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Abstract. Let G = (V,E), V = {v1, v2, . . . , vn}, be a simple graph of order
n, size m with vertex–degree sequence ∆ = d1 > d2 > · · · > dn = δ, di =

d(vi). Sombor, reverse Sombor and δ–Sombor indices are respectively defined

as SO(G) =
∑

i∼j

√
d2i + d2j , RSO(G) =

∑
i∼j

√
c2i + c2j and δSO(G) =∑

i∼j

√
δ2i + δ2j , where ci = ∆ − di + 1 and δi = di − δ + 1, i = 1, 2, . . . , n.

A relationship between RSO(G) and δSO(G) as well as some new bounds on

RSO(G) and δSO(G) are derived.

1. Introduction and preliminaries

Let G = (V,E), V = {v1, v2, . . . , vn}, be a simple graph with n vertices, m
edges with vertex–degree sequence ∆ = d1 > d2 > · · · > dn = δ > 0, di = d(vi). If
vertices vi and vj are adjacent in G, we write i ∼ j.

A topological index is a number related to graph which is invariant under graph
isomorphism. In theoretical chemistry, topological indices (or, chemical indices or
graphical indices) play an important role in studying the properties of molecules
[10].

A great number of topological indices are the so-called degree-based graph
invariants. These indices can be commonly represented as [11],

TI(G) =
∑
i∼j

F (di, dj),
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where F (x, y) is an appropriately chosen function with the property F (x, y) =
F (y, x).

Let f be a mapping from the set D = {d1, d2, . . . , dn} into the set of positive
real numbers. The general vertex–degree–based topological indices, TIf (G), are
defined as

(1.1) TIf (G) =
∑
i∼j

F (f(di), f(dj)).

If F is an additive function, F (x, y) = x+ y, then the following is valid [7]

(1.2) TIf (G) =
∑
i∼j

(f(di) + f(dj)) =

n∑
i=1

dif(di).

The first Zagreb index, M1(G), is vertex–degree–based index introduced in [12] as

M1(G) =

n∑
i=1

d2
i .

For f(x) = x from (1.2) it follows [6]

M1(G) =
∑
i∼j

(di + dj).

The first Zagreb index became one of the most popular and most extensively stud-
ied graph–based molecular structure descriptors. More on its applications and
mathematical properties can be found in [2, 3, 13, 14] and in the references cited
therein.

Using the function f(x) = x − δ + 1, a δ–set δD = {δ1, δ2, . . . , δn} can be
associated to the set D = {d1, d2, . . . , dn} in the following way [17]:

δi = δi(G) = di − δ + 1,

for i = 1, 2, . . . , n. Now, by analogy with the first Zagreb index M1(G), two δ–first

Zagreb indices, δMα
1 (G) and δMβ

1 (G), can be defined as

δMα
1 (G) =

n∑
i=1

δ2
i =

n∑
i=1

(di − δ + 1)2 = M1(G)− 4m(δ − 1) + n(δ − 1)2

and

δMβ
1 (G) =

∑
i∼j

(δi + δj) =

n∑
i=1

diδi =

n∑
i=1

di(di − δ + 1) = M1(G)− 2m(δ − 1).

It can be easily verified that for a graph with the property δ = 1, we have M1(G) =

δMα
1 (G) = δMβ

1 (G). Of course, this is not true in general.
In [8], using the function f(x) = ∆ − x + 1, a set ∆D = {c1, c2, . . . , cn} is

associated to the set D = {d1, d2, . . . , dn} in the following way

ci = ci(G) = ∆− di + 1,



REMARK ON THE REVERSE SOMBOR (δ–SOMBOR) INDICES 521

for i = 1, 2, . . . , n. Having this in mind, two new indices resembling on M1(G),
called reverse Zagreb indices can be defined as

(1.3) RMα
1 (G) =

n∑
i=1

c2i =

n∑
i=1

(∆− di + 1)2 = M1(G)− 4m(∆ + 1) + n(∆ + 1)2

and

(1.4) RMβ
1 (G) =

∑
i∼j

(ci+cj) =

n∑
i=1

dici =

n∑
i=1

di(∆−di+1) = 2m(∆+1)−M1(G).

The Sombor index is another vertex-degree index, recently conceived in [15] as

SO(G) =
∑
i∼j

√
d2
i + d2

j .

More on its mathematical properties can be found in [4, 16, 18, 19, 22].
The so called δ–Sombor index, δSO(G), was introduced in [17] as

δSO(G) =
∑
i∼j

√
δ2
i + δ2

j ,

and the reverse Sombor index, RSO(G), in [23] as

RSO(G) =
∑
i∼j

√
c2i + c2j .

