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Abstract. In this study, we give three different quaternion-type cyclic-Pell
sequences and present some properties, such as, the Cassini formula, gener-

ating function. Then, we study quaternion-type cyclic-Pell sequences modulo
m. Also we present the relationships between the lengths of periods of the

quaternion-type cyclic-Pell sequences of the first, second and third kind mod-

ulo m and the generating matrices of these sequences. Finally, we introduce
the quaternion-type cyclic-Pell sequences in finite groups. We calculate the

lengths of periods for these sequences of the generalized quaternion groups

and obtain the 1st quaternion-type cyclic-Pell orbit of the quaternion group
Q8 as applications of the results.

1. Introduction

In [10], by Sir William Rowan Hamilton defined the quaternions. Quaternions
consist of a noncommutative, associative algebra over R

H = {a1 + a2i+ a3j + a4k | a1, a2, a3, a4 ∈ R}

where i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i and ki = −ik = j are
familiar with Hamilton’s rules (see [10, 18]).

It is well known that the Pell sequence {Pn} is defined by the following homo-
geneous linear recurrence relation:

Pn = 2Pn−1 + Pn−2
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for n ⩾ 2, where P0 = 0 and P1 = 1. In [16], it can be obtained miscellaneous prop-
erties involving Pell numbers. The initial work began with Fibonacci sequences in
algebraic structures that Wall [20] investigated in cyclic groups. Number theoretic
properties such as these get from homogeneous linear reccurence relations relevant
to this subject have been researched recently by many authors; see for example,
[1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 17, 19, 21]. The authors inves-
tigated the properties of the Pell and Pell-Lucas quaternions in [3]. Then, Deveci
and Shannon [5] extended the theory to the quaternions of the Pell sequence.

If a sequence consists only of repetitions of a fixed subsequence after a certain
point, it is periodic. The period of the sequence is the number of elements in the
shortest repetition subsequence. For instance, the sequence x, y, z, w, y, z, w, y, . . .
is periodic after the first element x and has period 3. As a special case, a sequence
is simply periodic with period u if the initial u elements in the sequence form a
repeating subsequence. For example, the sequence x, y, z, w, x, y, z, w, . . . is simply
periodic with period 4.

In Section 2, we define three different quaternion-type cyclic-Pell sequences and
then present some properties, such as, the Cassini formulas, generating function.
Also, we get the relationship between the Pell sequence and these quaternions.
In Section 3, we study quaternion-type cyclic-Pell sequences modulo m and then,
we give the relationships between the lengths of periods of the quaternion-type
cyclic-Pell sequences of the first, second and third kind modulo m and the gener-
ating matrices of these sequences. In Section 4, we introduce the quaternion-type
cyclic-Pell sequences in groups. After, we calculate the quaternion Pell lengths of
generalized quaternion groups. Finally, we give specific example for the first type
sequence of quaternion group Q8.

2. The quaternion-type cyclic-Pell sequences

In this section, we will introduce three different quaternion-type cyclic-Pell
sequences for n ⩾ 2 any positive integer numbers. Then, we will present miscella-
neous properties of these sequences.

Definition 2.1. Define the quaternion-type cyclic-Pell sequences of the first,
second and third kind, respectively:

x1
n =

 2kx1
n−1 + jx1

n−2 if n ≡ 0 (3),
2jx1

n−1 + ix1
n−2 if n ≡ 1 (3),

2ix1
n−1 + kx1

n−2 if n ≡ 2 (3),

x2
n =

 2ix2
n−1 + kx2

n−2 if n ≡ 0 (3),
2kx2

n−1 + jx2
n−2 if n ≡ 1 (3),

2jx2
n−1 + ix2

n−2 if n ≡ 2 (3),

x3
n =

 2jx3
n−1 + ix3

n−2 if n ≡ 0 (3),
2ix3

n−1 + kx3
n−2 if n ≡ 1 (3),

2kx3
n−1 + jx3

n−2 if n ≡ 2 (3),

the initial conditions for all type are xτ
0 = 0 and xτ

1 = 1 (1 ⩽ τ ⩽ 3).
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Let the entries of the matrices A and B be the element of the quaternion-type
cyclic-Pell sequences,

A =

[
a11 a12
a21 a22

]
and B =

[
b11 b12
b21 b22

]
,

then the following properties are hold:

(i). A×B =

[
a11b11 + a12b21 a11b12 + a12b22
a21b11 + a22b21 a21b12 + a22b22

]
.

