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EIGENVALUES OF THE DIRAC OPERATOR WITH
NONLOCAL BOUNDARY CONDITIONS ON TIME

SCALES

Osman Keklik and A. Sinan Özkan

Abstract. In this paper, a Dirac system under some integral type nonlocal

boundary conditions on a disctere set is considered. A formulation for the
number of eigenvalues of the problem is obtained and a method for calculation

of eigenvalues of the problem according to known coefficients is given.

1. Introduction

Nonlocal boundary conditions appear when data can not be measured directly
at the boundary. These kinds of conditions arise in various applied problems of
biology, biotechnology, physics and etc. Two types of nonlocal boundary conditions
come to the fore. One class is called integral type conditions, and the other is the
Bitsadze-Samarskii-type conditions.

Bitsadze and Samarskii are considered the originators of such conditions. Non-
local boundary conditions of the Bitsadze-Samarskii type were first applied to ellip-
tic equations by them [6]. Some important results on the properties of eigenvalues
and eigenfunctions of nonlocal boundary value problems for Sturm-Liouville type
operators have been in various publications (see, for example, [2], [14], [17], and
the references therein).

Some spectral problems for the Dirac operator with nonlocal boundary condi-
tions on a continuous interval are studied in [7], [11], [12], [13], [18], [19], [21],
and the references therein. Moreover, in [1], [8], and [9], the Dirac operator with
non-separated boundary conditions is investigated. In [20], nonlocal conditions
together with the Dirac system are considered. Dirac operator with some integral
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type nonlocal boundary conditions is studied in [16]. We can also refer to [3], [4],
[5], [10], and [15], for studies that include the discrete Dirac system.

We consider the Dirac operator under some integral type nonlocal boundary
conditions on a discrete set and obtain the formulation of the eigenvalues-number
of the problem. Moreover, we give a method to calculate the eigenvalues of the
problem when the coefficients are given.

Let us consider the following boundary value problem on the set
T = {0, 1, 2, ..., n, n+ 1}

(1.1) L [Y (x)] := B∆(Y ) +Q(x)Y = λY, x ∈ T\{n+ 1}

(1.2) U(y) := y1(0) sinα+ y2(0) cosα−Nf (Y ) = 0,

(1.3) V (y) := y1(n+ 1) sinβ + y2(n+ 1) cosβ −Ng(Y ) = 0

where Q(x) =

(
p(x) 0
0 q(x)

)
is a matrix-function defined on T, Y =

(
y1(x)
y2(x)

)
is

an unknown vector-valued function,

∆ (Y ) =

(
y1(x+ 1)− y1(x)
y2(x+ 1)− y2(x)

)
,

B =

(
0 1
−1 0

)
and α and β are real numbers, λ is the spectral parameter,

Nf (Y ) =

k=n∑
k=0

[f1(k)y1(k) + f2(k)y2(k)] ,(1.4)

Ng(Y ) =

k=n∑
k=0

[g1(k)y1(k) + g2(k)y2(k)] .(1.5)

2. The number of eigenvalues

Theorem 2.1. If [f1(n) sinβ + f2(n) cosβ] ̸= 0 , the problem (1.1)-(1.3) has
exactly (2n+ 1) eigenvalues

Proof. Let S(x, λ) =

(
S1(x, λ)
S2(x, λ)

)
and C(x, λ) =

(
C1(x, λ)
C2(x, λ)

)
be the solu-

tions of (1.1) under the initial conditions

S1(0, λ) = 0, S2(0, λ) = −1,(2.1)

C1(0, λ) = 1, C2(0, λ) = 0,(2.2)
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respectively. It is obvious that S(x, λ) and C(x, λ) satisfy the following relations.

(2.3)



C1(x+ 1) = C1(x) + (q(x)− λ)C2(x),

C2(x+ 1) = C2(x) + (λ− p(x))C1(x),

S1(x+ 1) = S1(x) + (q(x)− λ)S2(x),

S2(x+ 1) = S2(x) + (λ− p(x))S1(x).

From (2.1), (2.2) and (2.3) it can be obtained that

C1(k, λ) =


(−1)

k−1
2 kλk−1 +

[
λk−2

]
, k is odd,

(−1)
k
2 λk +

[
λk−1

]
, k is even,

(2.4)

C2(k, λ) =


(−1)

k−1
2 λk +

[
λk−1

]
, k is odd,

(−1)
k+2
2 kλk−1 +

[
λk−2

]
, k is even,

(2.5)

S1(k, λ) =


(−1)

k−1
2 λk +

[
λk−1

]
, k is odd,

(−1)
k+2
2 kλk−1 +

[
λk−2

]
, k is even,

(2.6)

S2(k, λ) =


(−1)

k+1
2 kλk−1 +

[
λk−2

]
, k is odd,

(−1)
k+2
2 λk +

[
λk−1

]
, k is even,

(2.7)

for k ∈ {2, 3, ..., n+ 1}, where the term
[
λj
]
denotes a polynomial whose degree is

j.
On the other hand, the characteristic function of the problem (1.1)-(1.3) is

(2.8) D(λ) = det

(
U(C) U(S)

V (C) V (S)

)
.

