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CONCIRCULAR CURVATURE TENSOR ON THE
ALMOST C(a)-MANIFOLD

Tugba Mert and Mehmet Atcgeken

ABSTRACT. In this article, the concircular curvature tensor on an almost
C (a)-manifold is discussed. Some special curvature conditions provided by
the concircular curvature tensor on the Riemann, Ricci, projective, concircu-
lar curvature tensors have been investigated.

1. Introduction

A transformation of an n—dimensional Riemannian manifold, which transforms
every geodesic circle of Riemannian manifold into a geodesic circle, is called a concir-
cular transformation ([14],[6]). A concircular transformation is always a conformal
transformation [14]. In general, a geodesic circle does not transform into a geo-
desic circle by the conformal transformation. The transformation which preserves
geodesic circles was first introduced by Yano [14]. The conformal transformation
transforms a geodesic circle into a geodesic circle with the help of a special partial
differential equation. Such a transformation is known as the concircular trans-
formation and the geometry which deals with such transformation is called the
concircular geometry [13]. The concircular curvature tensor is very important in
the differential geometry of some F-structures, such as complex, almost complex,
Kaehler, almost Kaehler, contact, almost contact structures ([2]-[16]). Concircu-
lar curvature tensor is the next most important (1,3)—type curvature tensor from
Riemannian point wiev.
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144 MERT AND ATCEKEN

The concircular curvature tensor is one of the tensors that characterizes the
important properties of the manifold on which it is defined. Again, many geometers
investigated the properties of manifolds on different curvature tensors ([5]-[9]).

In this article, some special curvature conditions are investigated for the con-
circular curvature tensor on a (2n + 1)-dimensional almost C(«)—manifold. The
special relationship between the concircular curvature tensor and Riemann, Ricci,
the projective curvature tensors and the effect of the concircular curvature tensor
on itself are discussed. Under these special curvature conditions, some important
properties of the almost C(«)—manifold are obtained.

2. Preliminaries

Let’s take an (2n + 1) —dimensional differentiable M manifold. If the R Rie-
mann curvature tensor of the M almost contact metric manifold satisfies the con-
dition

R (B1,B2,83,B81) = R(B1, B2, #B3,9B4) + a{—g (b1, 83) g (B2, Ba)
+9 (81, B4) 9 (B2, B3) + g (B1, 9B3) 9 (B2, $P4)

—9g (B1,B4) g (B2, 9B3)}

for all 1, B2, B3, B4 € x (M), for a € R, then M is called the almost C («)-manifold
where ¢ is (1, 1) —type tensor field. Also, the Riemann curvature tensor of a almost
C' (a)-manifold with c—constant sectional curvature is given by

R i = (S0 ) 0 o) 61— 9 51, o) )

+ <C :1 Oé) {g (517¢ﬁ3) ¢ﬁ2 — g(ﬂ%(bﬁg) ¢ﬁ1

+29 (81, 9B2) #B3 + 1 (B2) n (B3) A1
+9 (B1,B3) 1 (B2) € — g (B2, B3)n (B1) €}

If putting 51 =&, B2 = £ and B3 = £ in (1), the following relations are obtained.

(2) R(&, B2)B3 = a[g (B2, B3) € —n (B3) Ba]
(3) R(B1,8)Bs = a[~g (B1,83) § +n(B3) B1],
(4) R(B1, B2)€ = a[n (B2) B1 — 0 (B1) Ba] -

Also, if we take the inner product of both sides of equation (1) with the vector
&€ x (M), we have

(5) n (R (B1,B2) B3) = a[g (B2, B3) n (B1) — 9 (B, B3) n (B2)] -
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For M is a (2n+1)-dimensional Riemann manifold, the projective curvature tensor
P defined as

() P (B2 Bs = R(Br, 5a) Bs — o S (B2, ) b1 — S (Br, B3) Bl

for each B1, 2,83 € x (M),[3]. If p1 = &, P2 = £ and B3 = £ are selected respec-
tively in (6), the following relations are obtained.

