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NEW DISCONTINUITY AND FIXED DISC RESULTS
VIA MEIR-KEELER AND CARISTI TECHNIQUES ON

METRIC SPACES

Nihal Taş and Kübra Karaağaç

Abstract. Metric fixed-point theory has been extensively studied with effec-

tive approaches. There are some open problems about fixed-point theory. One

of them is the Rhoades’ discontinuity problem and another is the fixed-circle
(or fixed-figure) problem. In this paper, we focus on these two open problems

on metric spaces. To give some solutions, we combine Caristi and Meir-Keeler

techniques. So, we present new answers to the stated problems.

1. Introduction

Fixed-point theory says that a self-mapping f : X → X has at least one fixed
point. This theory has been studied on different areas such as mathematics, engi-
neering, applied sciences etc. Metric fixed-point theory was started with Banach
contraction principle and this theory has been generalized with some techniques.

Some Generalization Techniques

↙ ↓ ↘
To generalize the used To generalize the used A geometric approach:
contractive condition metric space Fixed-circle problem

Also, in the literature, there are some open problems related to the fixed point
of a self-mapping f : X → X. For example,

(1) What are the contractive conditions which are strong enough to generate a
fixed point but which do not force the map to be continuous at fixed point [17]?
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120 TAŞ AND KARAAĞAÇ

(2) What are the geometric properties of fixed point set in which case a self-
mapping has more than one fixed point [9]?

Under the first open question, some solutions were given using different ap-
proaches. For example, in [4], Bisht and Rakočević obtained a solution using the
number

m6(x, y) = max

{
d(x, y), ad(x, fx) + (1− a)d(y, fy),

(1− a)d(x, fx) + ad(y, fy), b[d(x,fy)+d(y,fx)]
2

}
,

where 0 < a < 1 and 0 ⩽ b < 1 as follows:

Theorem 1.1. [4] Let (X, d) be a complete metric space. Let f be a self-
mapping on X such that for any x, y ∈ X

(i) for a given ε > 0, there exists δ(ε) > 0 such that ε < m6(x, y) < ε + δ
implies d(fx, fy) ⩽ ε,

(ii) d(fx, fy) < m6(x, y) whenever m6(x, y) > 0.
Then f has a unique fixed point, say z, and fnx → z for each x ∈ X. Moreover, f
is continuous at z if and only if lim

x→z
m6(x, z) = 0.

A corrected version of Theorem 1.1 is the following [12]:

Theorem 1.2. [12] Let (X, d) be a complete metric space. Let f be a self-
mapping on X such that for any x, y ∈ X

(i) for a given ε > 0, there exists δ(ε) > 0 such that ε < m6(x, y) < ε + δ
implies d(fx, fy) ⩽ ε,

(ii) d(fx, fy) ⩽ ϕ (m6(x, y)), ϕ : R+ → R+ is such that ϕ(t) < t for each t > 0.
Then f has a unique fixed point, say z, and fnx → z for each x ∈ X. If 0 < a < 1
then f is continuous at z and if a = 0 then f is continuous at z if and only if
lim
x→z

m6(x, z) = 0.

Many authors have studied this open problem via various aspects (for some
examples, see [1], [2], [3], [5], [13], [14], [15], [16] and the references therein).

Under the second open question, the first solution was obtained in [9]. After
this, new solutions were obtained using numerous techniques on both metric and
generalized metric spaces (for example, see [6], [7], [10], [18], [19], [20] and the
references therein).

In the light of these two open problems, we investigate some solutions on met-
ric spaces. For this purpose, we inspire the used techniques in [20]. We prove
a discontinuity fixed-point theorem with a corollary and obtain some fixed-circle
(resp. fixed-disc) results on metric spaces. Also, we give two fixed-disc examples
supporting our obtained results. Finally, we present an application to the Rectified
Linear Unit Activation Functions (ReLU).

