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ON MAXIMUM REVERSE DEGREE ENERGY OF A
GRAPH AND ITS CHEMICAL APPLICABILITY

Gowtham Kalkere Jayanna

Abstract. In this paper, we define new matrix called maximum reverse de-

gree matrix MR(G) and reverse degree energy EMR(G) for the simple graph
G and study some of their properties. The striking feature of this energy is

that, they correlated with total π-electron energy of some molecules contain-

ing hetero atoms and got a good correlation with the correlation coefficient
r = 0.9536. Further, we also find maximum reverse degree energy for standard

graphs and we give upper and lower bounds for EMR(G).

1. Introduction

We consider finite undirected graph without loops and multiple edges of order
n. Let V = V (G) be the vertex set and E = E(G) be the edge set. The adjacency
matrixA(G) for a simple graphG is a matrix of order n and defined as, A(G) = (aij)
where,

aij =

{
1 if vi and vj are adjacent,

0 otherwise.

If |λ1| ⩾ |λ2| ⩾ . . . ⩾ |λn| are the eigenvalues of A(G). The energy of graph G was
defined by Gutman [10] in 1978 as,

E(G) =

n∑
i=1

|λi|.

The study of energy of a graph is found in the literature [12, 10, 1, 11].
Let ∆(G) denote the maximum degree among the vertices of G. The reverse vertex
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18 JAYANNA

degree of a vertex vi in G is defined as cvi = ∆(G)−d(vi)+1, where d(vi) is degree
of vertex vi. Recently, many concept have been introduced using reverse vertex
degree and found in literature see [6, 7, 8, 4, 14, 13]. The application of reverse
vertex-degree can be found in [5].
In [2] Chandrashekar Adiga and M. Smitha have defined the following.
Let G be a simple graph with n vertices v1, v2, . . . , vn and di be the degree of vi for
i = 1, 2, . . . , n. Then maximum degree matrix M(G) = (dij) is defined as,

dij =

{
max{di, dj} if vi and vj are adjacent,

0 otherwise.

If µ1, µ2, . . . , µn are eigenvalues of M(G) in non-increasing order, then the maxi-
mum degree energy of a graph G is defined as EM (G) =

∑n
i=1 |µi|.

In this paper, we use the reverse vertex-degree concept in [2] and define the follow-
ing definitions.
Let G be a simple graph with n vertices and size m. let cvi be the reverse ver-
tex degree of the vertex vi. Then maximum reverse degree matrix is defined as,
MR(G) = (rij) where,

(1.1) rij =

{
max{cvi , cvj} if vi and vj are adjacent,

0 otherwise.

Let ϕ(G;µ) be the characteristic polynomial of the maximum reverse degree matrix
MR(G) and it is defined as

ϕ(G;µ) = det(MR(G)− µI)

= a0µ
n + a1µ

n−1 + a2µ
n−2 + · · ·+ an,

where a0, a1, a2, . . . , an are constant coefficients and I is the identity matrix of order
n. let µ1, µ2, . . . , µn be the eigenvalues of MR(G) and assumed that they are in
non-increasing order. The maximum reverse degree energy of a graph G is defined
as

EMR(G) =

n∑
i=1

|µi|.

Since MR(G) is a real symmetric matrix with trace zero. Therefore, the sum of
eigenvalues of MR(G) is also zero.

2. Chemical applicability of MR(G)

The Huckel molecular orbital theory is mainly concentrated on conjugated, all
carbon compounds. If hetero atoms are considered, then range of those compounds
can be studied, by comparing energy values for hetero compounds. At the end, we
need to adjust Coulomb(α) and resonance integral(β) values for hetero atoms using
the relations