(ii). detA = a11a22 − a12a21.
(iii). det(A ·B) = detA · detB.
(iv). An = An−1 ×A (n ∈ Z+).

Since the multiplication of quaternions is not commutative, the above properties
are given considering multiplicative order. Therefore, it is easy to see that

detA · detB ̸= detB · detA
and

An−1 ×A ̸= A×An−1.

In order to easy in our operations, we define ϵ(η) as follows:

(2.1) ϵ(η) =

 j if η ≡ 0 (3),
k if η ≡ 1 (3),
i if η ≡ 2 (3),

where η ∈ Z+. We will give relation these sequences to the well-known classic Pell
sequence

xτ
n =


−(−1)

n
3 Pnϵ(τ + 2) if n ≡ 0 (3),

(−1)
n−1
3 Pn if n ≡ 1 (3),

(−1)
n−2
3 Pnϵ(τ + 1) if n ≡ 2 (3),

where τ = 1, 2, 3 and ϵ(τ) is as defined in the Equation (2.1). We can write for the
quaternion-type cyclic-Pell sequences

(2.2) Gτ =

[
−12 −5ϵ(τ + 2)

5ϵ(τ + 2) −2

]
for τ = 1, 2, 3.

By iterative operations on n, we find

(2.3) (Gτ )
n =

[
xτ
3n+1 −xτ

3n

xτ
3n xτ

3n−1ϵ(τ + 1)

]
for τ = 1, 2, 3,

where n ⩾ 1.
Now we obtain the Cassini formula for the quaternion-type cyclic-Pell sequences.
By using the determinant function and the Equations (2.2), (2.3), we have

(2.4) xτ
3n+1x

τ
3n−1ϵ(τ + 1) + (xτ

3n)
2 = (−1)n for τ = 1, 2, 3.

Lemma 2.1. We give the recurrence relation for the quaternion-type cyclic-Pell
sequences as follows:

xτ
n = −14xτ

n−3 + xτ
n−6,
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where τ = 1, 2, 3.

Proof. The proof will only be done for the case τ = 1, the others are done
similarly. By Definition 2.1, we get x1

3n = 2kx1
3n−1 + jx1

3n−2 ,
x1
3n+1 = 2jx1

3n + ix1
3n−1 ,

x1
3n+2 = 2ix1

3n+1 + kx1
3n .

Thus, we have

x1
3n+2 =2ix1

3n+1 + kx1
3n

=5kx1
3n − 2x1

3n−1

=− 2x1
3n−1 + 5k

(
2kx1

3n−1 + jx1
3n−2

)
=− 12x1

3n−1 + k5jx1
3n−2.

And then, since 5jx1
3n−2 = k

(
2x1

3n−1 − x1
3n−4

)
, we obtain

(2.5) x1
3n+2 = −14x1

3n−1 + x1
3n−4.

Similarly, we can write

x1
3n+1 =2jx1

3n + ix1
3n−1

=5ix1
3n−1 − 2x1

3n−2

=− 2x1
3n−2 + 5i

(
2ix1

3n−2 + kx1
3n−3

)
=− 12x1

3n−2 + i5kx1
3n−3.

And then, since 5kx1
3n−3 = i

(
2x1

3n−2 − x1
3n−5

)
, we acquire

(2.6) x1
3n+1 = −14x1

3n−2 + x1
3n−5.

Similarly, we have

x1
3n =2kx1

3n−1 + jx1
3n−2

=5jx1
3n−2 − 2x1

3n−3

=− 2x1
3n−3 + 5j

(
2jx1

3n−3 + ix1
3n−4

)
=− 12x1

3n−3 + j5ix1
3n−4.