2. Main results

In this section,we give new solutions to the Rhoades’ open problem and the
fixed-circle problem on metric spaces using the Meir-Keeler type and Caristi type



NEW DISCONTINUITY AND FIXED-DISC RESULTS 121

techniques and the number m(x, y) defined as

m(x, y) = max

{
d(x, y), ad(x, fx) + (1− a)d(y, fy),

(1− a)d(x, fx) + ad(y, fy), d(x,fy)+d(y,fx)
2

}
, 0 ⩽ a < 1.

2.1. New discontinuity results. We begin the following theorem.

Theorem 2.1. Let (X, d) be a complete metric space and f be a self-mapping
on X. If the following condition holds for all x, y ∈ X

(M) Given ε > 0 there exists a δ > 0 such that d(x, fx) > 0 implies

ε ⩽ [φ(x)− φ(fx)]m(x, y) < ε+ δ =⇒ d(fx, fy) < ε,

then given x ∈ X, the sequence of iterates {fnx} is a Cauchy sequence and lim
n→∞

fnx =

z for some z ∈ X.

Proof. Using the condition (M), we obtain that if d(x, fx) > 0 then

(2.1) d(fx, fy) < [φ(x)− φ(fx)]m(x, y).

Let x0 ∈ X and let us define a sequence {xn} in X by xn = fxn−1, that is ,
xn = fnx0. If xn = xn+1 for some n then

xn = xn+1 = xn+2 = ...,

that is, {xn} = {fnx} is a Cauchy sequence and xn is a fixed point of f . Thus,
without loss of generality, suppose that xn ̸= xn+1 for each n and cn = d(xn−1, xn).
Using the inequality (2.1), we get

cn+1 = d(xn, xn+1) = d(fxn−1, fxn)

< [φ(xn−1)− φ(xn)]m(xn−1, xn)

= [φ(xn−1)− φ(xn)]max


d(xn−1, xn),

ad(xn, fxn) + (1− a)d(xn−1, fxn−1),
(1− a)d(xn, fxn) + ad(xn−1, fxn−1),

d(xn−1,fxn)+d(xn,fxn−1)
2


= [φ(xn−1)− φ(xn)]max


d(xn−1, xn),

ad(xn, xn+1) + (1− a)d(xn−1, xn),
(1− a)d(xn, xn+1) + ad(xn−1, xn),

d(xn−1,xn+1)
2


= [φ(xn−1)− φ(xn)]d(xn−1, xn).(2.2)

Using the inequality (2.2), we have

cn+1 = d(xn, xn+1) < [φ(xn−1)− φ(xn)]cn

and so

0 <
cn+1

cn
< φ(xn−1)− φ(xn),
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for each n ∈ N. Therefore, the sequence {φ(xn)} is nonincreasing and positive
whence it converges to some f ⩾ 0. For each n ∈ N, we obtain

n∑
m=1

cm+1

cm
<

n∑
m=1

[φ(xm−1)− φ(xm)] = φ(x0)− φ(xn)

→ φ(x0)− f < ∞ as n → ∞

and
n∑

m=1

cm+1

cm
< ∞ =⇒ lim

n→∞

cn+1

cn
= 0.

Hence for α ∈ (0, 1),there exists n0 ∈ N such that

cn+1

cn
⩽ α for all n ⩾ n0

and we have

(2.3) d(xn, xn+1) ⩽ αd(xn−1, xn) for all n ⩾ n0.

Now we show that {xn} is a Cauchy sequence and {xn} converges to some a ∈ X.
From the inequality (2.3), we say that the sequence {d(xn, xn+1)} is bounded below
an nonincreasing. Therefore, it converges to some x ⩾ 0. Since α < 1,we easy prove
x = 0.

For each n1, n2 ∈ N(n1 > n2), we get

d(xn1 , xn2) ⩽
n1−1∑
m=n2

d(xm, xm+1) ⩽
αn2

1− α
d(x0, x1),

that is,

lim
n→∞

sup {d(xn1
, xn2

) : n1 > n2} = 0.

Consequently, the sequence {xn} is Cauchy and there exists a ∈ X such that
{xn} → a since (X, d) is complete metric space. □

A self-mapping f of a metric space X is called k-continuous, k = 1, 2, 3, ..., if
fkxn −→ fa whenever {xn} is a sequence in X such that fk−1xn −→ a (see [13]
for more details). We note that the notion of k-continuity is stronger than orbital
continuity.

