QUASI IDEALS OF NEARNESS SEMIGROUPS

Özlem Tekin

Abstract

The aim of this paper is to study the notion of quasi-ideals in semigroups on weak nearness approximation spaces and explain some of the concepts and definitions. Also, it is given an example related to the subject. The features described in this study will contribute greatly to the theoretical developments of the nearness semigroup theory.

1. Introduction

Semigroups, as the basic algebraic structure were used in the areas of theoretical computer science as well as in the solutions of graph theory, optimization theory and in particular for studying automata, coding theory and formal languages. The subject of quasi-ideal is generalization of the concept of one sided ideal. In 1956, the concept of quasi ideals for semigroups $[\mathbf{1 1}]$ and rings was firstly defined by Otto Steinfeld. Many researchers studied important properties for quasi ideals. Readers can find several paper about quasi-ideals in $[\mathbf{1 2}, \mathbf{1 6}, \mathbf{2}, \mathbf{1 7}]$.

In 2002, Peters introduced near set theory that is a generalization of rough set theory $[\mathbf{7}]$. In this theory, Peters defined an indiscernibility relation by using the features of the objects to determine the nearness of the objects [8]. Afterwards, he generalized approach theory of the nearness of non-empty sets resembling each other $[\mathbf{9}, \mathbf{1 0}]$. In 2012, İnan and Öztürk investigated the concept of nearness semigroups [1] and other algebraic approaches of near sets in [4]. Also, Tekin defined quasi-nearness ideals in semirings on weak nearness approximaion spaces [13]. Also, readers can find other studies related to the nearness algebraic structures in $[5,6,14,15]$.

[^0]In this paper, we introduced the concept of the quasi ideals of nearness semigroups theory and also studied some properties.

2. Preliminaries

A nearness approximation space is a tuple $\left(\mathcal{O}, \mathcal{F}, \sim_{B_{r}}, N_{r}(B), \nu_{N_{r}}\right)$ where the nearness approximation space is defined with a set of perceived objects \mathcal{O}, set of probe functions \mathcal{F} representing object features, indiscernibility relation $\sim_{B_{r}}$ defined relative to $B_{r} \subseteq B \subseteq \mathcal{F}$, collection of partitions (families of neighbour-hoods) $N_{r}(B)$, and overlap function $\nu_{N_{r}}$.

Indiscernibility relation on \mathcal{O} defined as

$$
\sim_{B}=\left\{(x, x) \in \mathcal{O} \times \mathcal{O} \mid \triangle_{\varphi_{i}}=0, \forall \varphi_{i} \in B B \subseteq \mathcal{F}\right\}
$$

where description length is $i \leqslant|\Phi|$. In addition, $\sim_{B_{r}}$ is also indiscernibility relation determined by utilizing B_{r}.

Near equivalence class is stated as $[x]_{B_{r}}=\left\{x^{\prime} \in \mathcal{O} \mid x \sim_{B_{r}} x\right\}$. After getting near equivalence classes, quotient set $\mathcal{O} / \sim_{B_{r}}=\left\{[x]_{B_{r}} \mid x \in \mathcal{O}\right\}=\xi_{\mathcal{O}, B_{r}}$ and set of partitions $N_{r}(B)=\left\{\xi_{\mathcal{O}, B_{r}} \mid B_{r} \subseteq B\right\}$ can be found. By using near equivalence classes, $N_{r}(B)^{*} X=\bigcup_{[x]_{B_{r}} \cap X \neq \varnothing}[x]_{B_{r}}$ upper approximation set can be attained.

Definition 2.1. [1] Let $\left(\mathcal{O}, \mathcal{F}, \sim_{B_{r}}, N_{r}(B), \nu_{N_{r}}\right)$ be a nearness approximation space and $S \subseteq \mathcal{O}$. If the following properties are satisfied, then S is called a near semigroup on nearness approximate approximation spaces.
i) $x y \in N_{r}(B)^{*} S$ for all $x, y \in S$,
ii) $(x \cdot y) \cdot z=x \cdot(y \cdot z)$ property holds in $N_{r}(B)^{*} S$ for all $x, y \in S$.

Definition 2.2. [1] Let $\left(\mathcal{O}, \mathcal{F}, \sim_{B_{r}}, N_{r}(B), \nu_{N_{r}}\right)$ be a nearness approximation space, S be a near semigroup and I a nonempty subset of S. If $N_{r}(B)^{*}(I)$ is a left(right,two sided) ideal of S, then I is called a near left (right, two sided) ideal of S.

Definition 2.3. [4] Let \mathcal{O} be a set of sample objects, \mathcal{F} a set of the probe functions, $\sim_{B_{r}}$ an indiscernibility relation, and N_{r} a collection of partitions. Then, $\left(\mathcal{O}, \mathcal{F}, \sim_{B_{r}}, N_{r}(B)\right)$ is called a weak nearness approximation space.

Theorem 2.1. [4] Let $\left(\mathcal{O}, \mathcal{F}, \sim_{B_{r}}, N_{r}(B)\right)$ be a weak nearness approximation space and $X, Y \subset \mathcal{O}$. Then the following statements hold:
i) $X \subseteq N_{r}(B)^{*} X$,
ii) $N_{r}(B)^{*}(X \cup Y)=N_{r}(B)^{*} X \cup N_{r}(B)^{*} Y$,
iii) $X \subseteq Y$ implies $N_{r}(B)^{*} X \subseteq N_{r}(B)^{*} Y$,
iv) $N_{r}(B)^{*}(X \cap Y) \subseteq N_{r}(B)^{*} X \cap N_{r}(B)^{*} Y$.