α′ = α+ hβ and β′ = kβ

where h and k are correction values which are different and depending on what atom
is in conjugation. So, we can take more then one value for α for a hetero atom but
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depends on the number of electrons hetero atom donates to π-system [9]. With the
help of secular matrix of the compound and taking appropriate values of α and β
in that matrix, we can calculate the π-electron energy of the compound [15, 16].
By this idea, we calculated EMR(G) with dataset of total π-electron energy values
of hetero atoms which are found in [3]. Further, we found that EMR(G) has good
correlation hetero atoms with correlation coefficient r = 0.9536 and r2(adjusted) =
0.9091. The Molecules containing hetero atoms with total π–electron energy and
Maximum reverse degree energy are shown in the Table 1. With help of data in
the Table 1, the linear regression model for the total π-electron energy (Eπ) values
of hetero atoms and EMR(G) is given by,

π − electron energy = 2.9429(±0.64679) + 0.44735(±0.02884)EMR(G).

Here we found, N (The population)=26, Se (Standard error of the estimate)=1.6341
F (F -values)=240.6119 and SF (Significance F )=5.2183 × 1014.

3. Some results on maximum reverse degree matrix

In this section, we discuses some results related to maximum reverse degree
matrix.

Theorem 3.1. Let G be a simple graph with n vertices and m edges.
If µ1, µ2, µ3, . . . µn are the eigenvalues of the maximum reverse degree matrix MR(G)
then,

(i)

n∑
i=1

µi = 0,

(ii)

n∑
i=1

µ2
i = 2

n∑
i=1

(xi + yi)c
2
vi .

Where xi= the number of vertices in the neighbourhood of vi whose reverse vertex
degree are less then cvi and yi=the number of vertices vj(j > i) in the neighbourhood
of vi whose reverse vertex degree are equal to cvi .

Proof. (i) Since the sum of eigenvalues of the matrix MR(G) is the trace of
matrix MR(G). But from the definition, the principle diagonal elements are zero.
So we have,

n∑
i=1

µi =

n∑
i=1

rii = 0.

(ii) Similar to above, the sum of the square of the eigenvalues of matrix MR(G) is
same as trace of [MR(G)]2. Therefore we have,

n∑
i=1

µ2
i =

n∑
i=1

n∑
j=1

rijrji =

n∑
i=1

r2ii +
∑
i ̸=j

rijrji = 2

n∑
i=1

(xi + yi)c
2
vi ,

where xi= the number of vertices in the neighbourhood of vi whose reverse vertex
degree are less then cvi
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Molecule Code Eπ EMR(G)

Venyl chloride like systems H1 2.23 5.6568

Butadiene perturbed at C2 H2 5.66 8.2421

Acrolein like systems H3 5.76 8.2421

1,1-Dichloro-ethylene like systems H4 6.96 10.3923

Glyoxal like and 1,2-Dichloro-ethylene like systems H5 6.82 10.3923

Pyrrole like systems H6 5.23 6.4721

Pyridine like systems H7 6.69 8

Pyridazine like systems H8 9.06 8

Pyrimidine like systems H9 9.10 8

Pyrazine like systems H10 9.07 8

S-Triazene like systems H11 9.65 8

Aniline like systems H12 8.19 18.8633

O-Phenylene-diamine like systems H13 12.21 22.7718

m-Phenylene-diamine like systems H14 12.22 21.6781

p-Phenylene-diamine like systems H15 12.21 23.0880

Benzaldehyde like systems H16 11 22.7015

Quinoline like systems H17 14.23 26.4678

Iso-quinoline like systems H18 14.23 26.4678

1-Naphthalein like systems H19 16.15 28.5417

2-Naphthalein like systems H20 16.12 29.4744

Iso-indole like systems H21 13.46 23.5170

Indole like systems H22 13.59 23.5170

Benzylidine–aniline-like systems H23 20.10 37.7556

Azobenzene like systems H24 21.02 37.7556

Acridine like systems H25 20.56 37.3235

Phenazine like systems H26 21.62 37.3235

Table 1. Molecules containing hetero atoms with total π–electron
energy (Eπ) and maximum reverse degree energy (EMR(G)).