@ P(E, 52)Bs = ag (Ba, B5) € — 5= (52, ) €
®) P(B1, )85 = ~ag (B1,B5) € + 5 (1, Bs)
(9) P(B1,52)§ = 0.

Also, if we take the inner product of both sides of (6) with the vector £ € x (M),
we have
(10)

P (31, 2) o) =1(50) g (92 )= 51 (5, )= (8 g (3, )= 55 (6. )
As M is a (2n + 1)-dimensional Riemann manifold, the tensor Z defined as

~ r

11 VA = - _
(11) (B1, B2) B3 = R (B1,B2) B3 o (@n+ 1) [9 (B2, B3) B1 — g (B1, B3) Ba]
for each (1, 82,03 € x (M), is called the concircular curvature tensor [7]. If 8 =
&, B2 = £ and putting B3 = £ in (11), the following relations are obtained.

12) 2= o g B € 0 (B0 ]
13 298 = o gt | oG e (Bl
(14) 2(51,52)5 = {04 - M} [ (B2) B1 —n (B1) Ba] .

Also, if we take the inner product of both sides of equation (11) with the vector
&€ x (M), we have
r

(15) 1 (2(ro2)30) = [0 gy |19 B (50) = 60 ).

For a (2n 4 1) —dimensional M almost C («) —manifold, the following equa-
tions hold.

a@Bn—-—1)+c(n+1

(16) (5, ) = | *E = EEED

2

(a—c)(n+1)
2

}9(51,52) + n(B1)n (B2)

(17) S (B1,€) = 2nan (B1)

a(3n—1)2+c(n+l)]ﬂ1+ (a—c)(n—i—l)77

18)  Qf= [
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(19) Q€ = 2nag

for each f1, B2, € x (M), where @) and S are the Ricci operator and Ricci tensor of
manifold M, respectively.

3. Concircular curvature tensor on the almost C(a)-manifold

Let M be a (2n+ 1)—dimensional almost C'(a)—manifold. Let us first examine
a special curvature condition established between the concircular curvature tensor
and the Riemann curvature tensor. Let us state and prove the following theorem.

THEOREM 3.1. If a (2n + 1) — dimensional almost C(a)—manifold satisfies the
curvature condition

Z (61aﬂ2> R = )‘IQ (57 R) )
then the almost C(a)—manifold is either co-Kaehler manifold or Ay = 0.

PROOF. Let’s assume that a (2n + 1) —dimensional almost C'(«)—manifold sat-
isfies the curvature condition

(281,82 .R) (85, 81, 83) = MQ (S, R) (Bs, B, Bs: B, Ba)

for each 1, B2, 85, B4, B3 € x (M) . In this situation, we can write
(20)

Z (B1,B2) R(B5,B1) Bs — R (Z (B1, B2) 55754) B3 — R (557 Z (81, B2) ﬂ4) B3

—~R(Bs,B4) Z (B1, Ba) Bs = —A1 {S (B2, B5) R (B1, B1) B3 — S (B, B5) R (B2, B1) B3
+S (B2, B4) R (Bs, B1) Bz — S (81, B4) R (Bs, B2) Bz + S (B2, B3) R(Bs, Ba) B1

=S (B1,83) R(Bs, B1) Ba} -

If we choose 81 = £ in (20) and make use of (2),(3),(4),(12), we obtain
(21)

(o~ sy ) {9 (B R (55, 6) B3) € — 1 (R (85, Ba) Bs) B

—9 (B2, Bs) R (€, Ba) B3 + 1 (Bs) R (B2, Ba) B3 — g (B2, Ba) R (B5,€) Bs

+1 (Ba) R (Bs, B2) Bs — g (B2, B3) R (5, Ba) § + 1 (B3) R (85, Ba) P2}

=~ {aS (B2, 85) g (Ba, Bs) § — S (B2, B5) 11 (B3) Ba — 2nam (Bs) R (B2, Ba) Bs
—aS (B2, 84) g (B5, B3) § + S (B2, Ba) 11 (B3) Bs — 2nam (Ba) R (Bs, B2) Bs