Theorem 2.2. Let f satisfies the condition (M). If f is k-continuous, then f
has a fixed point z. Also, f is continuous at z if and only if

lim
x→z

[φ(x)− φ(fx)]m(x, z) = 0.

Proof. Let x0 ∈ X and let us define a sequence {xn} in X by xn = fxn−1,
that is, xn = fnx0. Using Theorem 2.1, we say that {xn} is a Cauchy sequence.
Hence there exists a point a ∈ X such that {xn} → a since (X, d) is a complete
metric space. Also we have fpxn −→ a for each p ⩾ 1.
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Let f be a k-continuity of f implies that fkxn −→ fa since fk−1xn −→ a and
so we get fa = a as fkxn −→ a. Therefore, a is a fixed point of f . It is also easy
to prove that f is continuous at a if and only if

lim
x→a

[φ(x)− φ(fx)]m(x, a) = 0.

□

Corollary 2.1. [20] If the following condition holds for all x, y ∈ X
(i) Given ε > 0 there exists δ > 0 such that d(x, fx) > 0 implies

ε ⩽ [φ(x)− φ(fx)]d(x, y) < ε+ δ =⇒ d(fx, fy) < ε,

then given x ∈ X,the sequence of iterates {fnx}is a Cauchy sequence and
limn→∞ fnx = z for some z ∈ X. If is k-continuous then f has a fixed point z.

2.2. New fixed-disc results. In this section, let the number r be defined as

(2.4) r = inf {d(x, fx) : x ̸= fx, x ∈ X}

and the function φ : X −→ [0,∞) defined as

(2.5) φ(x) = d(x, fx),

for all x ∈ X.
At first, we recall the notions of a fixed circle and a fixed disc.
Let (X, d) be a metric space, Cx0,r = {x ∈ X : d(x, x0) = r} a circle, Dx0,r =

{x ∈ X : d(x, x0) ⩽ r} a disc and f : X −→ X a self-mapping.
(i) If fx = x for every x ∈ Cx0,r then Cx0,r is called as the fixed circle of f [9].
(ii) If fx = x for every x ∈ Dx0,r then Dx0,r is called as the fixed disc of f (see

[10] and the references therein).
In the following theorem, we inspire from the Meir-Keeler type and Caristi type

fixed-point theorems to obtain a new fixed-circle theorem.

Theorem 2.3. Let (X, d) be a metric space, f : X −→ X be a self-mapping, r
be defined as in (2.4) and φ be defined as in (2.5). If there exists x0 ∈ X such that

1. d(x0, fx) ⩽ r and 0 ⩽ φ(x) ⩽ 1 for all x ∈ Cx0,r,
2. For all x ∈ X,

φ(x) > 0 =⇒ φ(x) < [φ(x)− φ(x0)]m(x, x0),

then fx0 = x0 and the circle Cx0,r is a fixed circle of f.

Proof. Let r = 0. Then we have Cx0,r = {x0}. On the contrary, we assume
that φ(x0) > 0. Using the condition (2), we get

φ(x0) = d(x0, fx0) < [φ(x0)− φ(x0)]m(x0, x0) = 0,

a contradiction. Thus, it should be φ(x0) = 0, that is,

(2.6) fx0 = x0.
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Let r > 0 and x ∈ Cx0,r. Now we show that f fixes the circle Cx0,r. To do this,we
suppose that φ(x) > 0. Using the conditions (1), (2) and the equality (2.6) , we
get

φ(x) = d(x, fx) < [φ(x)− φ(x0)]m(x, x0)

= d(x, fx)max

{
d(x, x0), ad(x, fx) + (1− a)d(x0, fx0),

(1− a)d(x, fx) + ad(x0, fx0),
d(x,fx0)+d(x0,fx)

2

}
= d(x, fx)max

{
r, ad(x, fx), (1− a)d(x, fx),

r + d(x0, fx)

2

}
⩽ d(x, fx)max {r, ad(x, fx), (1− a)d(x, fx)} .(2.7)