And then, since 5ix1
3n−4 = j

(
2x1

3n−3 − x1
3n−6

)
, we get

(2.7) x1
3n = −14x1

3n−3 + x1
3n−6.

From the Equations (2.5), (2.6) and (2.7), we obtain x1
n = −14x1

n−3 + x1
n−6, as

required. □

In the following Theorem, we develop the generating function for the quaternion-
type cyclic-Pell sequences.
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Theorem 2.1. The generating function of the {xτ
n} is

∞∑
n=0

xτ
nt

n =
t+ 2ϵ(τ + 1)t2 + 5ϵ(τ + 2)t3 + 2t4 − ϵ(τ + 1)t5

1 + 14t3 − t6
,

where τ = 1, 2, 3.

Proof. Assume that f(t) is the generating function of the {xτ
n} for τ = 1, 2, 3.

Then we have

f (t) =

∞∑
n=0

xτ
nt

n

From Lemma 2.1, we obtain

f (t) =xτ
0 + xτ

1t+ xτ
2t

2 + xτ
3t

3 + xτ
4t

4 + xτ
5t

5 +

∞∑
n=6

(
−14xτ

n−3 + xτ
n−6

)
tn

=xτ
1t+ xτ

2t
2 + xτ

3t
3 + xτ

4t
4 + xτ

5t
5 − 14

(
f(t)− xτ

0 − xτ
1t− xτ

2t
2
)
t3 + f(t)t6 .

Now rearrangement the equation implies that

f(t) =
xτ
1t+ xτ

2t
2 + xτ

3t
3 + (xτ

4 + 14xτ
1) t

4 + (xτ
5 + 14xτ

2) t
5

1 + 14t3 − t6
,

which equal to the
∞∑

n=0
xτ
nt

n in Theorem. □

3. The quaternion-type cyclic-Pell sequence modulo m

In this section, we study quaternion-type cyclic-Pell sequences modulo m.
Then, we give the relationships between the lengths of periods of the quaternion-
type cyclic-Pell sequences of the first, second and third kind modulo m and the
generating matrices of these sequences.

Let pn denote the nth member of the Pell sequences p0 = a, p1 = b, pn+1 =
2pn + pn−1 (n ⩾ 1).

Theorem 3.1. ( [4]) pn (mod m) forms a simply periodic sequence. That is,
the sequence is periodic and repeats by returning to its starting values.

The length of the period of the ordinary Pell sequence {Pn} modulo m was
denoted by k (m).

If we reduce the quaternion-type cyclic-Pell sequences of the first, second and
third kind modulo m, taking least nonnegative residues, then we get the following
recurrence sequences:

{xτ
n (m)} = {xτ

1 (m) , xτ
2 (m) , . . . , xτ

u (m) , . . .}
for every integer 1 ⩽ τ ⩽ 3, where xτ

u (m) is used to mean the uth element of the
τth quaternion-type cyclic-Pell sequence when read modulo m. We note here that
the recurrence relations in the sequences {xτ

n (m)} and {xτ
n} are the same.

Theorem 3.2. The sequences {xτ
n (m)} are periodic and the lengths of their

periods are divisible by 3.
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Proof. Let us consider the quaternion-type cyclic-Pell sequence of the first
kind

{
x1
n

}
as an example. Consider the set

Q = {(q1, q2) | qu’s are quaternions au + bui+ cuj + duk where

au, bu, cu and du are integers such that 0⩽au, bu, cu, du⩽m−1 andu∈{1, 2}} .
Suppose that the cardinality of the set Q is denoted by the notation |Q|. Since
the set Q is finite, there are |Q| distinct 2-tuples of the quaternion-type cyclic-Pell
sequences of the first kind

{
x1
n

}
modulo m. Thus, it is clear that at least one of

these 2-tuples appears twice in the sequence
{
x1
n (m)

}
. Let x1

α (m) ≡ x1
β (m) and

x1
α+1 (m) ≡ x1

β+1 (m). If β − α ≡ 0 (mod 3), then we get x1
α+2 (m) ≡ x1

β+2 (m),

x1
α+3 (m) ≡ x1

β+3 (m), . . .. So, it is easy to see that the subsequence following this 2

-tuple repeats; that is,
{
x1
n (m)

}
is a periodic sequence and the length of its period

must be divisible by 3.
The proofs for the sequences

{
x2
n

}
and

{
x3
n

}
are similar to the above and are

omitted. □

We next denote the lengths of periods of the sequences {xτ
n (m)} by lxτ

n
(m) .