Lemma 2.1. [3] Let S be a nearness semiring. The following properties hold:
i) If $X, Y \subseteq S$, then $\left(N_{r}(B)^{*} X\right)+\left(N_{r}(B)^{*} Y\right) \subseteq N_{r}(B)^{*}(X+Y)$.
ii) If $X, Y \subseteq S$, then $\left(N_{r}(B)^{*} X\right)\left(N_{r}(B)^{*} Y\right) \subseteq N_{r}(B)^{*}(X Y)$.

Definition 2.4. [14] Let S be a semigroup and I be a subsemigroup of S on weak nearness approximation space.
i) I is called a right(left) ideals of S if $I S \subseteq N_{r}(B)^{*} I\left(S I \subseteq N_{r}(B)^{*} I\right)$.
ii) I is called a upper-near right(left) ideals of S if $\left(N_{r}(B)^{*} I\right) S \subseteq N_{r}(B)^{*} I$ $\left(S\left(N_{r}(B)^{*} I\right) \subseteq N_{r}(B)^{*} I\right)$.

3. Quasi ideals of nearness semigroups

Definition 3.1. Let S be a semigroup on weak near approximation spaces, and A be a non-empty subset of S.
i) A is called a subsemigroup of S if $A A \subseteq N_{r}(B)^{*} A$.
ii) A is called a upper-near subsemigroup of S if $\left(N_{r}(B)^{*} A\right)\left(N_{r}(B)^{*} A\right) \subseteq$ $N_{r}(B)^{*} A$.

Definition 3.2. Let S be a nearness semigroup and Q be a non-empty subset of S.
i) Q is said to be quasi-ideal of S if $Q S \cap S Q \subseteq N_{r}(B)^{*} Q$.
ii) Q is said to be a quasi upper-near ideal of S if $\left(N_{r}(B)^{*} Q\right) S \cap S\left(N_{r}(B)^{*} Q\right) \subseteq$ $N_{r}(B)^{*} Q$.
iii) Q is said to be an (m, n) quasi-ideal of S, if $Q S^{m} \cap S^{n} Q \subseteq N_{r}(B)^{*} Q$.

Lemma 3.1. Let S be a nearness semigroup. If S is commutative, then each quasi ideal of S is two-sided ideal of S.

Proof. Let S be a commutative nearness semigroup and Q be a quasi ideal of S. In this case, $Q S \cap S Q \subseteq N_{r}(B)^{*} Q$. Since S is commutative and $Q \subseteq S$, then $S Q=Q S$. Thus, $S Q \subseteq N_{r}(B)^{*} Q$ and Q is a left ideal of S. Similarly, we can show that Q is a right-nearness ideal of S. In this way, each quasi-nearness ideal of S is a two-sided nearness ideal of S.

Example 3.1. Let $\mathcal{O}=\{a, b, c, d, e, f, g, h, i, j, k\}$ be a set of perceptual objects where $B=\left\{\chi_{1}, \chi_{2}, \chi_{3}\right\} \subseteq \mathcal{F}$ is a set of probe functions and $S=\{d, f, g\} \subset \mathcal{O}$. For $r=1$, values of the probe functions

$$
\begin{aligned}
& \chi_{1}: \mathcal{O} \rightarrow V_{1}=\left\{\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}, \beta_{5}\right\}, \\
& \chi_{2}: \mathcal{O} \rightarrow V_{2}=\left\{\beta_{2}, \beta_{3}, \beta_{4}, \beta_{5}, \beta_{6},\right\}, \\
& \chi_{3}: \mathcal{O} \rightarrow V_{3}=\left\{\beta_{2}, \beta_{3}, \beta_{4}, \beta_{5}\right\}
\end{aligned}
$$

are given in following table.

	a	b	c	d	e	f	g	h	i	j	k
χ_{1}	β_{1}	β_{2}	β_{3}	β_{2}	β_{4}	β_{3}	β_{4}	β_{3}	β_{2}	β_{5}	β_{1}
χ_{2}	β_{2}	β_{3}	β_{4}	β_{5}	β_{4}	β_{4}	β_{6}	β_{5}	β_{2}	β_{5}	β_{3}
χ_{3}	β_{2}	β_{2}	β_{2}	β_{3}	β_{4}	β_{3}	β_{3}	β_{4}	β_{4}	β_{5}	β_{5}

Now, we find the near equivalence classes according to the indiscernibility relation $\sim_{B_{r}}$ for \mathcal{O}.