Case 1: Let max {r, ad(x, fx), (1− a)d(x, fx)} = r. Using the inequality (2.7)
and the condition (1), we get

d(x, fx) < d(x, fx)r ⩽ d(x, fx)d(x, fx) = [d(x, fx)]2,

a contradiction. Hence it should be fx = x.
Case 2: Let max {r, ad(x, fx), (1− a)d(x, fx)} = ad(x, fx). Using the in-

equality (2.7) and the condition (1), we get

d(x, fx) < d(x, fx)ad(x, fx) = a[d(x, fx)]2,

a contradiction. Hence it should be fx = x.
Case 3: Let max {r, ad(x, fx), (1− a)d(x, fx)} = (1 − a)d(x, fx). Using the

inequality (2.7) and the condition (1), we get

d(x, fx) < d(x, fx)(1− a)d(x, fx) = (1− a)[d(x, fx)]2,

a contradiction. Hence it should be fx = x.
Consequently, f fixes the circle Cx0,r. □

As a natural consequence of Theorem 2.3, we give the following fixed-disc result.

Corollary 2.2. Let (X, d) be a metric space, f : X −→ X be a self-mapping,
r be defined as in(2.4) and φ be defined as in (2.5). If there exists x0 ∈ X such that

1. d(x0, fx) ⩽ r and 0 ⩽ φ(x) ⩽ 1 for all x ∈ Dx0,r,
2. For all x ∈ X,

φ(x) > 0 =⇒ φ(x) < [φ(x)− φ(x0)]m(x, x0),

then fx0 = x0 and the disc Dx0,r is a fixed disc of f .

Example 2.1. Let X = R be a usual metric space with the usual metric

d(x, y) = |x− y| ,

for all x, y ∈ R. Let us define a self-mapping f : R → R as

fx =

{
1 if x = 2
x otherwise

,

for all x ∈ R. We get

r = inf {d(x, fx) : x = 2} = 1.
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Then f satisfies the conditions of Theorem 2.3 and Corollary 2.2 with x0 = 0.
Consequently, f fixes the circle C0,1 = {−1, 1} and the disc D0,1 = [−1, 1]. Also,
the number of fixed points is infinite.

Now we recall the following function family to obtain a new fixed-circle result.

Definition 2.1. [21] Let F be the family of all functions F : (0,∞) −→ R
such that

(F1) F is strictly increasing
(F2) For each sequence {αn} in (0,∞) the following holds

lim
n→∞

αn = 0 if and only if lim
n→∞

F (αn) = −∞,

(F3) There exists k ∈ (0, 1) such that limα→0+ αkF (α) = 0.

Some examples of functions that satisfies the conditions (F1), (F2) and (F3)
are as follows:

(i) F (x) = ln(x),
(ii) F (x) = ln(x) + x,
(iii) F (x) = − 1√

x
,

(iv) F (x) = ln(x2 + x) (see [21] for more details).

Theorem 2.4. Let (X, d) be a metric space, f : X −→ X be a self-mapping,
r be defined as in (2.4) and φ be defined as in (2.5). If there exists x0 ∈ X, t > 0,
and F ∈ F such that

1. d(x0, fx) ⩽ r and 0 ⩽ φ(x) ⩽ 1 for all x ∈ Cx0,r,
2. For all x ∈ X,

φ(x) > 0 =⇒ t+ F (φ(x)) ⩽ F ([φ(x)− φ(x0)]m(x, x0)) ,

then fx0 = x0 and the circle Cx0,r is a fixed circle of f.

