sufficiently close to y, and then, by minimality, for some iterate
T™0(xg) of xg. But then
no+N

> goTi(w)

’i:ng

n0+N

> goT'(xo)
i=0

no—1

2K < < Z goT(xo)
i=0

+
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which contradicts the choice of K. One easily sees now that we can take
n
h(z) = sup — Zg o T(x)
nzl 2
as a solution to the cohomological equation. The only thing left to prove Theorem
2.1 is the continuity of h. We will not do that here, since we prove an extension of
Theorem 2.1. An interested reader can find proof of Theorem 2.1 in [13].

The second classical example where it is possible to characterize the complete
set of obstructions is due Livsic [20] who showed that the only obstructions to the
continuous solutions of the cohomological equation in the case of a C* R action,
ie. a C? flow, are given as the set of all probability measures supported on the
periodic orbits. This is commonly known as the periodic data condition.

More recent advances in the direction of completely characterizing the set of
obstructions are obtained by Forni [10], for the area-preserving flows on higher
genus surfaces, by Forni and Flaminio [11] for actions on SL(2,R)/T', then by
Marmi, Moussa, and Yoccoz [22] for the interval exchange maps and by Flaminio
and Forni [12] for flows on nilmanifolds.

We extend Theorem 2.1 to the case of cocycles over minimal continuous group
actions, with values in R*, k > 1.

THEOREM 2.2. Let M be a compact metric space and p: GX M — M a contin-
uous group action. A cocycle f € Z°(p,R¥) over p is a coboundary from B°(p, R¥),
i.e. there is a continuous function h: M — R* such that, if and only if there is a
constant C' > 0 and a point xg € M such that

118(g, zo)l| < C,
for every g € G.

REMARK 2.2. Arguing in a similar way as in Remark 2.1, the previous theorem
can be formulated as follows. A continuous cocycle (8 is a coboundary if and only
if it is uniformly bounded in Z°(p, R¥).

ProoF. If 3 € Z%p,RF) is a coboundary, then let h: M — R* be a continuous
function such that
h(p(g,x)) — h(z) = B(g, ),
for all ¢ € G and all z € M. Obviously, 3 is bounded in Z°(p,R¥) since now
118(g,z)|| < 2||h||co and M is compact. Here || - || is any norm on R¥ Hence, one
can take C' = 2||h||co and xg to be any point from M.

Let now 3 € Z%p,R¥) be such that there is a constant C' > 0 and a point
xo such that ||5(g, zo)|| < C, for every g € G. We need to construct a continuous
function h: M — RF such that h(p(g,z)) — h(z) = B(g,z), for all g € G and all
x € M. We define a skew-shift action over p

p: Gx M xRF - M x RF
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in the following way

plg, (z,y)) = (p(g, ),y + B(g,x)).

That p is also a G-action follows easily from the fact that g is a cocycle, and
hence it satisfies the equality from Definition 1.1. By assumption, the orbit of
(70,0) € M x R* under the skew-shift action j is bounded, i.e. the set

O3(20,0) = {p(9g, (20,0)) : g € G} = {(p(w0), B(g,70)) : g € G}

is bounded. Then O;(x¢,0) is a compact set invariant under the action of p. By
Zorn’s lemma, there is a minimal compact set K C Op(z0,0) that is invariant under
p. Minimality of the action p on the base M guarantees that the set

K, =Kn({z} xR")

is not empty, for any x € M. Now, if K, is a singleton for every x € M, one can
easily conclude that is enough to define h(z) = m2(K,), where mo: M x RF — RF
is a projection on the second component. Let us show that this is indeed the case,
i.e. that {K, : 2 € M} is a graph of a continuous function h: M — R*. Now, we
suppose that there are at least two points in some K., i.e. (x,y1),(z,y2) € K.
We also observe that g commutes with vertical translations T, (z,y) = (z,y + 2),
for any z € R¥, since for any g € G, any x € M and any y, z € RF

ﬁ(g7Tz(x7y)) = (p(g,x),y + Z+B(97w)) = Tz((p(gvx)7y+5(g7$)))'

From here, we get that the set Ty, (K) is also minimal, compact and invariant for
p, where yo = (lyt — 93],...,|y¥ — v&|). Since both minimal and non-empty, we
conclude that
K =T,,(K).

Iterating the horizontal translation T}, on the set K, we conclude that the set K
cannot be bounded which is a contradiction. Therefore, U,cpr K, is a graph of a
continuous function H: M — R* such that h(p(g,z)) — h(z) = B(g,z) holds for all
g € G and all x € M. Hence, 8 is a continuous coboundary over p. O
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