Consider the matrices

A1 =

[
2i k
1 0

]
,

A2 =

[
2k j
1 0

]
and A3 =

[
2j i
1 0

]
.

Suppose that G1 = A3A2A1, G2 = A2A1A3 and G3 = A1A3A2. Using the above,
we define the following matrices:

(M1)
n
=


(G1)

n
3 if n ≡ 0 (3),

A1 (G1)
n−1
3 if n ≡ 1 (3),

A2A1 (G1)
n−2
3 if n ≡ 2 (3),

(M2)
n
=


(G2)

n
3 if n ≡ 0 (3),

A3 (G2)
n−1
3 if n ≡ 1 (3),

A1A3 (G2)
n−2
3 if n ≡ 2 (3),

(M3)
n
=


(G3)

n
3 if n ≡ 0 (3),

A2 (G3)
n−1
3 if n ≡ 1 (3),

A3A2 (G3)
n−2
3 if n ≡ 2 (3).

Then we get

(Mτ )
n

(
1
0

)
=

(
xτ
n+1

xτ
n

)
,

where τ is an integer such that 1 ⩽ τ ⩽ 3. Therefore, we immediately deduce that
lxτ

n
(m) is the smallest positive integer α such that (Mτ )

α ≡ I(modm) for every
integer 1 ⩽ τ ⩽ 3.

4. The quaternion-type cyclic-Pell sequence in groups

In this section, we will define three different quaternion-type cyclic-Pell se-
quences in finite groups. Subsequently, we will examine the quaternion-type cyclic-
Pell orbits of the first, second and third kind of the generalized quaternion group.
Finally, we will give specific example for the 1st type sequences of quaternion group
Q8.
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The G is a 2-generator group and

X = {(x1, x2) ∈ G×G | ⟨{x1, x2}⟩ = G} .

We indicate (x1, x2) a generating pair for G.

Definition 4.1. Let G be a 2-generator group. For the generating pair (x, y),
we define the quaternion-type cyclic-Pell orbits of the first, second and third kind
of G as follows, respectively:

a1n =

 (a1n−2)
j(a1n−1)

2k if n ≡ 0 (3),
(a1n−2)

i(a1n−1)
2j if n ≡ 1 (3),

(a1n−2)
k(a1n−1)

2i if n ≡ 2 (3),

a2n =

 (a2n−2)
k(a2n−1)

2i if n ≡ 0 (3),
(a2n−2)

j(a2n−1)
2k if n ≡ 1 (3),

(a2n−2)
i(a2n−1)

2j if n ≡ 2 (3),

a3n =


(a3n−2)

i(a3n−1)
2j if n ≡ 0 (3),

(a3n−2)
k(a3n−1)

2i if n ≡ 1 (3),
(a3n−2)

j(a3n−1)
2k if n ≡ 2 (3),

for n ⩾ 2, with initial conditions aτ0 = x and aτ1 = y (1 ⩽ τ ⩽ 3), where the
following conditions hold for every x, y ∈ G:

(i). Let q = a + bi + cj + dk such that a, b, c and d are integers and let e be
the identity of G, then

∗ xq = xa(mod|x|)+b(mod|x|)i+c(mod|x|)j+d(mod|x|)k

= xa(mod|x|)xb(mod|x|)ixc(mod|x|)jxd(mod|x|)k.
∗ (xu)a = (xa)u, where u ∈ {i, j, k} and a is an integer.
∗ eq = e and x0+0i+0j+0k = e.