$$
\begin{aligned}
{[a]_{\chi_{1}} } & =\left\{x \in \mathcal{O} \mid \chi_{1}(x)=\chi_{1}(a)=\beta_{1}\right\}=\{a, k\} \\
& =[k]_{\chi_{1}}, \\
{[b]_{\chi_{1}} } & =\left\{x \in \mathcal{O} \mid \chi_{1}(x)=\chi_{1}(b)=\beta_{2}\right\}=\{b, d, i\} \\
& =[d]_{\chi_{1}}=[i]_{\chi_{1}}, \\
{[c]_{\chi_{1}} } & =\left\{x \in \mathcal{O} \mid \chi_{1}(x)=\chi_{1}(c)=\beta_{3}\right\}=\{c, f, h\} \\
& =[f]_{\chi_{1}}=[h]_{\chi_{1}}, \\
{[e]_{\chi_{1}} } & =\left\{x \in \mathcal{O} \mid \chi_{1}(x)=\chi_{1}(e)=\beta_{4}\right\}=\{e, g\} \\
& =[g]_{\chi_{1}}, \\
{[j]_{\chi_{1}} } & =\left\{x \in \mathcal{O} \mid \chi_{1}(x)=\chi_{1}(j)=\beta_{5}\right\}=\{j\} .
\end{aligned}
$$

Then, we get $\xi_{\chi_{1}}=\left\{[a]_{\chi_{1}},[b]_{\chi_{1}},[c]_{\chi_{1}},[e]_{\chi_{1}},[j]_{\chi_{1}}\right\}$.

$$
\begin{aligned}
{[a]_{\chi_{2}} } & =\left\{x \in \mathcal{O} \mid \chi_{2}(x)=\chi_{2}(a)=\beta_{2}\right\}=\{a, i\} \\
& =[i]_{\chi_{2}}, \\
{[b]_{\chi_{2}} } & =\left\{x \in \mathcal{O} \mid \chi_{2}(x)=\chi_{2}(b)=\beta_{3}\right\}=\{b, k\} \\
& =[k]_{\chi_{2}}, \\
{[c]_{\chi_{2}} } & =\left\{x \in \mathcal{O} \mid \chi_{2}(x)=\chi_{2}(c)=\beta_{4}\right\}=\{c, e, f\} \\
& =[e]_{\chi_{2}}=[f]_{\chi_{2}}, \\
{[d]_{\chi_{2}} } & =\left\{x \in \mathcal{O} \mid \chi_{2}(x)=\chi_{2}(d)=\beta_{5}\right\}=\{d, h, j\} \\
& =[h]_{\chi_{2}}=[j]_{\chi_{2}}, \\
{[g]_{\chi_{2}} } & =\left\{x \in \mathcal{O} \mid \chi_{2}(x)=\chi_{2}(g)=\beta_{6}\right\}=\{g\} .
\end{aligned}
$$

Thus, we have $\xi_{\chi_{2}}=\left\{[a]_{\chi_{2}},[b]_{\chi_{2}},[c]_{\chi_{2}},[d]_{\chi_{2}},[g]_{\chi_{2}}\right\}$.

$$
\begin{aligned}
{[a]_{\chi_{3}} } & =\left\{x \in \mathcal{O} \mid \chi_{3}(x)=\chi_{3}(a)=\beta_{2}\right\}=\{a, b, c\} \\
& =[b]_{\chi_{3}}=[c]_{\chi_{3}}, \\
{[d]_{\chi_{3}} } & =\left\{x \in \mathcal{O} \mid \chi_{3}(x)=\chi_{3}(d)=\beta_{3}\right\}=\{d, f, g\} \\
& =[f]_{\chi_{3}}=[g]_{\chi_{3}}, \\
{[e]_{\chi_{3}} } & =\left\{x \in \mathcal{O} \mid \chi_{3}(x)=\chi_{3}(e)=\beta_{4}\right\}=\{e, h, i\} \\
& =[h]_{\chi_{3}}=[i]_{\chi_{3}}, \\
{[j]_{\chi_{3}} } & =\left\{x \in \mathcal{O} \mid \chi_{3}(x)=\chi_{3}(j)=\beta_{5}\right\}=\{j, k\} \\
& =[k]_{\chi_{3}} .
\end{aligned}
$$

Hence we obtain $\xi_{\chi_{3}}=\left\{[a]_{\chi_{3}},[d]_{\chi_{3}},[e]_{\chi_{3}},[j]_{\chi_{3}}\right\}$. Therefore, for $r=1$, a set of partitions of \mathcal{O} is $N_{1}(B)=\left\{\xi_{\chi_{1}}, \xi_{\chi_{2}}, \xi_{\chi_{3}}\right\}$. Then we can write

$$
\begin{aligned}
N_{1}(B)^{*} S & =\bigcup_{[x]_{\chi_{i}} \cap S \neq \varnothing}^{[x]_{\chi_{i}}}{ }^{\cap S \neq \varnothing} \\
& =[b]_{\chi_{1}} \cup[c]_{\chi_{1}} \cup[e]_{\chi_{1}} \cup[c]_{\chi_{2}} \cup[d]_{\chi_{2}} \cup[g]_{\chi_{2}} \cup[d]_{\chi_{3}} \\
& =\{b, c, d, e, f, g, h, i, j\} .
\end{aligned}
$$

Considering the following table of operation:

\circ	d	f	g
d	e	g	f
f	g	d	e
g	f	e	d

In that case, (S, \circ) is a semigroup on \mathcal{O}. Next, we take $Q=\{f, g\} \subseteq S$.

$$
\begin{aligned}
& =[c]_{\chi_{1}} \cup[e]_{\chi_{1}} \cup[c]_{\chi_{2}} \cup[g]_{\chi_{2}} \cup[d]_{\chi_{3}} \\
& =\{c, d, e, f, g, h\} \text {. }
\end{aligned}
$$

In this case, Q satisfies the condition $Q S \cap S Q \subseteq N_{r}(B)^{*} Q$. Thus, Q is a quasi-nearness ideal of S.