By definition, a topological invariant TI(G) is called an irregularity measure
of a graph G if TI(G) > 0 and TI(G) = 0 if and only if G is a regular graph. The
majority of irregularity measures are the so-called degree-based graph invariants.
The Albertson irregularity measure is defined as [1]

irr(G) =
∑
i∼j
|di − dj |.

One can easily see that the following equalities hold

irr(G) =
∑
i∼j
|di − dj | =

∑
i∼j
|δi − δj | =

∑
i∼j
|ci − cj |.

In the present paper we investigate a relationship between δSO(G) andRSO(G)
and determine new bounds for RSO(G), i.e. δSO(G), in terms of invariants M1(G)
and irr(G) and prove Nordhaus–Gadumm type inequalities (see [20]).

2. Main results

At the beginning let us recall one analytical inequality for real number se-
quences proven in [21] which will be used in proofs of theorems.
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Lemma 2.1. Let x = (xi) and a = (ai), i = 1, 2, . . . , n, be positive real number
sequences. Then for any r > 0 holds

(2.1)

n∑
i=1

xr+1
i

ari
>

(
n∑
i=1

xi

)r+1

(
n∑
i=1

ai

)r .

Equality holds if and only if r = 0, or x1

a1
= x2

a2
= · · · = xn

an
.

Remark 2.1. The inequality (2.1) is given in its original form as proven in
[21]. But it is not difficult to see that it is valid for any real r such that r 6 −1
or r > 0, and when −1 6 r 6 0 the opposite inequality holds. The equality is also
attained when r = −1. The inequality (2.1) is known in the literature as Radon’s
inequality.

In the next theorem we determine a relationship between RSO(G) and M1(G)
and irr(G).

Theorem 2.1. Let G be a connected graph with m > 1 edges. Then

(2.2) RSO(G) >

√
2

2

√
irr(G)2 + (2m(∆ + 1)−M1(G))2.

Equality holds if and only if G is an edge–regular graph.

Proof. The following identities are valid

RSO(G)−
∑
i∼j

2cicj√
c2i + c2j

=
∑
i∼j

(ci − cj)2√
c2i + c2j

and

RSO(G) +
∑
i∼j

2cicj√
c2i + c2j

=
∑
i∼j

(ci + cj)
2√

c2i + c2j

.

After summing the above equalities we get

(2.3) 2RSO(G) =
∑
i∼j

(ci − cj)2√
c2i + c2j

+
∑
i∼j

(ci + cj)
2√

c2i + c2j

.

For r = 1, xi := |ci − cj |, ai :=
√
c2i + c2j , with summation performed over all

adjacent vertices vi and vj in graph G, the inequality (2.1) becomes

∑
i∼j

(ci − cj)2√
c2i + c2j

>

∑
i∼j
|ci − cj |

2

∑
i∼j

√
c2i + c2j

,
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that is

(2.4)
∑
i∼j

(ci − cj)2√
c2i + c2j

>
irr(G)2

RSO(G)
.

On the other hand, for r = 1, xi := ci + cj , ai :=
√
c2i + c2j , with summation

performed over all adjacent vertices vi and vj in G, the inequality (2.1) becomes

∑
i∼j

(ci + cj)
2√

c2i + c2j

>

∑
i∼j

(ci + cj)

2

∑
i∼j

√
c2i + c2j

=
RMβ

1 (G)2

RSO(G)
.

From the above and (1.4) it follows

(2.5)
∑
i∼j

(ci + cj)
2√

c2i + c2j

>
(2m(∆ + 1)−M1(G))2

RSO(G)
.

According to (2.3), (2.4) and (2.5) we have

2RSO(G) >
irr(G)2 + (2m(∆ + 1)−M1(G))2

RSO(G)
,

from which (2.2) is obtained.

Equality in (2.5) holds if and only if
ci+cj√
c2i +c2j

= const. for any pair of adjacent

vertices vi and vj in G. Let vj and vk be two vertices adjacent to vi. Then

ci + ck√
c2i + c2k

=
ci + cj√
c2i + c2j

,

i.e.
ci(c

2
i − cjck)(cj − ck) = 0.

This means that equality in (2.5) holds if and only if cj = ck, i.e. if and only if G
is an edge–regular graph. The equality in (2.4) holds under same condition, which
implies that equality in (2.2) holds if and only if G is an edge–regular graph. �

Corollary 2.1. Let G be a connected graph with m > 1 edges. Then

(2.6) RSO(G) >

√
2

2
(2m(∆ + 1)−M1(G)).

Equality holds if and only if G is a regular graph.

Proof. For any graph G we have that irr(G) > 0. Based on this, from (2.2)
we arrive at (2.6). �

Corollary 2.2. Let G be a connected graph with n > 2 vertices and m edges.
Then

RSO(G) >

√
2

2
(n∆δ − 2m(δ − 1)).
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Equality holds if and only if G is a regular graph.