(ii). Let q1 = a1 + b1i + c1j + d1k and q2 = a2 + b2i + c2j + d2k such that
a1, b1, c1, d1, a2, b2, c2, d2 are integers, then (xq1xq2)−1 = x−q2x−q1 .

(iii). If xy ̸= yx, then xuyu ̸= yuxu for u ∈ {i, j, k}.
(iv). (xy)

u
= yuxu for u ∈ {i, j, k}.

(v). (xu1yu2)
u3 = xu3u1yu3u2 , (xyu1)

u2 = xu2yu2u1 and (xu1y)
u2 = xu2u1yu2

for u1, u2, u3 ∈ {i, j, k} and so (xu1yu1)
u1 = x−1y−1.

(vi). For u1, u2 ∈ {i, j, k} such that u1 ̸= u2, x
u1yu2 = yu2xu1 , xyu1 = yu1x,

xu1y = yxu1 and so (xyu1)
u1 = xu1y−1 and (xu1y)

u1 = x−1yu1 .

Let the notation P q,τ
(x,y) (G) denote the τth quaternion-type cyclic-Pell orbit of

the group G for the generating pair (x, y). From the definition of the orbit P q,τ
(x,y) (G)

it is clear that the length of the period of this sequence in a finite group depend
on the chosen generating pair and the order in which the assignments of x, y are
made.

Theorem 4.1. Let G be a 2-generator group. If G is finite, then the quaternion-
type cyclic-Pell orbits of the first, second and third kind of G are periodic and the
lengths of their periods are divisible by 3.
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Proof. Let us consider the 2nd quaternion-type cyclic-Pell orbit of the group
G. We take the set

S =
{
(s1)

a1(mod|s1|)+b1(mod|s1|)i+c1(mod|s1|)j+d1(mod|s1|)k ,

(s2)
a2(mod|s2|)+b2(mod|s2|)i+c2(mod|s2|)j+d2(mod|s2|)k :

s1, s2 ∈ G and a1, a2, b1, b2, c1, c2, d1, d2 ∈ Z} .

Since the group G is finite, S is a finite set. Hence there exists v > u such that
a2u = a2v and a2u+1 = a2v+1 for any u ⩾ 0. If v − u ≡ 0 (mod 3), then we get
a2u+2 = a2v+2, a

2
u+3 = a2v+3, . . .. Because of the repeating, for all generating pairs,

the sequence P q,2
(x,y) (G) is periodic and the length of its period must be divisible by

3.
The proofs for the orbits P q,1

(x,y) (G) and P q,3
(x,y) (G) are similar to the above and

are omitted. □

We next denote the lengths of the periods of the orbits P q,τ
(x,y) (G) by LP q,τ

(x,y) (G).

We shall now address the lengths of the periods of the orbits P q,1
(x,y) (Q2m+1),

P q,2
(x,y) (Q2m+1) and P q,3

(x,y) (Q2m+1). It is well-known that the generalized quaternion

group Q2m+1 of order 2m is defined by the presentation

Q2m+1 = ⟨x, y | x2m = y4 = 1, x2m−1

= y2, y−1xy = x−1⟩.

Theorem 4.2. For m ⩾ 2,

LP q,1
(x,y) (Q2m+1) = LP q,2

(x,y) (Q2m+1) = LP q,3
(x,y) (Q2m+1) = 3.2m.

Proof. By direct calculation, we obtain the orbits P q,1
(x,y) (Q2m+1), P q,2

(x,y) (Q2m+1)

and P q,3
(x,y) (Q2m+1) as follows, respectively. Firstly, the orbit P q,1

(x,y) (Q2m+1) is

a1
0 = x, a1

1 = y, a1
2 = y2ixk, a1

3 = yjx−2, a1
4 = x−5j , a1

5 = y−ix−12k, · · · ,

a1
12 = x5741,a1

13 = yx13860j ,a1
14=y2ix33461k, a1

15 = yjx−80782, a1
16=x−195025j , · · · ,

a1
24 = x225058681, a1

25=yx543339720j , a1
26=y2ix1311738121k, a1

27=yjx−3166815962, · · · ,
. . .