Using (2.4)-(2.7), the following equalities can be obtained.

U(C) = C1(0, λ) sinα+ C2(0, λ) cosα−Nf (C)

= sinα−Nf (C)

= sinα−
k=n∑
k=0

[f1(k)C1(k, λ) + f2(k)C2(k, λ)]

=

 (−1)
n+1
2 f2(n)λ

n +
[
λn−1

]
, n is odd,

(−1)
n+2
2 f1(n)λ

n +
[
λn−1

]
, n is even,
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U(S) = S1(0, λ) sinα+ S2(0, λ) cosα−Nf (S)

= − cosα−Nf (S)

= − cosα−
k=n∑
k=0

[f1(k)S1(k, λ) + f2(k)S2(k, λ)]

=

 (−1)
n+1
2 f1(n)λ

n +
[
λn−1

]
, n is odd,

(−1)
n
2 f2(n)λ

n +
[
λn−1

]
, n is even,

V (C) = C1(n+ 1, λ) sinβ + C2(n+ 1, λ) cosβ −Ng(C)

= C1(n+ 1, λ) sinβ + C2(n+ 1, λ) cosβ −
k=n∑
k=0

[g1(k)C1(k, λ) + g2(k)C2(k, λ)]

=

 (−1)
n+1
2 λn+1 sinβ + [λn] , n is odd,

(−1)
n
2 λn+1 cosβ + [λn] , n is even,

and

V (S) = S1(n+ 1, λ) sinβ + S2(n+ 1, λ) cosβ −Ng(S)

= S1(n+ 1, λ) sinβ + S2(n+ 1, λ) cosβ −
k=n∑
k=0

[g1(k)S1(k, λ) + g2(k)S2(k, λ)]

=

 (−1)
n+3
2 λn+1 cosβ + [λn] , n is odd,

(−1)
n
2 λn+1 sinβ + [λn] , n is even.

Hence, it is clear that

D(λ) = − [f1(n) sinβ + f2(n) cosβ]λ
2n+1 +

[
λ2n
]
.

Since the eigenvalues of the problem are the zeros of D(λ) which has degree of
2n+ 1, the proof is obvious. □

Corollary 2.1. The number of eigenvalues of the problem depends only on
the number of elements of T, and coefficients f1, f2 and β (it depends on neither
Q(x) nor the other coefficients.)

3. A calculation of eigenvalues

If we write (1.1) for each element in T\{n + 1}, and use the conditions (1.2)
and (1.3), we get the following system of linear algebraic equations.

AV = 0

where V = (y1(0) y1(1)...y1(n+ 1) y2(0) y2(1)...y2(n+ 1))
T
and A is a block ma-

trix such that
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A =

 Ap A0

−A0 Aq

B1 B2


(2n+4)×(2n+4)

where

Ap =


λ− p(0) 0 ... 0 0

0 λ− p(1) ... 0 0
. . . .
. . . .
. . . .
0 0 ... λ− p(n) 0


(n+1)×(n+2)

,

Aq =


λ− q(0) 0 ... 0 0

0 λ− q(1) ... 0 0
. . . .
. . . .
. . . .
0 0 ... λ− q(n) 0


(n+1)×(n+2)

,

A0 =


1 −1 0 ... 0 0
0 1 −1 ... 0 0
. . . .
. . . .
. . . .
0 0 ... 1 −1


(n+1)×(n+2)

,

B1 =

sinα− f1(0) −f1(1) ... −f1(n) 0

−g1(0) −g1(1) ... −g1(n) sinβ


2×(n+2)

and

B2 =

cosα−f2(0) −f2(1) ... −f2(n) 0

−g2(0) −g2(1) ... −g2(n) cosβ


2×(n+2)

.

It is clear that the characteristic function of the problem (1.1)-(1.3) is also D(λ) =
detA. If all the coefficients of the problem are given, we can calculate eigenvalues
by this determinant.

example 3.1. Let T = {0, 1, 2, 3}, Q = 0, f1(x) = −x, f2(x) = −x2,
g1(x) = g2(x) = 0, α = 0, and β = π/2. It is clear that
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D(λ) = det



λ 0 0 0 1 −1 0 0
0 λ 0 0 0 1 −1 0
0 0 λ 0 0 0 1 −1
−1 1 0 0 λ 0 0 0
0 −1 1 0 0 λ 0 0
0 0 −1 1 0 0 λ 0
0 1 2 0 1 1 4 0
0 0 0 1 0 0 0 0


= 2λ5 + 3λ4 + 6λ3 + 5λ2 +

4λ+ 6,
and eigenvalues are approximately λ1 = −1.1571; λ2 = 0.37758+0.98981i; λ3 =
0.37758− 0.98981i; λ4 = −0.54903− 1.417 i; λ5 = −0.54903 + 1.4173i.
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