+aS (B2, 83) 1 (Ba) Bs — S (B2, B3) 1 (B5) Ba — 2nam (Bs) R (Bs, Ba) B2} -
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If we choose 85 = £ in (21) and from (2), we get
(22)

<0‘ - m) [R (B2, Ba) Bs — ag (Ba, Bs) B2 + ag (B2, B3) Ba)

= =1 {2na?g (Ba, B3) 1 (B2) € — 2naR (B2, Ba) Bs — 2na’g (Ba, B3) n (Ba) E—
+2na®n (Ba) 1 (Bs) B2 + aS (B2, Bs) 1 (Ba) € — S (B2, B3) Ba

—2na?g (B4, B2)n (B3) &} -

If we take the inner product of both sides of equation (22) by & € x (M) and we
choose 835 = £ in (22), we get

(23) —2na® A1 [—g (Ba, Ba) + 1 (B2) 1 (Ba)].
It is clear from equation (23) that
a=0o0r A =0
This completes the proof. O

COROLLARY 3.1. Let M be (2n + 1) dimensional almost C () —manifold pro-
vided

Z (B1,2) .R=MQ (S, R).
Then M is a real space form with ¢ = « if and only if A = 0.

THEOREM 3.2. If a (2n + 1) — dimensional almost C'(«)—manifold satisfies the
curvature condition

Z (/Bla ﬂZ) R = )\QQ (g:R) )
then the almost C'(a)—manifold is either co-Kaehler manifold or Ay = 0.
COROLLARY 3.2. Let M be (2n + 1) dimensional almost C () —manifold pro-
vided
Z (ﬁla 62) R = )‘QQ (gv R) .
Then M is a real space form with ¢ = « if and only if Ay = 0.
Let us secondly examine a special curvature condition established between the

concircular curvature tensor and the projective curvature tensor. Let us state and
prove the following theorem.

THEOREM 3.3. If a (2n + 1) — dimensional almost C(a)—manifold satisfies the
curvature condition

7 (B, B1) P = 23Q (S, P),
then the almost C(a)—manifold is an Einstein manifold provided r # 2n (2n + 1) a.

PROOF. Let’s assume that a (2n + 1) —dimensional almost C'(«) —manifold sat-
isfies the curvature condition

(2 (Bs. 1) P) (B, s, 1) = Ao (S, P) (B2, Bs. i B, 1)



148 MERT AND ATCEKEN

for each f1, B2, B5, B4, B3 € x (M) . In this situation, we can write
(24)

Z (B3, 81) P (B2, 35) Ba = P (Z (83 81) B2, Bs ) Bu — P (Ba. Z (83, B1) B ) B

P (B2, 85) Z (B, 81) B = —Xa 1S (Br, B2) P (B, Bs) B1 — S (B3, B2) P (81, Bs) B
5 (B1,B5) P (B2, Ba) Ba — S (B3, 55) P (Ba, 1) B + S (Bu. B) P (Ba. B5) s

~5 (B2, 1) P (B2, B5) B}

If we choose 3 = £ in (24) and make use of (7),(8),(9), (12) we obtain
(25)

(0= ey ) l9.(Bu. P (B2, B5) Ba) € — 1 (P (B2, B5) i) B

~9(B1, 52) P (€ B5) Ba + 1 (B2) P (B, Bs) B — g (Bu, Bs) P (B2,€) i

+1/(85) P (B1,82) B1 — 9 (B1, B1) P (B2, 53) € +1 (B1) P (B, B5) ]

= —2a {aS (81, B2) g (B, 61) € — 255 (1. 52) S (Bs. 1) €

—2nan (B2) P (61, B5) 1 — S (81, 85) 9 (B2, Ba) € + 32 (51, B5) S (B, ) €
—2nan (B5) P (B2, 61) s — 20 (81) P (B2, 65) i}