Lemma 3.2. Let S be a nearness semigroup. Each one or two-sided nearness ideal of S is a quasi-nearness ideal of S.

Proof. Let Q be a left nearness ideal of S. In this case, $S Q \subseteq N_{r}(B)^{*} Q$ by Definition 2.4.(i). From here, we have $Q S \cap S Q \subseteq S Q \subseteq N_{r}(B)^{*} Q$. Thus, $Q S \cap S Q \subseteq N_{r}(B)^{*} Q$ and Q is a quasi-nearness ideal of S. It can be easily shown that if Q is a right nearness ideal of S, namely $Q S \subseteq N_{r}(B)^{*} Q$, then Q is a quasinearness ideal of S. Hence, each one or two-sided ideal of S is a quasi-nearness ideal of S.

Theorem 3.1. Let S be a nearness semigroup and $\left\{Q_{i} \mid i \in I\right\}$ be set of quasinearness ideals of S with index set I. If $N_{r}(B)^{*}\left(\bigcap_{i \in I} Q_{i}\right)=\bigcap_{i \in I} N_{r}(B)^{*} Q_{i}$, then $\bigcap_{i \in I} Q_{i}=\emptyset$ or $\bigcap_{i \in I} Q_{i}$ is a quasi-nearness ideal of S.

Proof. Let $\bigcap_{i \in I} Q_{i}=Q$. Now, we demonstrate Q is either empty or a quasinearness ideal of S. Assume that Q is non-empty. Since Q_{i} is quasi-nearness ideals of S for $i \in I$, we have that $Q_{i} S \cap S Q_{i} \subseteq N_{r}(B)^{*} Q_{i}$ for all $i \in I$.

$$
S Q=S\left(\bigcap_{i \in I} Q_{i}\right)=\bigcap_{i \in I}\left(S Q_{i}\right) \subseteq S Q_{i}
$$

and

$$
Q S=\left(\bigcap_{i \in I} Q_{i}\right) S=\bigcap_{i \in I}\left(Q_{i} S\right) \subseteq Q_{i} S
$$

In this case, we get that

$$
Q S \cap S Q \subseteq Q_{i} S \cap S Q_{i} \subseteq N_{r}(B)^{*} Q_{i}, \forall i \in I
$$

Furthermore, $Q S \cap S Q \subseteq N_{r}(B)^{*} Q$. Thus, Q is a quasi-nearness ideal of S.

Example 3.2. Let $\mathcal{O}=\{a, b, c, d, e, f, g, h, i\}$ be a set of perceptual objects where $B=\left\{\chi_{1}, \chi_{2}, \chi_{3}\right\} \subseteq \mathcal{F}$ is a set of probe functions and $S=\{d, e, f\} \subset \mathcal{O}$. For $r=1$, values of the probe functions

$$
\begin{aligned}
& \chi_{1}: \mathcal{O} \rightarrow V_{1}=\left\{\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}\right\}, \\
& \chi_{2}: \mathcal{O} \rightarrow V_{2}=\left\{\beta_{2}, \beta_{3}, \beta_{4}, \beta_{5}, \beta_{6},\right\}, \\
& \chi_{3}: \mathcal{O} \rightarrow V_{3}=\left\{\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}\right\}
\end{aligned}
$$

are given in the following table.

	a	b	c	d	e	f	g	h	i
χ_{1}	β_{1}	β_{2}	β_{4}	β_{3}	β_{1}	β_{2}	β_{1}	β_{4}	β_{4}
χ_{2}	β_{2}	β_{3}	β_{4}	β_{4}	β_{5}	β_{6}	β_{5}	β_{2}	β_{3}
χ_{3}	β_{1}	β_{2}	β_{1}	β_{3}	β_{4}	β_{4}	β_{3}	β_{1}	β_{2}

Next, it can be found the near equivalence classes according to the indiscernibility relation $\sim_{B_{r}}$ for \mathcal{O}.

$$
\begin{aligned}
{[a]_{\chi_{1}} } & =\left\{x \in \mathcal{O} \mid \chi_{1}(x)=\chi_{1}(a)=\beta_{1}\right\}=\{a, e\} \\
& =[e]_{\chi_{1}}, \\
{[b]_{\chi_{1}} } & =\left\{x \in \mathcal{O} \mid \chi_{1}(x)=\chi_{1}(b)=\beta_{2}\right\}=\{b, f\} \\
& =[f]_{\chi_{1}}, \\
{[d]_{\chi_{1}} } & =\left\{x \in \mathcal{O} \mid \chi_{1}(x)=\chi_{1}(d)=\beta_{3}\right\}=\{d\}, \\
{[h]_{\chi_{1}} } & =\left\{x \in \mathcal{O} \mid \chi_{1}(x)=\chi_{1}(h)=\beta_{4}\right\}=\{c, h, i\} \\
& =[h]_{\chi_{1}}=[i]_{\chi_{1}} .
\end{aligned}
$$