ON MAXIMUM REVERSE DEGREE ENERGY OF A GRAPH 21

and yi=the number of vertices vj(j > i) in the neighbourhood of vi whose reverse
vertex degree are equal to cvi . □

Remark 3.1. The explicit expression for the coefficient ai of µn−i(for i=0,1,2)
in characteristic polynomial of the maximum reverse degree matrix MR(G). It is
also clear that a0 = 1 and a1 = trace(MR(G)) = 0. Now we have,

a2 = sum of determinants of all the 2 × 2 principal submatrices of MR(G)

=
∑

1⩽i<j⩽n

∣∣∣∣ 0 rij
rji 0

∣∣∣∣
But ∣∣∣∣ 0 rij

rji 0

∣∣∣∣ =
{
−(max{cvi

, cvj})2 , if vi and vj are adjacent

0 , otherwise

Thus,

a2 = −
n∑

i=1

(xi + yj)c
2
vi .

Note that
∑n

i=1(xi + yj)= number of edges in graph G. Now by above theorem,
we have

n∑
i=1

µ2
i = 2

n∑
i=1

(xi + yi)c
2
vi = −2a2.

4. Maximum reverse degree energy of some standard graphs

Theorem 4.1. For n ⩾ 3, the maximum reverse degree energy of the star graph
Sn is

EMR(Sn) = 2
√
(n− 1)3.

Proof. Consider the Star graph Sn with vertex v1, v2, . . . vn. Then, the max-
imum reverse degree matrix of the graph Sn

MR(Sn) =


0 n− 1 n− 1 . . . n− 1

n− 1 0 0 . . . 0
n− 1 0 0 . . . 0

...
...

...
. . .

...
n− 1 0 0 . . . 0
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Characteristic polynomial is∣∣∣∣∣∣∣∣∣∣∣

−µ n− 1 n− 1 . . . n− 1
n− 1 −µ 0 . . . 0
n− 1 0 −µ . . . 0

...
...

...
. . .

...
n− 1 0 0 . . . −µ

∣∣∣∣∣∣∣∣∣∣∣
Characteristic equation is (µ)n−2(µ2 −

√
(n− 1)3) = 0.

The eigenvalues of maximum reverse degree matrix MR(G) of the graph are: 0

of multiplicity n − 3 and ±
√
(n− 1)3 of multiplicity one. The maximum reverse

degree energy is,

EMR(Sn) = |0| (n− 2) +
∣∣∣√(n− 1)3

∣∣∣+ ∣∣∣−√(n− 1)3
∣∣∣ = 2

√
(n− 1)3.

□

Theorem 4.2. For n ⩾ 3, the maximum reverse degree energy of the Complete
graph Kn is

EMR(Sn) = 2(n− 1).

Proof. Consider the Star graph Kn with vertex v1, v2, . . . vn. Then, the max-
imum reverse degree matrix of the graph Kn

MR(Kn) =


0 1 1 . . . 1
1 0 1 . . . 1
1 1 0 . . . 1
...

...
...

. . .
...

1 1 1 . . . 0


Characteristic polynomial is∣∣∣∣∣∣∣∣∣∣∣

−µ 1 1 . . . 1
1 −µ 1 . . . 1
1 1 −µ . . . 1
...

...
...

. . .
...

1 1 1 . . . −µ

∣∣∣∣∣∣∣∣∣∣∣
Characteristic equation is (µ+ 1)n−1(µ2 − (n− 1)) = 0.
The eigenvalues of maximum reverse degree matrix MR(G) of the graph are: µ =
−1 having the multiplicity n−1 and µ = n−1 with multiplicity one. The maximum
reverse degree energy is,

EMR(Kn) = |−1| (n− 1) + |(n− 1)| = 2(n− 1).

□
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Theorem 4.3. For n ⩾ 3, the maximum reverse degree energy of the complete
bipartite graph Kn,n is

EMR(Kn,n) = 2n2.