Proof. Let r = 0. Then we have Cx0,r = {x0}. As an immediate consequence
of the condition (2), we get fx0 = x0. Now suppose that r > 0 and x ∈ Cx0,r be
any point x ̸= fx. Then using the conditions (1), (2) and the strictly increasing
property of F , we find

t+ F (φ(x)) = t+ F (d(x, fx)) ⩽ F ([φ(x)− φ(x0)]m(x, x0))

= F

d(x, fx)max


d(x, x0), ad(x, fx) + (1− a)d(x0, fx0),

(1− a)d(x, fx) + ad(x0, fx0),
d(x,fx0)+d(x0,fx)

2




= F

(
d(x, fx)max

{
r, ad(x, fx), (1− a)d(x, fx),

r + d(x0, fx)

2

})
⩽ F (d(x, fx)max {r, ad(x, fx), (1− a)d(x, fx)}) .(2.8)

Case 1: Let max {r, ad(x, fx), (1− a)d(x, fx)} = r. Using the inequality (2.8),
we get

t+ F (d(x, fx)) ⩽ F (rd(x, fx)) < F
(
[d(x, fx)]

2
)
,

a contradiction. Hence it should be fx = x.
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Case 2: Let max {r, ad(x, fx), (1− a)d(x, fx)} = ad(x, fx). Using the in-
equality (2.8), we get

t+ F (d(x, fx)) ⩽ F (d(x, fx)ad(x, fx)) < F
(
d [(x, fx)]

2
)
,

a contradiction. Hence it should be fx = x.
Case 3: Let max {r, ad(x, fx), (1− a)d(x, fx)} = (1 − a)d(x, fx). Using the

inequality (2.8), we get

t+ F (d(x, fx)) ⩽ F (d(x, fx)(1− a)d(x, fx)) < F
(
d [(x, fx)]

2
)
,

a contradiction. Hence it should be fx = x.
Consequently, the circle Cx0,r is a fixed circle of f. □

Corollary 2.3. Let (X, d) be a metric space, f : X −→ X be a self-mapping,
r be defined as in (2.4) and φ be defined as in (2.5). If there exist x0 ∈ X, t > 0,
and F ∈ F such that

1. d(x0, fx) ⩽ r and 0 ⩽ φ(x) ⩽ 1 for all x ∈ Dx0,r,
2. For all x ∈ X,

φ(x) > 0 =⇒ t+ F (φ(x)) ⩽ F ([φ(x)− φ(x0)]m(x, x0)),

then fx0 = x0 and the disc Dx0,r is a fixed disc of f .

Example 2.2. Let us consider Example 2.1. Then f satisfies the conditions of
Theorem 2.4 and Corollary 2.3 with x0 = 0 and F = lnx. Consequently, f fixes
the circle C0,1 = {−1, 1} and the disc D0,1 = [−1, 1].

3. An application to ReLU

Recently, the investigation to some applications of fixed-point theory is im-
portant to show the importance of the obtained theoretical results. For example,
activation functions can be used in some applications. These functions are im-
portant in neural network. In this section, we give an example to fixed-circle and
fixed-disc results using the Rectified Linear Unit Activation Functions (ReLU) de-
fined as follows (see, [8] for more details):

ReLU(x) =

{
0 if x ⩽ 0
x if x > 0

= max {0, x} .

Let us consider X = [0,∞) ∪ {−1} with the usual metric. Then, we get

r = inf {|x−ReLU(x)| : x = −1} = 1,

m (−1, 1) =

{
2, a, (1− a) ,

3

2

}
= 2.

The function ReLU satisfies the conditions of Theorem 2.3 and 2.4 with x0 = 1
and F = lnx. Consequently, C1,1 = {0, 2} is a fixed circle of ReLU .

Acknowledgements

The authors would like to thank the anonymous referees for their comments
that helped us improve this article.



NEW DISCONTINUITY AND FIXED-DISC RESULTS 127

References

1. R.K. Bisht and R.P. Pant, A remark on discontinuity at fixed point. J. Math. Anal. Appl.,

445(2017), 1239–1242.

2. R.K. Bisht and R.P. Pant, Contractive de nitions and discontinuity at fixed point. Appl. Gen.
Topol., 18(1)(2017), 173–182.

3. R.K. Bisht and N. Hussain, A note on convex contraction mappings and discontinuity at fixed

point. J. Math. Anal., 8(4)(2017), 90–96.
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15. R. P. Pant, N.Y. Özgür, and N. Taş, On discontinuity problem at fixed point. Bull. Malays.
Math. Sci. Soc., 43(2020), 499–517.
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