Hence, we have the near equivalence classes $\xi_{\chi_{1}}=\left\{[a]_{\chi_{1}},[b]_{\chi_{1}},[d]_{\chi_{1}},[h]_{\chi_{1}}\right\}$ for χ_{1}.

$$
\begin{aligned}
{[a]_{\chi_{2}} } & =\left\{x \in \mathcal{O} \mid \chi_{2}(x)=\chi_{2}(a)=\beta_{2}\right\}=\{a, h\} \\
& =[h]_{\chi_{2}}, \\
{[b]_{\chi_{2}} } & =\left\{x \in \mathcal{O} \mid \chi_{2}(x)=\chi_{2}(b)=\beta_{3}\right\}=\{b, i\} \\
& =[i]_{\chi_{2}}, \\
{[c]_{\chi_{2}} } & =\left\{x \in \mathcal{O} \mid \chi_{2}(x)=\chi_{2}(c)=\beta_{4}\right\}=\{c, d\} \\
& =[d]_{\chi_{2}} \\
{[e]_{\chi_{2}} } & =\left\{x \in \mathcal{O} \mid \chi_{2}(x)=\chi_{2}(e)=\beta_{5}\right\}=\{e, g\} \\
& =[g]_{\chi_{2}} \\
{[f]_{\chi_{2}} } & =\left\{x \in \mathcal{O} \mid \chi_{2}(x)=\chi_{2}(f)=\beta_{6}\right\}=\{f\} .
\end{aligned}
$$

Therefore, we get the near equivalence classes $\xi_{\chi_{2}}=\left\{[a]_{\chi_{2}},[b]_{\chi_{2}},[c]_{\chi_{2}},[e]_{\chi_{2}},[f]_{\chi_{2}}\right\}$ for χ_{2}.

$$
\begin{aligned}
{[a]_{\chi_{3}} } & =\left\{x \in \mathcal{O} \mid \chi_{3}(x)=\chi_{3}(a)=\beta_{1}\right\}=\{a, c, h\} \\
& =[c]_{\chi_{3}}=[h]_{\chi_{3}}, \\
{[b]_{\chi_{3}} } & =\left\{x \in \mathcal{O} \mid \chi_{3}(x)=\chi_{3}(b)=\beta_{2}\right\}=\{b, i\} \\
& =[i]_{\chi_{3}}, \\
{[d]_{\chi_{3}} } & =\left\{x \in \mathcal{O} \mid \chi_{3}(x)=\chi_{3}(d)=\beta_{3}\right\}=\{d, g\} \\
& =[g]_{\chi_{3}}, \\
{[e]_{\chi_{3}} } & =\left\{x \in \mathcal{O} \mid \chi_{3}(x)=\chi_{3}(e)=\beta_{4}\right\}=\{e, f\} \\
& =[f]_{\chi_{3}} .
\end{aligned}
$$

Thereby, we obtain the near equivalence classes $\xi_{\chi_{3}}=\left\{[a]_{\chi_{3}},[b]_{\chi_{3}},[d]_{\chi_{3}},[e]_{\chi_{3}}\right\}$ for χ_{3}, and so for $r=1$, a set of partitions of \mathcal{O} is $N_{1}(B)=\left\{\xi_{\chi_{1}}, \xi_{\chi_{2}}, \xi_{\chi_{3}}\right\}$. Then we can find

$$
\begin{aligned}
N_{1}(B)^{*} S & =\bigcup_{[x]_{\chi_{i}} \cap S \neq \varnothing}^{[x]_{\chi_{i}}} \\
& =[a]_{\chi_{1}} \cup[b]_{\chi_{1}} \cup[d]_{\chi_{1}} \cup[c]_{\chi_{2}} \cup[e]_{\chi_{2}} \cup[f]_{\chi_{2}} \cup[d]_{\chi_{3}} \cup[e]_{\chi_{3}} \\
& =\{a, b, c, d, e, f, g\} .
\end{aligned}
$$

Considering the following table of operation:

\cdot	d	e	f
d	e	d	c
e	d	e	f
f	c	f	e

In that case, (S, \cdot) is a semigroup on \mathcal{O}, and we take $Q=\{e, f\} \subseteq S$.

$$
\begin{aligned}
N_{1}(B)^{*} Q & =\bigcup_{[x]_{\chi_{i}} \cap Q \neq \varnothing}^{[x]_{\chi_{i}}}{ }^{\cap} \mathbf{~} \\
& =[a]_{\chi_{1}} \cup[b]_{\chi_{1}} \cup[e]_{\chi_{2}} \cup[f]_{\chi_{2}} \cup[e]_{\chi_{3}} \\
& =\{a, b, e, f, g\} .
\end{aligned}
$$

It is seen for $d \in S$ and $f \in Q,\{d \cdot f\} \cap\{f \cdot d\}=c$ and $c \in Q S \cap S Q$, but $c \notin N_{r}(B)^{*} Q$. Therefore, Q does not satisfy the condition $S Q \cap Q S \subseteq N_{r}(B)^{*} Q$, and Q is not a quasi-nearness ideal of S.