Proof. Consider the complete bipartite graph Kn,n with vertex v1, v2, . . . vn.
Then, the maximum reverse degree matrix of the graph Kn,n

MR(Kn,n) =



0 0 0 . . . 0 1 1 1 . . . 1
0 0 0 . . . 0 1 1 1 . . . 1
0 0 0 . . . 0 1 1 1 . . . 1
...

...
...

. . .
...

...
...

...
. . .

...
0 0 0 . . . 0 1 1 1 . . . 1
1 1 1 . . . 1 0 0 0 . . . 0
1 1 1 . . . 1 0 0 0 . . . 0
1 1 1 . . . 1 0 0 0 . . . 0
...

...
...

. . .
...

...
...

...
. . .

...
1 1 1 . . . 1 0 0 0 . . . 0


(2n×2n)

Characteristic polynomial is∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−µ 0 0 . . . 0 1 1 1 . . . 1
0 −µ 0 . . . 0 1 1 1 . . . 1
0 0 −µ . . . 0 1 1 1 . . . 1
...

...
...

. . .
...

...
...

...
. . .

...
0 0 0 . . . −µ 1 1 1 . . . 1
1 1 1 . . . 1 −µ 0 0 . . . 0
1 1 1 . . . 1 0 −µ 0 . . . 0
1 1 1 . . . 1 0 0 −µ . . . 0
...

...
...

. . .
...

...
...

...
. . .

...
1 1 1 . . . 1 0 0 0 . . . −µ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Characteristic equation is (µ)2(n−1)(µ2 − n2) = 0.
The eigenvalues of maximum reverse degree matrix MR(Kn,n) of the graph are: 0
of multiplicity 2(n−1) and µ = ±n of multiplicity one each. The maximum reverse
degree energy is,

EMR(Kn,n) = |0| 2(n− 1) + |n|+ |−n| = 2n.

□

Theorem 4.4. For n ⩾ 3, the maximum reverse degree energy of the Crown
graph S0

n is

EMR(S
0
n) = 4(n− 1).

Proof. Consider the crown graph S0
n with vertex v1, v2, . . . vn. Then, the

maximum reverse degree matrix of the graph S0
n
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MR(S
0
n) =



0 0 0 . . . 0 0 1 1 . . . 1
0 0 0 . . . 0 1 0 1 . . . 1
0 0 0 . . . 0 1 1 0 . . . 1
...

...
...

. . .
...

...
...

...
. . .

...
0 0 0 . . . 0 1 1 1 . . . 0
0 1 1 . . . 1 0 0 0 . . . 0
1 0 1 . . . 1 0 0 0 . . . 0
1 1 0 . . . 1 0 0 0 . . . 0
...

...
...

. . .
...

...
...

...
. . .

...
1 1 1 . . . 0 0 0 0 . . . 0


(2n×2n)

Characteristic polynomial is∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−µ 0 0 . . . 0 0 1 1 . . . 1
0 −µ 0 . . . 0 1 0 1 . . . 1
0 0 −µ . . . 0 1 1 0 . . . 1
...

...
...

. . .
...

...
...

...
. . .

...
0 0 0 . . . −µ 1 1 1 . . . 0
0 1 1 . . . 1 −µ 0 0 . . . 0
1 0 1 . . . 1 0 −µ 0 . . . 0
1 1 0 . . . 1 0 0 −µ . . . 0
...

...
...

. . .
...

...
...

...
. . .

...
1 1 1 . . . 0 0 0 0 . . . −µ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Characteristic equation is (µ2 − 1)(n−1)(µ2 − (n− 1)2) = 0.
The eigenvalues of maximum reverse degree matrixMR(S

0
n) of the graph are: ±(n−

1) of multiplicity one each and µ = ±1 with multiplicity (n−1) each. The maximum
reverse degree energy is,

EMR(S
0
n) = |−1| (n− 1) + |1| (n− 1) + |n− 1|+ |−(n− 1)| = 4(n− 1).