Proof. In [5] the following inequality was proven

(2.7) M1(G) 6 2m(∆ + δ)− n∆δ.

From the above and (2.6) we get the desired result. �

The proof of the next theorem is analogous to that of Theorem 2.1, hence
omitted.

Theorem 2.2. Let G be a connected graph with m > 1 edges. Then

δSO(G) >

√
2

2

√
irr(G)2 + (M1(G)− 2m(δ − 1))2.

Equality holds if and only if G is an edge–regular graph.

Corollary 2.3. Let G be a connected graph with m > 1 edges. Then

(2.8) δSO(G) >

√
2

2
(M1(G)− 2m(δ − 1)).

Equality holds if and only if G is a regular graph.

Corollary 2.4. Let G be a connected graph with n > 2 vertices and m edges.
Then

δSO(G) >

√
2m

n
(2m− n(δ − 1)) >

√
2m.

Equality holds if and only if G is a regular graph.

Proof. In [9] the following was proven

M1(G) >
4m2

n
.

From the above and (2.8) we get the desired result. �

Corollary 2.5. Let G be a connected graph with m > 1 edges. Then

(2.9) RSO(G) +RSO(G) >
√

2m(∆− δ + 2).

Equality holds if and only if G is a regular graph.

Proof. Since

δi = δi (G) = di − δ + 1 = di + (n− 1)− (n− 1)− δ + 1

= ∆− di
(
G
)

+ 1 = ci
(
G
)

= ci

we have that

RSO(G) =
∑
i∼j

√
ci

2 + cj
2 =

∑
i∼j

√
δ2
i + δ2

j = δSO(G),

i.e.

RSO(G) +RSO(G) = RSO(G) + δSO(G).

From the above and (2.6) and (2.8) we arrive at (2.9). �
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Corollary 2.6. Let G be a connected graph with n > 2 vertices and m edges.
Then

RSO(G).RSO(G) > m(n∆δ − 2m(δ − 1)).

Equality holds if and only if G is a regular graph.

In the next theorem we determine an upper bound for RSO(G) in terms of
topological indices M1(G) and irr(G) and parameters m and ∆.

Theorem 2.3. Let G be a connected graph with m > 1 edges. Then

(2.10) RSO(G) 6

√
2

2
(irr(G) + 2m(∆ + 1)−M1(G)).

Equality holds if and only if G is a regular graph.

Proof. For any two nonnegative real numbers a and b holds

(2.11)
√
a+ b 6

√
a+
√
b,

with equality if and only if ab = 0.
For ai := 1

2 (ci + cj)
2, bi := 1

2 (ci − cj)2, the inequality (2.11) transforms into

(2.12)
√
c2i + c2j 6

√
2

2
(ci + cj + |ci − cj |).

After summation the above inequality over all adjacent vertices vi and vj in
graph G, we get∑

i∼j

√
c2i + c2j 6

√
2

2

∑
i∼j

(ci + cj) +
∑
i∼j
|ci − cj |

 ,

that is

RSO(G) 6

√
2

2

(
irr(G) +RMβ

1 (G)
)
.

From the above and (1.4) we get (2.10).
Equality in (2.12) holds if and only if (ci + cj)(ci − cj) = 0, i.e. ci = cj for any

two adjacent vertices vi and vj in G. Consequently the equality in (2.10) holds if
and only if G is a regular graph. �

Corollary 2.7. Let G be a connected graph with n > 2 vertices and m edges.
Then

RSO(G) 6

√
2

2
(irr(G) +

2m

n
(n(∆ + 1)− 2m)).

Equality holds if and only if G is a regular graph.

By a similar procedure as in the case of Theorem 2.3, we get the following
result.

Theorem 2.4. Let G be a connected graph with m > 1 edges. Then

δSO(G) 6

√
2

2
(irr(G) +M1(G)− 2m(δ − 1)).

Equality holds if and only if G is a regular graph.
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Corollary 2.8. Let G be a connected graph with n > 2 vertices and m edges.
Then

δSO(G) 6

√
2

2
(irr(G) + 2m(∆ + 1)− n∆δ).

Equality holds if and only if G is a regular graph.

Corollary 2.9. Let G be a connected graph with m > 1 edges. Then

RSO(G) +RSO(G) 6
√

2(irr(G) +m(∆− δ + 2)).

Equality holds if and only if G is a regular graph.

Corollary 2.10. Let G be a connected graph with n > 2 vertices and m edges.
Then

RSO(G).RSO(G) 6
1

2
(irr(G) +

2m

n
(n(∆ + 1)− 2m))(irr(G) + 2m(∆ + 1)−n∆δ).

Equality holds if and only if G is a regular graph.
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Emina Milovanović, Faculty of Electronic Engineering, University of Nǐs, Nǐs, aaa
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