If we choose B3 = £ in (25) and make use of (7), we have
(26)

(0= gy ) [0 (B, B5) m (Ba) € — ag (85, Ba) By — ag (81, Ba) m (B5) €
+5 [S (85, B1) Bu+ S (B1, B1) 0 (B5) € = S (Bs, B1)m (Ba) €] + P (85, B1) Ba]
= X3 {20029 (B5, B4) 1 (B1) € — @S (Bs, B) 0 (B1) € — 2naP (B, Bs) B
—2na?g (B1, Ba) 0 (Bs) € + S (Br, Ba) 1 (Bs) € — 2nag (Bs, 1) 1 (Ba) €
+aS (85, 1) (51) €}
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If we take the inner product of both sides of equation (26) by & € x (M), we get
(27)

(0= strsy ) [ag (81, B5) 1 (B1) — ag (Bs, 5a) 1 (Br) — ag (B 5a) m (Bs)

+a [S (85, B1) 0 (B1) + S (B1, B4) 1 (Bs) — S (B5, 1) n (B)] + 1 (P (Bs, B1) Ba)]
= X3 {2na?q (Bs, Ba) 1 (B1) — aS (85, Ba) n (B1) — 2nam (P (By, Bs) Ba)
—2na?g (B1, Ba) n (Bs) + S (B1, Ba) 1 (Bs) — 2na*g (Bs, B1) n (Ba)

+asS (85, 1) (Ba)} -

If we choose 84 = £ in (27), we have

@) (0 gy ) [0 e80 - 58 B 80)] = 2natag (51,50,

If necessary arrangements are made, we obtain

an?a? (2n+1) (1 — 2nA3) — 2nar
2na(2n+1) —r

S (Bs, 1) = { } 9 (Bs,B1) -

This completes the proof. O

COROLLARY 3.3. If a (2n + 1) — dimensional almost C(a)—manifold satisfies
the curvature condition

2(53751) P= )\4Q (g’P) )
then the almost C(a)—manifold is an Einstein manifold provided r # 2n (2n + 1) a.

Let us as the third examine a special curvature condition established on the
concircular curvature tensor itself. Let us state and prove the following theorem.

THEOREM 3.4. If a (2n + 1) — dimensional almost C(a)—manifold satisfies the
curvature condition

Z(B3,81).2 = 25Q (8, 2) |
then the almost C'(«)—manifold is either co-Kaehler manifold or A5 = 0.

PROOF. Let’s assume that a (2n + 1) —dimensional almost C'(«) —manifold sat-
isfies the curvature condition

(Z (B3, B1) Z) (B2, Bs, Ba) = AsQ (S, Z) (Ba, Bs, Ba; B3, B1) »
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for each f1, B2, B5, B4, B3 € x (M) . In this situation, we can write
(29)

Z (B3, 81) Z (B2, 5) b1 — Z (Z (B3, 1) 2. Bs ) Ba — Z (B2, Z (B, 1) Bs ) B

~Z (B2, B5) Z (B3, 1) B = —Xs {8 (81 B2) Z (B, 5) Ba — S (B, 82) Z (1, B5)
+5 (B, B5) Z (B2, Bs) Ba — S (B3, B5) Z (B2, $1) Ba + S (Br, Ba) Z (B2, Bs) B
S (B, 61) Z (B2, B5) B }

If we choose 83 = £ in (29) and make use of (12),(13),(14), we obtain

Z (&,B1) R (B2, B5) Ba — Z (R (&, B1) B2, B5) Ba — Z (Bay R (€, B1) Bs) Ba
—7 (82 B5) R(&, 51) B + (s ) [0 (Bas Ba) 2 (6,51) B