Theorem 3.2. Let S be a nearness semigroup, L be a left nearness ideal and R be a right nearness ideal of S. If $N_{r}(B)^{*} L \cap N_{r}(B)^{*} R \subseteq N_{r}(B)^{*}(L \cap R)$, then
i) $R L \subseteq N_{r}(B)^{*}(L \cap R)$,
ii) $Q=L \cap R$ is a quasi-nearness ideal of S.

Proof. i) Let L be a left nearness ideal and R be a right nearness ideal of S. Since $R \subseteq S$ and L is a left nearness ideal of $S, R L \subseteq S L \subseteq N_{r}(B)^{*} L$. Similarly, since $L \subseteq S$ and R is a right nearness ideal of $S, R \bar{L} \subseteq R \bar{S} \subseteq N_{r}(B)^{*} R$. In this case, we get that $R L \subseteq N_{r}(B)^{*} L \cap N_{r}(B)^{*} R \subseteq N_{r}(B)^{*}(L \cap R)$ by hypothesis. Hence, $R L \subseteq N_{r}(B)^{*}(L \cap R)$.
ii) Let L be a left nearness ideal of S, R be a right nearness ideal of S and $Q=L \cap R$. We show that $Q S \cap S Q \subseteq N_{r}(B)^{*} Q$. Since L is a left nearness ideal,

$$
S Q=S(L \cap R)=S L \cap S R \subseteq S L \subseteq N_{r}(B)^{*} L
$$

Similarly, since R is a right nearness ideal of S,

$$
Q S=(L \cap R) S=L S \cap R S \subseteq R S \subseteq N_{r}(B)^{*} R
$$

From here, $S Q \cap Q S \subseteq N_{r}(B)^{*} L \cap N_{r}(B)^{*} R \subseteq N_{r}(B)^{*}(L \cap R)$ by hypothesis. Hence, $S Q \cap Q S \subseteq N_{r}(B)^{*} Q$.

Theorem 3.3. Let S be a nearness semigroup and A_{i} be an (m, n) quasinearness ideals of S. If $N_{r}(B)^{*}\left(\bigcap_{i \in I} A_{i}\right)=\bigcap_{i \in I} N_{r}(B)^{*} A_{i}$, then the intersection of any set of (m, n) quasi-nearness ideals of S is a (m, n) quasi-nearness ideal of S.

Proof. Let $\bigcap_{i \in I} A_{i}=A$. Now, we demonstrate A is either empty or a (m, n) quasi-nearness ideal of S. Suppose that A is non-empty. Since A_{i} is (m, n) quasinearness ideals of S for $i \in I$, we have that $A_{i} S^{m} \cap S^{n} A_{i} \subseteq N_{r}(B)^{*} A_{i}$ for all $i \in I$.

$$
A S^{m}=\left(\bigcap_{i \in I} A_{i}\right) S^{m}=\bigcap_{i \in I}\left(A_{i} S^{m}\right) \subseteq A_{i} S^{m} .
$$

and

$$
S^{n} A=S^{n}\left(\bigcap_{i \in I} A_{i}\right)=\bigcap_{i \in I}\left(S^{n} A_{i}\right) \subseteq S^{n} A_{i}
$$

In this case, we get that

$$
A S^{m} \cap S^{n} A \subseteq A_{i} S^{m} \cap S^{n} A_{i} \subseteq N_{r}(B)^{*} A_{i}, \forall i \in I
$$

Furthermore, $A S^{m} \cap S^{n} A \subseteq N_{r}(B)^{*} A$. Thus, A is a (m, n) quasi-nearness ideal of S.

Example 3.3. Let $\mathcal{O}=\{a, b, c, d, e, f, g, h\}$ be a set of perceptual objects where $B=\left\{\chi_{1}, \chi_{2}, \chi_{3}\right\} \subseteq \mathcal{F}$ is a set of probe functions and $S=\{c, d, e\} \subset \mathcal{O}$. For $r=1$, values of the probe functions

$$
\begin{aligned}
& \chi_{1}: \mathcal{O} \rightarrow V_{1}=\left\{\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}\right\}, \\
& \chi_{2}: \mathcal{O} \rightarrow V_{2}=\left\{\beta_{2}, \beta_{3}, \beta_{4}, \beta_{5}, \beta_{6}\right\}, \\
& \chi_{3}: \mathcal{O} \rightarrow V_{3}=\left\{\beta_{3}, \beta_{4}, \beta_{5}, \beta_{6}\right\}
\end{aligned}
$$

are given in the following table:

	a	b	c	d	e	f	g	h	i
χ_{1}	β_{1}	β_{2}	β_{3}	β_{1}	β_{3}	β_{3}	β_{2}	β_{2}	β_{4}
χ_{2}	β_{2}	β_{3}	β_{4}	β_{5}	β_{3}	β_{6}	β_{5}	β_{5}	β_{2}
χ_{3}	β_{3}	β_{3}	β_{4}	β_{4}	β_{4}	β_{5}	β_{6}	β_{6}	β_{5}

Now, we find the near equivalence classes according to the indiscernibility relation $\sim_{B_{r}}$ for \mathcal{O}.