a1
12n = xP12n−1 , a1

12n+1 = yxP12nj , a1
12n+2 = y2ixP12n+1k, a1

12n+3 = yjx−P12n+2 ,

a1
12n+4 = x−P12n+3j , a1

12n+5=y−ix−P12n+4k, a1
12n+6=y2jxP12n+5 , a1

12n+7=yxP12n+6j ,

a1
12n+8 = xP12n+7k, a1

12n+9=yjx−P12n+8 , a1
12n+10=y2x−P12n+9j , a1

12n+11=y−ix−P12n+10k.
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Secondly, we take into account the orbit P q,2
(x,y) (Q2m+1). We have the sequence

a2
0 = x, a2

1 = y, a2
2 = y2jxi, a2

3 = ykx−2, a2
4 = x−5k, a2

5 = y−jx−12i, · · · ,

a2
12 = x5741, a2

13 = yx13860k, a2
14 = y2jx33461i, a2

15 = ykx−80782, a2
16 = x−195025k, · · · ,

a2
24 = x225058681, a2

25 = yx543339720k, a2
26 = y2jx1311738121i, a2

27 = ykx−3166815962, · · · ,
. . .

a2
12n = xP12n−1 , a2

12n+1=yxP12nk, a2
12n+2=y2jxP12n+1i, a2

12n+3=ykx−P12n+2 ,

a2
12n+4 = x−P12n+3k, a2

12n+5=y−jx−P12n+4i, a2
12n+6=y2kxP12n+5 , a2

12n+7=yxP12n+6k,

a2
12n+8 = xP12n+7i, a2

12n+9=ykx−P12n+8 , a2
12n+10=y2x−P12n+9k, a2

12n+11=y−jx−P12n+10i.

Finally, we consider the 3rd quaternion-type cyclic-Pell orbit of the generalized
quaternion group Q2m+1 with respect to the generating pair (x, y), P q,3

(x,y) (Q2m+1).

Using a similar argument to the above, we obtain the following sequence:

a3
0 = x, a3

1 = y, a3
2 = y2kxj , a3

3 = yix−2, a3
4 = x−5i, a3

5 = y−kx−12j , · · · ,

a3
12 = x5741, a3

13 = yx13860i, a3
14 = y2kx33461j , a3

15 = yix−80782, a3
16 = x−195025i, · · · ,

a3
24 = x225058681, a3

25 = yx543339720i, a3
26 = y2kx1311738121j , a3

27 = yix−3166815962, · · · ,
. . .

a3
12n = xP12n−1 , a3

12n+1 = yxP12ni, a3
12n+2 = y2kxP12n+1j , a3

12n+3 = yix−P12n+2 ,

a3
12n+4 = x−P12n+3i, a3

12n+5 = y−kx−P12n+4j , a3
12n+6 = y2ixP12n+5 , a3

12n+7 = yxP12n+6i,

a3
12n+8 = xP12n+7j , a3

12n+9 = yix−P12n+8 , a3
12n+10=y2x−P12n+9i, a3

12n+11 = y−kx−P12n+10j .

where Pn is the nth term of the ordinary Pell sequence {Pn}. It is known that
k(2m) = 2m; see [4] for proof. So we get that the lengths of the periods of the

sequences P q,1
(x,y) (Q2m+1), P q,2

(x,y) (Q2m+1) and P q,3
(x,y) (Q2m+1) are lcm [12, k(2m)] =

lcm [12, 2m] = 3.2m. □

Now, for the generating pair (x, y), we give the 1st quaternion-type cyclic-Pell
orbits of the quaternion group Q8 = ⟨x, y | x4 = 1, x2 = y2, y−1xy = x−1⟩ which
is a non-abelian group of order eight.

example 4.1. The sequence P q,1
(x,y) (Q8) is

x, y, y2ixk, yj−2, x−j , y−i, y2jx, yx2j , xk, yj , y2x−j ,

y−i−2k, x, y, y2ixk, yj−2, x−j , y−i, y2jx, yx2j , . . . ,

which implies that LP q,1
(x,y) (Q8) = 12.
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