~9 (Bs,B1) Z (€, B1) Bo + g (B1, B2) Z (€, B5) Ba — 1 (B2) Z (B1, B5) Ba

+9 (B1.B5) Z (B2,€) Ba — 0 (B5) Z (B2, Br) Ba + g (B, Ba) Z (B2, Bs) €

z
(30)
1 (B2) Z (B2, 85) B | = =5 { (& = sty ) [5 (B, B2) 9 (Bs. Ba) €

=S (B1,B2)n (Ba) Bs — S (B1,B5) g (B2, Ba) § + S (B, Bs) n (Ba) B2
+S (B1, B1) 0 (Bs) B2 — S (B, Ba) 1 (B2) Bs) — 2nam (B2) Z (B1, Bs) Ba

~2n0m (85) Z (B2, 1) Ba — 2o (82) Z (B, s) P }

If we choose B2 = ¢ in (30) and make use of (12),(13), we have

(CV - m> [R(B1,B5) Bs — ag (Bs, Ba) Br + ag (B, Ba) Bs]

=25 { (0= sntrry) [2rag (B, Ba) n (B1) — 2nag (Br, Ba) n (Bs) €

(1) +2nan(Bs) 1 (Ba) B+ S (B1, Ba) 1 (Bs) € — S (B1, Ba) Bs
—2nag (81, B5) n (B) ] — 2naR (B1, Bs) Ba + 5779 (B, Ba) B

—gn19 (B1, Ba) ﬂ5} .
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If we take inner product both sides of (31) by £ € x (M) and then choose 84 = &,
we obtain

r

) - -
nads <O‘ on (2n + 1)

) l9.(Bs, B) — 1 (Bs)n (81)

This completes the proof. O

COROLLARY 3.4. Let M be (2n + 1) dimensional almost C () —manifold pro-
vided

Z(Bs.P1) .2 = 2 (8.2).
Then M is a real space form with ¢ = « if and only if A5 = 0.

THEOREM 3.5. If a (2n + 1) — dimensional almost C(«a)—manifold satisfies the
curvature condition

2(53751) Z = )‘6Q (972> ’
then the almost C'(«)—manifold is either co-Kaehler manifold or \g = 0.

COROLLARY 3.5. Let M be (2n + 1) dimensional almost C () —manifold pro-
vided

Z(B3,81).2 = 2@ (9.2)
Then M is a real space form with ¢ = « if and only if A\g = 0.

Let us as the finally examine a special curvature condition established between
the concircular curvature tensor and the Ricci curvature tensor. Let us state and
prove the following theorem.

THEOREM 3.6. If a (2n + 1) — dimensional almost C(«a)—manifold satisfies the
curvature condition

Z (B1,B2) .S = MQ (g, 9),

then the almost C(a)—manifold is an Einstein manifold.

PROOF. Let’s assume that a (2n + 1) —dimensional almost C'(«) —manifold sat-
isfies the curvature condition

(Z(81,82).8) (Bs, 1) = X Q (9, 9) (Bs. B B, )

for each 1, B2, 85, B4 € x (M) . This mean

- (2 (81, 82) B5.B1) = S (85, Z (B, B2) 1) = ~A1 {g (B2, s) S (Br, i)
32

—9(B1,B5) S (B2, B4) + 9 (B2,B4) S (Bs, B1) — 9 (B1,B4) S (Bs,B2)} -
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If we choose 81 = £ in (32) and make use of (12), we have

(33)

2nag (B, B) 0 (B1) — an (B5) S (B2, B1) — sy ) [2ng (B2. B5)m (1)
—1(B5) S (B2, Ba)] + 2nag (Ba, Ba) n (Bs) — an (Ba) S (B2, Bs)
— (s ) [2rag (B2, B1) 1 (85) =0 (Ba) S (B2, )

= —A7{2nag (B2, 85) 1 (Ba) — 0 (Bs) S (B2, Ba)
+2nag (B2, 84) 1 (Bs) — 1 (B1) S (Bs, B2)} -

If we choose 85 = £ in (33), we obtain

S (B2, B1) = 2nag (B2, Ba) -

This completes the proof. O
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