$$
\begin{aligned}
{[a]_{\chi_{1}} } & =\left\{x \in \mathcal{O} \mid \chi_{1}(x)=\chi_{1}(a)=\beta_{1}\right\}=\{a, d\} \\
& =[d]_{\chi_{1}}, \\
{[b]_{\chi_{1}} } & =\left\{x \in \mathcal{O} \mid \chi_{1}(x)=\chi_{1}(b)=\beta_{2}\right\}=\{b, g, h\} \\
& =[g]_{\chi_{1}}=[h]_{\chi_{1}}, \\
{[c]_{\chi_{1}} } & =\left\{x \in \mathcal{O} \mid \chi_{1}(x)=\chi_{1}(c)=\beta_{3}\right\}=\{c, e, f\} \\
& =[e]_{\chi_{1}}=[f]_{\chi_{1}}, \\
{[i]_{\chi_{1}} } & =\left\{x \in \mathcal{O} \mid \chi_{1}(x)=\chi_{1}(i)=\beta_{4}\right\}=\{i\} .
\end{aligned}
$$

Then, we get $\xi_{\chi_{1}}=\left\{[a]_{\chi_{1}},[b]_{\chi_{1}},[c]_{\chi_{1}},[i]_{\chi_{1}}\right\}$.

$$
\begin{aligned}
{[a]_{\chi_{2}} } & =\left\{x \in \mathcal{O} \mid \chi_{2}(x)=\chi_{2}(a)=\beta_{2}\right\}=\{a, i\} \\
& =[i]_{\chi_{2}}, \\
{[b]_{\chi_{2}} } & =\left\{x \in \mathcal{O} \mid \chi_{2}(x)=\chi_{2}(b)=\beta_{3}\right\}=\{b, e\} \\
& =[e]_{\chi_{2}}, \\
{[c]_{\chi_{2}} } & =\left\{x \in \mathcal{O} \mid \chi_{2}(x)=\chi_{2}(c)=\beta_{4}\right\}=\{c\}, \\
{[d]_{\chi_{2}} } & =\left\{x \in \mathcal{O} \mid \chi_{2}(x)=\chi_{2}(d)=\beta_{5}\right\}=\{d, g, h\} \\
& =[g]_{\chi_{2}}=[h]_{\chi_{2}}, \\
{[f]_{\chi_{2}} } & =\left\{x \in \mathcal{O} \mid \chi_{2}(x)=\chi_{2}(f)=\beta_{6}\right\}=\{f\} .
\end{aligned}
$$

Thus, we have $\xi_{\chi_{2}}=\left\{[a]_{\chi_{2}},[b]_{\chi_{2}},[c]_{\chi_{2}},[d]_{\chi_{2}},[f]_{\chi_{2}}\right\}$.

$$
\begin{aligned}
{[a]_{\chi_{3}} } & =\left\{x \in \mathcal{O} \mid \chi_{3}(x)=\chi_{3}(a)=\beta_{3}\right\}=\{a, b\} \\
& =[b]_{\chi_{3}}, \\
{[c]_{\chi_{3}} } & =\left\{x \in \mathcal{O} \mid \chi_{3}(x)=\chi_{3}(c)=\beta_{4}\right\}=\{c, d, e\} \\
& =[d]_{\chi_{3}}=[e]_{\chi_{3}}, \\
{[f]_{\chi_{3}} } & =\left\{x \in \mathcal{O} \mid \chi_{3}(x)=\chi_{3}(f)=\beta_{5}\right\}=\{f, i\} \\
& =[i]_{\chi_{3}} \\
{[g]_{\chi_{3}} } & =\left\{x \in \mathcal{O} \mid \chi_{3}(x)=\chi_{3}(g)=\beta_{6}\right\}=\{g, h\} \\
& =[h]_{\chi_{3}}
\end{aligned}
$$

Hence we obtain $\xi_{\chi_{3}}=\left\{[a]_{\chi_{3}},[c]_{\chi_{3}},[f]_{\chi_{3}},[g]_{\chi_{3}}\right\}$. Therefore, for $r=1$, a set of partitions of \mathcal{O} is $N_{1}(B)=\left\{\xi_{\chi_{1}}, \xi_{\chi_{2}}, \xi_{\chi_{3}}\right\}$. Then we can write

$$
\begin{aligned}
N_{1}(B)^{*} S & =\bigcup_{[x]_{\chi_{i}} \cap S \neq \varnothing}{ }^{[x]_{\chi_{i}}} \\
& =[a]_{\chi_{1}} \cup[c]_{\chi_{1}} \cup[b]_{\chi_{2}} \cup[c]_{\chi_{2}} \cup[d]_{\chi_{2}} \cup[c]_{\chi_{3}} \\
& =\{a, b, c, d, e, f, g, h\} .
\end{aligned}
$$

Considering the following table of operation:

$$
\begin{array}{c|ccc}
\bullet & c & d & e \\
\hline c & c & d & e \\
d & d & c & f \\
e & e & f & c
\end{array}
$$

In that case, (S, \bullet) is a semigroup on \mathcal{O}. Next, we take $A=\{c, e\} \subseteq S$.

$$
\begin{aligned}
N_{1}(B)^{*} A & \left.=\bigcup_{[x]_{\chi_{i}} \cap A \neq \varnothing} \cap x\right]_{\chi_{i}} \\
& =[c]_{\chi_{1}} \cup[b]_{\chi_{2}} \cup[c]_{\chi_{2}} \cup[c]_{\chi_{3}} \\
& =\{b, c, d, e, f\} .
\end{aligned}
$$

In this case, A satisfies the condition $A S^{m} \cap S^{n} A \subseteq N_{r}(B)^{*} A$. Thus, A is a (m, n) quasi-nearness ideal of S.