□

5. Bounds for the maximum reverse degree energy

In this section, lower and upper bounds for the maximum reverse degree energy
of graphs are calculated.
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Lemma 5.1. Suppose ai and bi are non negative real numbers for 1 ⩽ i ⩽ n
then, (

n∑
i=1

a2i

)(
n∑

i=1

b2i

)
⩽

1

4

(√
M1M2

m1m2
+

√
m1m2

M1M2

)2( n∑
i=1

aibi

)2

,

where M1 = max
1⩽i⩽n

ai, M2 = max
1⩽i⩽n

bi, m1 = min
1⩽i⩽n

ai

and m2 = min
1⩽i⩽n

bi

Lemma 5.2. If ai and bi are non negative real numbers for 1 ⩽ i ⩽ n then,(
n∑

i=1

a2i

)(
n∑

i=1

b2i

)
−

(
n∑

i=1

aibi

)2

⩽
n2

4
(M1M2 −m1m2)

2
,

where M1 = max
1⩽i⩽n

ai, M2 = max
1⩽i⩽n

bi, m1 = min
1⩽i⩽n

ai

and m2 = min
1⩽i⩽n

bi.

Lemma 5.3. If ai and bi are any sequences of real and complex numbers for
1 ⩽ i ⩽ n then,(

n∑
i=1

aibi

)2

=

(
n∑

i=1

a2i

)(
n∑

i=1

b2i

)
−

∑
1⩽i⩽j⩽n

(aibj − ajbi)
2.

Theorem 5.1. Let G be a simple graph with n vertices, m size. Let µ1, µ2,
µ3, . . . µn be the eigenvalues of the maximum reverse degree matrix, MR(G) then,√√√√

2

n∑
i=1

(xi + yi)c2vi + n(n− 1)P

2

n ⩽ EMR(G) ⩽

√√√√2n

(
n∑

i=1

(xi + yi)c2vi

)

where P = det(MR(G)).

Proof. Let µ1, µ2, . . . , µn be the eigenvalues of the Laplacian edge dominating
matrix MR(G). In Cauchy-Schwarz inequality, put ai = 1 and bi = |µi| we get,(

n∑
i=1

|µi|

)2

⩽

(
n∑

i=1

1

)(
n∑

i=1

|µi|2
)
,

From Theorem 3.1, we have

(EMR(G)) ⩽

√√√√(2n n∑
i=1

(xi + yi)c2vi

)
(5.1)

For lower bound consider,

(EMR(G))
2
=

(
n∑

i=1

|µi|2
)

=

n∑
i=1

µ2
i +

∑
i ̸=j

|µi||µj |(5.2)
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Since the geometric means of positive number is not greater then arithmetic mean
so we get,

1

n(n− 1)

∑
i ̸=j

|µi||µj | ⩾
∏
i̸=j

(|µi||µj |)

1

n(n− 1) =

(
n∏

i=1

|µi|2(n−1)

) 1

n(n− 1)

=P

2

n .

Where P = det(MR(G)) and now, using above equation in (5.2) we get,

(EMR(G)) ⩾

√√√√
2

n∑
i=1

(xi + yi)c2vi + n(n− 1)P

2

n(5.3)

Rearranging equation (5.1) and (5.3) the result follows. □

Theorem 5.2. If the maximum reverse degree energy EMR(G) is a rational
number then EMR(G) it must be an even integer.

Proof. Let µ1, µ2, . . . µn be the eigenvalues of the maximum reverse degree
matrix MR(G) such that, µ1, µ2, . . . , µt are positive and rest are non-positive. By
the definition we have,

EMR(G) =

n∑
i=1

|µi|

= (µ1 + µ2 + · · ·+ µt)− (µ(t+1) + µ(t+2) + · · ·+ µn)

= 2(µ1 + µ2 + · · ·+ µt)− (µ1 + µ2 + · · ·+ µn)

= 2(µ1 + µ2 + · · ·+ µt)−
n∑

i=1

µi

This follows the required result. □

Theorem 5.3. Let G be a graph with n vertices and m edges, then

EMR(G) ⩽ |µ1|+
√
(n− 1)(β − |µ1|2)) where β = 2

n∑
i=1

(xi + yi)c
2
vi

and with property µ ⩾ m.