Theorem 3.4. Let S be a nearness semigroup and Q be a quasi-nearness ideal of S. If S is commutative and $N_{r}(B)^{*}\left(N_{r}(B)^{*} Q\right)=N_{r}(B)^{*} Q$, then Q is a quasi upper-near ideal of S.

Proof. We show that $\left(N_{r}(B)^{*} Q\right) S \cap S\left(N_{r}(B)^{*} Q\right) \subseteq N_{r}(B)^{*} Q .\left(N_{r}(B)^{*} Q\right) S \cap$ $S\left(N_{r}(B)^{*} Q\right) \subseteq\left(N_{r}(B)^{*} Q\right)\left(N_{r}(B)^{*} S\right) \cap\left(N_{r}(B)^{*} S\right)\left(N_{r}(B)^{*} Q\right)$ by Theorem 2.1.(i). Afterward,
$\left(N_{r}(B)^{*} Q\right)\left(N_{r}(B)^{*} S\right) \cap\left(N_{r}(B)^{*} S\right)\left(N_{r}(B)^{*} Q\right) \subseteq N_{r}(B)^{*}(Q S) \cap N_{r}(B)^{*}(S Q)$
by Lemma 2.1.(ii). From here, we have that

$$
N_{r}(B)^{*}(Q S) \cap N_{r}(B)^{*}(S Q) \subseteq N_{r}(B)^{*}\left(N_{r}(B)^{*} Q\right) \cap N_{r}(B)^{*}\left(N_{r}(B)^{*} Q\right)
$$

by Lemma 3.1 since each quasi-nearness ideal of S is two-sided nearness ideal of S. Since $N_{r}(B)^{*}\left(N_{r}(B)^{*} Q\right)=N_{r}(B)^{*} Q$ by hypothesis, hence, $\left(N_{r}(B)^{*} Q\right) S \cap$ $S\left(N_{r}(B)^{*} Q\right) \subseteq N_{r}(B)^{*} Q$ and Q is a quasi upper-near ideal of S.

References

1. E. İnan and M. A. Öztürk, Near semigroups on nearness approximation spaces. Ann. Fuzzy Math. Inform., 10(2)(2015), 287-297.
2. K. Iseki, Quasi-ideals in semirings without zero, Proc. Japan Acad., 34(1958), 79-81.
3. M. A. Öztürk, Semirings on weak nearness approximation spaces. Ann. Fuzzy Math. Inform. 15(3) (2018), 227-241.
4. M. A. Öztürk, Y. B. Jun, and A. İz, Gamma semigroups on weak nearness approximation spaces. J. Int. Math. Virtual Inst., 9(1)(2019), 53-72.
5. M. A. Öztürk, Prime ideals of gamma semigroups on weak nearness approximation spaces, Asian-Eur. J. Math. 12(5) (2019), 1950080 (10 pages).
6. M. A. Öztürk, G. Muhiuddin and Y.B. Jun, Ordered nearness semigroups, (Submitted).
7. Z. Pawlak, Rough sets. Int. J. Comput. Inform. Sci., 11(5)(1982), 341-356.
8. J. F. Peters, Near sets, General theory about nearness of objects. Appl. Math. Sci., 1(5356)(2007), 2609-2629.
9. J. F. Peters, Near sets, Special theory about nearness of objects. Fund. Inform., 75(1-4)(2007), 407-433.
10. J. F. Peters, Near sets: An introduction. Math. Comput. Sci., 7(1)(2013), 3-9.
11. O. Steinfeld, On ideals quotients and prime ideals. Acta. Math. Acad. Sci. Hung., 4 (1953), 289-298.
12. O. Steinfeld, Quasi-Ideals in Rings and Semigroups, Akad'emiai Kiad'o, Budapest (1978).
13. Ö. Tekin, Quasi ideals of nearness semirings. Cumhuriyet Sci. J., 42(2)(2021), 333-338.
14. Ö. Tekin, Bi-ideals of nearness semirings. European Journal of Science and Technology, 28(2021), 11-15.
15. Ö. Tekin and M. Munir, Bi-ideals of Γ-nearness semirings. Bull. Int. Math. Virtual Inst., 12(2)(2022), 329-343.
16. H. J. Weinert, On quasi-ideals in rings. Acta Math. Hung., 43(1984), 1-2.
17. M. C. Zhang and Y. H. Li, The intersection property of quasi-ideals in rings and semigroups rings. Southeast Asian Bull. Math., 20(1966), 117-122.

Received by editors 8.7.2022; Revised version 29.12.2022; Available online 15.4.2023.
Özlem Tekin, Department of Mathematics,, Faculty of Arts and Sciences,, Adiyaman University,, 02040 Adiyaman, Turkey.

Email address: oumdu@adiyaman.edu.tr

[^0]: 2010 Mathematics Subject Classification. Primary 03E75; Secondary 03E99; 20M99 .
 Key words and phrases. Near sets, Semigroups, Nearness approximation spaces, Weak nearness approximation spaces, Nearness semigroups, Quasi-nearness ideals.

 Communicated by Dusko Bogdanic.