Proof. Let µ1 ⩾ µ2 ⩾ . . . µn be the non increasing order of eigenvalues of the
maximum reverse degree matrix MR(G). With considering ai = 1 and bi = |µi| in
Cauchy-Schwarz inequalityand we get,(

n∑
i=2

|µi|

)2

⩽

(
n∑

i=2

1

)(
n∑

i=2

|µi|2
)
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We get,

(EMR(G)− |µ1|)2 ⩽ (n− 1)

(
2

n∑
i=1

(xi + yi)c
2
vi − |µ1|2

)
.(5.4)

Take 2
∑n

i=1(xi + yi)c
2
vi

= β.
Now using above in equation (5.4) and simplifying we get the required result.

□

We obtain the results for bounds of EMR(G) in terms of the largest and smallest
absolute eigenvalues of the the maximum reverse degree matrix MR(G). We use
some previously known inequalities that will be needed in the proof of the next
results.

Theorem 5.4. Let G be a graph with n vertices and m edges, then

EMR(G) ⩾
2
√
nβ
√
|µ∗

l ||µ∗
s|

|µ∗
l |+ |µ∗

s|

where β = 2
∑n

i=1(xi + yi)c
2
vi ,|µ∗

l | and |µ∗
s| are the largest and smallest absolute

eigenvalues of the matrix MR(G) respectively.

Proof. Let µ1 ⩾ µ2 ⩾ . . . ⩾ µn be the eigenvalues of the the maximum re-
verse degree matrix MR(G).
Putting ai = |µi| and bi = 1 for 1 ⩽ i ⩽ n, in Cauchy-Schwarz inequality, we get

(
n∑

i=1

|µi|2
)(

n∑
i=1

1

)
⩽

1

4

(√
|µ∗

1|
|µ∗

s|
+

√
|µ∗

s|
|µ∗

1|

)2(
n∑

i=1

µi

)2

,

where |µ∗
l | = max

1⩽i⩽n
{|µi|} and |µ∗

s| = min
1⩽i⩽n

{|µi|}

∴ nβ ⩽
1

4

(√
|µ∗

l |
|µ∗

s|
+

√
|µ∗

s|
|µ∗

l |

)2

(EMR(G))
2

=⇒ 2
√

nβ ⩽
(|µ∗

l |+ |µ∗
s|)√

|µ∗
s||µ∗

l |
(EMR(G))

With rearranging , the result holds. □

Theorem 5.5. Let G be a connected graph, then

EMR(G) ⩾

√
nβ − n2

4
(|µ∗

l |+ |µ∗
s|)

2
,

where β = 2
∑n

i=1(xi + yi)c
2
vi ,|µ∗

1| and |µ∗
s| are the largest and smallest absolute

eigenvalues of the matrix MR(G) respectively.
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Proof. Let µ1 ⩾ µ2 ⩾ . . . µn be the eigenvalues of maximum reverse degree
matrix MR(G).
Putting ai = |µi| and bi = 1 for 1 ⩽ i ⩽ n, in lemma 5.2, we get

(
n∑

i=1

|µi|2
)(

n∑
i=1

1

)
−

(
n∑

i=1

|µi|

)2

⩽
n2

4
(|µ∗

1| − |µ∗
s|)

2
,(5.5)

where |µ∗
l | = max1⩽i⩽n{|µi|}, |µ∗

s| = min1⩽i⩽n{|µi|} and β = 2
∑n

i=1(xi + yi)c
2
vi

Using those in equation (5.5) we get,

(nβ)− (EMR(G))
2 ⩽

n2

4
(|µ∗

l | − |µ∗
s|)

2
(5.6)

By rearranging we get the result. □
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